电阻电路的等效变换和化简

合集下载

第二章 电阻电路的等效变换

第二章 电阻电路的等效变换

i

… i
+ -
u

K=1,2 , i
+ -
u
Reg
u
G1
in Gn
u

Geg
分流公式: 分流公式:ik=Gku=Gk/Geg i n=2时,Reg=R1R2/(R1+R2) 时 ( i1=R2/(R1+R2), 2=R1/(R1+R2)×i ),i ( ( *混联:有串,又有并 混联:有串, 混联 1 R1 R2 R3 R4
对于△ 对于△形,各电阻中电流为:i12=u12/R12 i23=u23/R23 i31=u31/R31 各电阻中电流为:
i ′ =i12-i31=u12/R12-u31/R31 1
i ′2 =u23/R23-u12/R12
i ′3 =u31/R31-u23/R23
i1 + i 2 + i 3 = 0

2
2 i31 1 i12

2

i′2
1
1
R2
3
自已补充:R 自已补充 4与1串,R3与2串,然 串 串然 后再并 i2
R4 R3 2
3
i3 2
1
1
2-5
电压源和电流源的串联和并联

1、n个电压源串联:us=∑usk--------等效电压源 、 个电压源串联: 等效电压源 个电压源串联 + - + ○ ○ -○ us1 us2 usn。 。 注:正、负号取 。 。 。 2、n个电流源的并联: 个电流源的并联: 、 个电流源的并联 is1 is=is1+is2+…is=∑isk 。 。
αi
+ uS - i +

2-电阻电路的化简和等效变换

2-电阻电路的化简和等效变换
+ us1 -+ us2 + usn + us -
电压源u 值不相等不能并联! 电压源us值不相等不能并联! a +
Us1
2009.4
Us2 b
目录 上页 下页 返回 退出
郭颖
与理想电压源并联的元件的处理: 与理想电压源并联的元件的处理: a +
E
a Is + b a E b
-
+ E
郭颖
列KVL方程时: KVL方程时 方程时: 与理想电压源并联的 元件可开路去掉来列 方程。 方程。
Rc
C
Rb
相 R∆之 邻 积 RY = 三 R∆之 个 和
目录 上页 下页 返回 退出
Ia a Ra Ib Ic b Rb Rc
C
Y-△变换的公式
Ra Rb +GaGb + Rc Ra Rb Rc Gab = Rab = Ga + Gb + Gc Rc Ra Rb +GbGC + Rc Ra Rb Rc Rbc Gbc = = Ga + Ga + Gc Rb R R + GbGa + Rc Ra R Rc Rca Gca = b = a Rb Ga + Gb + Gc
a I RO
I'
a
Is
b
E
+ -
RO' b
郭颖
2009.4
目录
上页
下页
返回
退出
4、恒压源和恒流源不能等效互换 a I I' a Uab' b
+ E -
b
Is
郭颖

二章电阻电路等效变换

二章电阻电路等效变换
2、理想电流源
(1)并联: 所连接的各电流源端为同一电压。
保持端口电流、电 压相同的条件下,图
(a)等效为图(b)。等效 is1
变换式:
i
is2
is
is = is1 - is2
(a)
(b)
(2)串联:只有电流数值、方向完全相同的理想电流 源才可串联。
1
二、实际电源模型:
1、实际电压源模型
(1)伏安关系:
i=1.5A Uab=6(i-1)=3V R=Uab/1=3Ω
13
四、三个电阻的星形、三角形连接及等效变换 1、电阻的星形、三角形连接
(a) 星形连接(T形、Y形)
(b) 三角形连接(形、形)
14
2、从星形连接变换为三角形连接
R1
R3
R2
R31 R12 R23
变换式:R12
R1
R2
R1R2 R3
∴i3=i2/3 KCL: i2+i3=I
∴i3=i/4 ∴u=3i+2i = 5i
- 2i0 +
i0
i1 i2
i3
R= u/I=5Ω
21
二、含受控源简单电路的分析:
基本分析思想:运用等效概念将含受控源电路化简、 变换为只有一个单回路或一个独立节点的最简形式, 然后进行分析计算。 例1:求电压u、电流i。
R23
R2
R3
R2 R3 R1
15
3、从三角形连接变换为星形连接
R1
R3
R2
变换式:R1
R12
R12 R31 R23
R31
R31 R12 R23
R2
R12
R23 R23
R31

电阻电路的等效变换法

电阻电路的等效变换法

0.4
R3

2
1 2 1
2

0.4
则:R12 0.8 0.4 1//0.4 2 1 2.684
Chapter 2
方法二:将Y→△(如下图),自己练习。
1 2Ω
R12
2
1Ω 2Ω
1


2

3
1
1
R12
R13 2 Ω
2

1Ω 2
R23
3
1
R12
2
说明:使用△-Y 等效变换公式前,应先标出三个端头标 号,再套用公式计算。
设n个电阻串联
i
R1
R2
+
u
Rn
-
i Req
+
u
-
1.特点:流过串联电阻的电流为同一电流。
Chapter 2
2.等效电阻
Req

u i

R1i

R2i

R3i


Rni
i

R1 R2
Rn

n
Ri
i1
3.分压原理: i R1
+
R2 Rk Rn
+
u
uk
-
-
uk

Rk Req
u
串联电阻具有分压作用,电阻越大,分压越高。
互等效。
由 ②式得:
u i is Gs Gs

由等效条件有①式=③式 :

Rsi
us

i Gs

is Gs
且i=i,可见,等效公式为:

电阻电路的等效变换

电阻电路的等效变换

电阻电路的等效变换
一、等效变换的概念?
为了简化电路,可将电路中的某部分用另一种电路结构来代替。

二、电阻的等效变换?
1、纯电阻电路
1)运用串联、并联等效变换化简即可;
2)等电位法,电桥平衡法。

2、电路中含有受控电源
1)补上外加电压源(当端电压已知时可以外加电流源),标出总电流
(电流从正极流出);
2)将电路中各个电流用外加电压源表示;
3)将总电流用各支路电流表示;
4)直接变形可得R ab=u s/i.
三、星形(顺时针为R1、R2、R3)变三角形?
1)三个式子分子都相同(R1R2+R2R3+R3R1);
2)具有对角性,即分母为R3时产生R12。

四、三角形(顺时针为R12、R23、R31)变星形?
1)分母都相同(R12+R23+R31);
2)具有守护性,即分子为R12R31时产生的是R1。

五、电源的等效变换?
六、受控电源的等效变换及计算?
七、输入电阻及求法?
八、电桥平衡条件?。

电阻电路的等效化简

电阻电路的等效化简

例2.2-2 求图2.2-4(a)所示电路a、b两端的等效电阻Rab。

c
15Ω

a b 7Ω
d (a)
20Ω c

a
20Ω

c c


Rab
15Ω b
d 7Ω
a 4Ω
c 3Ω
Rab
15Ω
d

b
(b)
(c) 图2.2-4 例2.2-2图
a
R1

Rab b
R2

(d)
解:电路为多个电阻混联,初一看似乎很复杂,但 只要抓住端钮a和b,从a点出发,逐点缕顺,一直 缕到另一端钮b。为清楚起见,在图2.2-4(a)中标 出节点c和d。就得到图2.2-4(b),并可看出5Ω和 20Ω的电阻是并联,两个6Ω的电阻也是并联,其等 效电阻分别是
为分流电阻。 首先求出最小量程I1的分流电阻, 此时,
I2、I3的端钮均断开, 分流电阻为R1+R2+R3, 根据并
联电阻分流关系, 有
所以
IgRgR1R 1R2R 2R3R3I1 R1R2R3II1RIg 1(50 001010601).160016 0340 0
1.在电路中某两个关系的节点处作分解,把电 路分解成两个或多个部分。
2.分别对各部分进行等效化简,求出最简的等 效电路。
3.用最简的等效电路替代原电路,求出端钮处 的电压或电流。
4.若还需要求电路中其他支路上的电压或电流, 在回到原电路,根据已求得的端电压或端电 流进行计算。
2.2二端电阻网络的等效
2. 并联电阻的功率分配关系
UI UI1UI2UI3 PP1P2P3

电阻连接的等效变换公式

电阻连接的等效变换公式

电阻连接的等效变换公式电阻是电路中常见的元件之一,它可以对电流的流动产生阻碍作用。

在实际的电路中,我们经常需要对电阻进行等效变换,以便更好地分析和设计电路。

本文将介绍电阻连接的等效变换公式,帮助读者更好地理解和运用这些公式。

1. 串联电阻的等效电阻当多个电阻依次连接在一起,形成串联电路时,它们的等效电阻可以通过简单相加得到。

假设有两个电阻R1和R2串联连接在一起,它们的等效电阻可以表示为:Req = R1 + R2如果有更多的电阻串联连接在一起,可以依次相加得到总的等效电阻。

2. 并联电阻的等效电阻当多个电阻同时连接在电路中,形成并联电路时,它们的等效电阻可以通过倒数相加后再取倒数得到。

假设有两个电阻R1和R2并联连接在一起,它们的等效电阻可以表示为:1/Req = 1/R1 + 1/R2如果有更多的电阻并联连接在一起,可以依次倒数相加后再取倒数得到总的等效电阻。

3. 三角形电阻网络的等效电阻在一些特殊情况下,电路中的电阻可以组成一个三角形网络。

对于三角形电阻网络,我们可以通过等效变换将其转化为星形电阻网络,以便更好地分析和设计电路。

三角形电阻网络的等效电阻可以通过下式得到:Req = R1 * R2 / (R1 + R2 + R3)其中,R1、R2和R3分别表示三角形电阻网络中的三个电阻。

4. 星形电阻网络的等效电阻与三角形电阻网络相对应的是星形电阻网络。

对于星形电阻网络,我们可以通过等效变换将其转化为三角形电阻网络。

星形电阻网络的等效电阻可以通过下式得到:1/Req = 1/R1 + 1/R2 + 1/R3其中,R1、R2和R3分别表示星形电阻网络中的三个电阻。

5. 电阻的温度系数电阻的阻值是随温度的变化而变化的,这是由于电阻材料的特性所决定的。

电阻的温度系数是描述电阻阻值随温度变化的程度的指标,通常用符号α表示。

电阻的阻值与温度的关系可以用下式表示:Rt = R0 * (1 + α * (T - T0))其中,Rt表示温度为T时的电阻阻值,R0表示参考温度T0时的电阻阻值,α表示电阻的温度系数。

电阻电路的等效变换

电阻电路的等效变换

电阻电路的等效变换等效变换的概念电路一般等效变换概念电路中的某一部分用另一种结构与元件参数的电路替代后,变换部件以外的电路参数不受影响一端口网络等效两个二端电路,端口具有相同的电压、电流关系电源的等效变换电压源的串并联及等效变换电流源的串并联及等效变换实际电源模型及等效变换电阻元件的等效变换电阻的串联串联分压:Uk=Rk*i=Rk*U/Req;功率:P=i^2Req电阻的并联分流:i=U/Rk;功率:P=U^2/Req;电阻的Y-▲联结的等效变换电桥平衡条件:R2*R4=R1*R3等效条件:u12▲ =u12Yu23▲=u23Yu31▲ =u31Yi1▲ =i1Yi2 ▲ =i2Yi3▲=i3Y▲结:用电压表示电流i1▲=u12▲/R12 –u31▲/R31i2▲=u23▲/R23 –u12▲/R12i3▲=u31▲/R31 –u23▲/R23Y结:用电流表示电压u12Y=R1i1Y– R2i2Yu23Y=R2i2Y – R3i3Yu31Y=R3i3Y – R1i1Y输入电阻一端口无源网络输入电阻的定义对于一个不含独立源的一端口电压,不论内部如何复杂,其端口电压和端电流成正比,定义这个比值为一端口电路的输入电阻Rin=U/i一端口无源网络输入电阻的求法电阻的串并联简化法电阻的Y-▲等效变换法外加电压源或电流法一端口含源(不含受控源)网络输入电阻的求法外加电压源或电流源法电源置零法含受控源一端口无源网络输入电阻的求法外加电压源法外加电流源法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1) 电阻串连时,各电阻消耗的功率与电阻大小成正比 (2) 等效电阻消耗的功率等于各串连电阻消耗功率的总和
返回 上页 下页
2. 电阻并联 (Parallel Connection)
(1) 电路特点
i
+
i1 i2
ik
in
u R1 R2
Rk
Rn
_
(a) 各电阻两端分别接在一起,两端为同一电压 (KVL); (b) 总电流等于流过各并联电阻的电流之和 (KCL)。
3.
b
100 10 60 50
80 R
c
R
2.
5
a 20
15 b
7
6
6
a
b
R
R
d
返回 上页 下页
例 求: Rab
a
b
20
100 10
40
60 50
a
20
120
b
100 60
60
80
a
b
20 100
a
b
100
Rab=70
20 40
100 60
返回 上页 下页
例 求: Rab
20
5a15 b2 Nhomakorabea 缩短无电阻支路
R1
包含
1
a
R3
1d
R12
R31
R1
R2
R3
2
R23
3
2
3
型网络
Y型网络
R2
b
R4
三端 网络
返回 上页 下页
,Y 网络的变形:
型电路 ( 型)
T 型电路 (Y、星 型)
这两个电路当它们的电阻满足一定的关系时,能够相互等效
返回 上页 下页
2. —Y 变换的等效条件
1 + i1
u12 R12
– R3u1 31
路为二端络网(或一端口网络)。

i i
无 源
源 一 端

2. 两端电路等效的概念
两个两端电路,端口具有相同的电压、电流关系,则 称它们是等效的电路。
返回 上页 下页
B
i
+ u
等效
-
C
i
+ u
-
对A电路中的电流、电压和功率而言,满足
B
A
C
A
(1)电路等效变换的条件
明 确 (2)电路等效变换的对象
(3)电路等效变换的目的
6
i1 5
i1 5
+
165V
-
i2 6 i3
+
18
4 i4
165V
i5
-
12
i2
i3
18
9
返回 上页 下页

+ 12V_
I1 I2 R I3 R
+
+
2R U_1 2R U_2 2R
I4 求:I1 ,I4 ,U4
+
2R U_4
解 ① 用分流方法做
②用分压方法做
返回 上页 下页
从以上例题可得求解串、并联电路的一般步骤:
– i2 2+
i3 +
R23 u23
–3
等效条件:
1 +i1Y –
u12Y – i2Y R2
2+
R1 u31Y R3 i3Y +
u23Y – 3
i1 =i1Y ,
i2 =i2Y , i3 =i3Y ,
u12 =u12Y , u23 =u23Y , u31 =u31Y
返回 上页 下页
1 + i1
(1) 求出等效电阻或等效电导; (2)应用欧姆定律求出总电压或总电流; (3)应用欧姆定律或分压、分流公式求各电阻上的电流和电压
以上的关键在于识别各电阻的串联、并联关系!

c
d 求: Rab , Rcd
a 6
5
15
5 等效电阻针对电路的某两
b
端而言,否则无意义。
返回 上页 下页
1. a
20 40
等效电导等于并联的各电导之和
返回 上页 下页
(3) 并联电阻的电流分配
电流分配与电导成正比
对于两电阻并联,有:
i
º R1
i1 R2
i2
º
返回 上页 下页
(4) 功率
p1=G1u2, p2=G2u2,, pn=Gnu2
p1: p2 : : pn= G1 : G2 : :Gn 总功率 p=Gequ2 = (G1+ G2+ …+Gn ) u2
两电路具有相同的VCR 未变化的外电路A中 的电压、电流和功率 化简电路,方便计算
返回 上页 下页
2.2 电阻的串联和并联
1. 电阻串联( Series Connection of Resistors )
(1) 电路特点
R1
Rk
Rn
i
+ u1 _ + U k _ + un _
+
u
_
(a) 各电阻顺序连接,流过同一电流 (KCL);
=G1u2+G2u2+ +Gnu2
表明
=p1+ p2++ pn
(1) 电阻并连时,各电阻消耗的功率与电阻大小成反比 (2) 等效电阻消耗的功率等于各串连电阻消耗功率的总和
返回 上页 下页
3. 电阻的串并联 电路中有电阻的串联,又有电阻的并联,
这种连接方式称电阻的串并联。
例 计算各支路的电压和电流。
u12 R12
– R3u1 31
– i2 2+
i3 +
R23 u23
–3
接: 用电压表示电流
1 +i1Y –
u12Y – i2Y R2
2+
R1 u31Y R3 i3Y +
(b) 总电压等于各串联电阻的电压之和 (KVL)。
返回 上页 下页
(2) 等效电阻
R1
Rk
Rn
i
+ u1 _ + U k _ + un _ 等效
i
+
u
_
由欧姆定律
+
R eq u_
结论: 串联电路的总电阻等于各分电阻之和。
返回 上页 下页
(3) 串联电阻的分压
说明电压与电阻成正比,因此串连电阻电路可作分压电路
i = i1+ i2+ …+ ik+ …+in
返回 上页 下页
(2) 等效电阻
i
i
+
i1 i2
ik
in 等效 +
u R1 R2
Rk
Rn
u
Req
_
_
由KCL:
i = i1+ i2+ …+ ik+ …+in
=u/R1 +u/R2 + …+u/Rn=u(1/R1+1/R2+…+1/Rn)=uGeq
G =1 / R为电导

两个电阻的分压:
i º ++
u-1 R1 u_ u+2 R2
º
注意方向 !
返回 上页 下页
(4) 功率
p1=R1i2, p2=R2i2,, pn=Rni2 p1: p2 : : pn= R1 : R2 : :Rn
表明
总功率
p=Reqi2 = (R1+ R2+ …+Rn ) i2 =R1i2+R2i2+ +Rni2 =p1+ p2++ pn
5
a
15 b
7
6
6
7 6 6
Rab=10
4
a
15 b
10
4
a
15 b
7 3
返回 上页 下页
例 求: Rab
对称电路 c、
c
d等电位
c
R
R
R
i
R
i
a
短路
R
b
R
a i1 R
根据电
d
R i2 b
d
c
R
R
流分配
a
b
R
R
d
返回 上页 下页
2.3 电阻的星形和三角形联接及其
等效变换 (—Y 变换)
c
1. 电阻的 ,Y连接
电阻电路的等效变换和化简
2.1 等效电路的概念
电阻电路
仅由电源和线性电阻构成的电路
分析方法
(1)欧姆定律和基尔霍夫定律是分 析电阻电路的依据;
(2)等效变换的方法,也称化简的方法
返回 上页 下页
1. 两端电路(网络)
任何一个复杂的电路, 向外引出两个端钮,且从一个
端子流入的电流等于从另一端子流出的电流,则称这一电
相关文档
最新文档