计量经济学中相关证明
计量经济学习题与解答3

第四章经典单方程计量经济学模型:放宽基本假定的模型一、内容提要本章主要介绍计量经济模型的二级检检验问题,即计量经济检验。
主要讨论对回归模型的若干基本经典假定是否成立进行检验、当检验发现不成立时继续采用OLS估计模型所带来的不良后果以及如何修正等问题。
具体包括异方差性问题、序列相关性问题、多重共线性问题以及随机解释变量这四大类问题。
异方差是模型随机扰动项的方差不同时产生的一类现象。
在异方差存在的情况下,OLS 估计尽管是无偏、一致的,但通常的假设检验却不再可靠,这时仍采用通常的t检验和F检验,则有可能导致出现错误的结论。
同样地,由于随机项异方差的存在而导致的参数估计值的标准差的偏误,也会使采用模型的预测变得无效。
对模型的异方差性有若干种检测方法,如图示法、Park与Gleiser检验法、Goldfeld-Quandt检验法以及White检验法等。
而当检测出模型确实存在异方差性时,通过采用加权最小二乘法进行修正的估计。
序列相关性也是模型随机扰动项出现序列相关时产生的一类现象。
与异方差的情形相类似,在序列相关存在的情况下,OLS估计量仍具无偏性与一致性,但通常的假设检验不再可靠,预测也变得无效。
序列相关性的检测方法也有若干种,如图示法、回归检验法、Durbin-Watson检验法以及Lagrange 乘子检验法等。
存在序列相关性时,修正的估计方法有广义最小二乘法(GLS)以及广义差分法。
多重共线性是多元回归模型可能存在的一类现象,分为完全共线与近似共线两类。
模型的多个解释变量间出现完全共线性时,模型的参数无法估计。
更多的情况则是近似共线性,这时,由于并不违背所有的基本假定,模型参数的估计仍是无偏、一致且有效的,但估计的参数的标准差往往较大,从而使得t-统计值减小,参数的显著性下降,导致某些本应存在于模型中的变量被排除,甚至出现参数正负号方面的一些混乱。
显然,近似多重共线性使得模型偏回归系数的特征不再明显,从而很难对单个系数的经济含义进行解释。
第二节 自相关性

D-W检验原理简单,检验方便,是目前最常用 的自相关检验方法.Eviews软件在回归分析的输 出结果中直接给出了DW统计量的值。
在使用D-W检验时应注意以下几个问题:
(1)DW检验只能判断是否存在一阶自相关性。 (2)DW检验有两个无法判定的区域。如DW值落入该 两个区域时,一般改用其他检验方法来判断。 (3)如果模型的解释变量中含有滞后的被解释变量,例如:
t 2 t 2 t 2 n n n
(*)
et 2 ~
t 1
n
D.W . 2(1
ee ~~
t 2 n
n
t t 1
e ~
t 1
) 2(1 )
2
t
D.W . 2(1
ee ~~
t 2 n
n
t t 1
这里:
~~ et et 1 ~2 et
~2 et
三、自相关性的检验
基本思路:
序列相关性检验方法有多种,但基本思路相同:
首先, 采用 OLS 法估计模型, 以求得随机误差项的
~ ei “近似估计量” ,用
表示:
~ ˆ ei Yi (Yi ) 0ls
然后,通过分析这些“近似估计量”之间的相 关性,以判断随机误差项是否具有序列相关性。
1、残差图分析法
3、变量的显著性检验失去意义
在变量的显著性检验中,统计量是建立在参 数方差正确估计基础之上的,这只有当随机误差 项具有同方差性和互相独立性时才能成立。
其他检验也是如此。
4、降低模型的预测精度!(模型的预 测失效)
区间预测与参数估计量的方差有关,在 方差有偏误的情况下,使得预测估计不准 确,预测精度降低。 所以,当模型出现序列相关性时,它的 预测功能失效。
古扎拉蒂《计量经济学基础》第4章

在满足基本假设条件下,对一元线性回归模型:
Yi 0 1 X i i
随机抽取n组样本观测值(Xi, Yi)(i=1,2,…n)。
假如模型的参数估计量已经求得,为 ˆ0、 ˆ1
那么Yi服从如下的正态分布:
Yi N( ˆ0 ˆ1 X i, 2)
于是,Y的概率函数为
P (Yi )
1
2
e-
如果存在大量独立且相同分布的随机变 量,那么,除了少数例外情形,随着这些变 量的个数无限地增加,它们的总和将趋向服 从正态分布。正是这个中心极限定理为ui的 正态性假定提供了理论基础。
2.中心极限定理的另一个说法是,即使 变量个数并不很大或这些变量并不是严格独 立的,但它们的总和仍可视为正态分布的。 3.如附录中所言,正态分布的一个性质 是,正态分布变量的任何线性函数都是正态 分布的。因此,在正态性假定下,OLS估计量 的概率分布很容易推导。前面曾讨论过,OLS 估计量是ui的线性函数。因此,若ui是正态分 布的,则OLS估计量也是正态分布的,这就使 得我们的假设检验工作十分简单。
但估计是成功的一半,假设检验是另一半。 回想在回归分析中的目标不仅仅是估计样本回 归函数(SRF),而是像第2章所强调的那样, 要用估计来对总体回归函数(PRF)进行推断。 因此,由于这些参数是随机变量,所以需 要清楚它们的概率分布,若不知其概率分布, 那就无法将它们与其真实值相联系 。
问题的引入 以前对ui的假定是其期望值为零,它们是
不相关的,并且有一个不变的方差。 以上假定对于点估计足够了。但兴趣在于 通过统计量对参数的真值(总体参数)进行推 断。即通过样本回归函数推测总体回归函数。 SRF→PRF 注意,既然它们都是估计量,所以它们的 值将随样本而变化。因此,这些估计量都是随 机变量。
计量经济学复习

第二章 一元线性回归模型1.随机误差项形成的原因:① 在解释变量中被忽略的因素 ② 变量观测值的观测误差 ③ 模型的关系误差或设定误差 ④ 其他随机因素的影响。
2.总体回归方程和样本回归方程的区别和联系:总体回归方程是对总体变量间关系的定量表述,条件均值E(Y|X=x)是x 的一个函数 ,记作:E(Y|X=x)=f(x),其中,f(x)为x 的某个函数 ,它表明在X=x 下,Y 的条件均值与x 之间的关系。
但实际中往往不可能得到总体的全部资料 ,只能先从总体中抽取一个样本,获得样本回归方程 ,并用它对总体回归方程做出统计推断。
通过样本回归方程按照一定的准则近似地估计总体回归方程 ,但由于样本回归方程随着样本的不同而有所不同,所以这种高估或低估是不可避免的。
3.随机误差项的假定条件:(1)零均值:随机误差项具有零均值,即E( )=0,i=1,2,… (2)随机误差项具有同方差: 即每个 对应的随机误差项 具有相同的常数方差。
Var( )=Var( )= ,i=1,2,… (3)无序列相关:即任意两个 和 所对应的随机误差项 、 是不相关的。
Cov( , )=E( )=0,i j,i,j=1,2,… (4)解释变量X 是确定性变量,与随机误差项不相关。
Cov( , )=E( )=0,此假定保证解释变量X 是非随机变量。
(5) 服从正态分布, ~N(0, )4.为什么用决定系数 评价拟合优度,而不用残差平方和作为评价标准?判定系数 = = 1- ,含义为由解释变量引起的被解释变量的变化占被解释变量总变化的比重,用来判定回归直线拟合的优劣。
该值越大说明拟合得越好。
而残差平方和值的大小受变量值大小的影响,不适合具有不同量纲的模型的比较。
5.可决系数 说明了什么?在简单线性回归中它与斜率系数的t 检验的关系是什么?可决系数 是对模型拟合优度的综合度量 ,其值越大,说明在Y 的总变差中由模型作出了解释的部分占得比重越大 ,模 型的拟合优度越高 ,模型总体线性关系的显著性越强。
计量经济学课后习题答案

第一章1.计量经济学是一门什么样的学科?答:计量经济学的英文单词是Econometrics,本意是“经济计量”,研究经济问题的计量方法,因此有时也译为“经济计量学”。
将Econometrics译为“计量经济学”是为了强调它是现代经济学的一门分支学科,不仅要研究经济问题的计量方法,还要研究经济问题发展变化的数量规律。
可以认为,计量经济学是以经济理论为指导,以经济数据为依据,以数学、统计方法为手段,通过建立、估计、检验经济模型,揭示客观经济活动中存在的随机因果关系的一门应用经济学的分支学科。
2.计量经济学与经济理论、数学、统计学的联系和区别是什么?答:计量经济学是经济理论、数学、统计学的结合,是经济学、数学、统计学的交叉学科(或边缘学科)。
计量经济学与经济学、数学、统计学的联系主要是计量经济学对这些学科的应用。
计量经济学对经济学的应用主要体现在以下几个方面:第一,计量经济学模型的选择和确定,包括对变量和经济模型的选择,需要经济学理论提供依据和思路;第二,计量经济分析中对经济模型的修改和调整,如改变函数形式、增减变量等,需要有经济理论的指导和把握;第三,计量经济分析结果的解读和应用也需要经济理论提供基础、背景和思路。
计量经济学对统计学的应用,至少有两个重要方面:一是计量经济分析所采用的数据的收集与处理、参数的估计等,需要使用统计学的方法和技术来完成;一是参数估计值、模型的预测结果的可靠性,需要使用统计方法加以分析、判断。
计量经济学对数学的应用也是多方面的,首先,对非线性函数进行线性转化的方法和技巧,是数学在计量经济学中的应用;其次,任何的参数估计归根结底都是数学运算,较复杂的参数估计方法,或者较复杂的模型的参数估计,更需要相当的数学知识和数学运算能力,另外,在计量经济理论和方法的研究方面,需要用到许多的数学知识和原理。
计量经济学与经济学、数学、统计学的区别也很明显,经济学、数学、统计学中的任何一门学科,都不能替代计量经济学,这三门学科简单地合起来,也不能替代计量经济学。
李子奈 潘文卿 计量经济学(第二版)课后习题答案

ˆ 556.65 0.1198GDP ,当2001年GDP值为105709亿元时,财政收入预测值: (3)根据回归模型 Y i i
13220.59 2.08 425.75
进行单值的区间预测
ˆ t 代入公式预测: (Y 2001 0.025 S ˆ
Y2001
ˆ t ,Y ) ˆ 2001 0.025 SY
ˆ ˆ X e (3) 样本回归方程: Yt 0 1 t i ˆ ˆX ˆ (4) 样本回归方程: Y t 0 1 t
ˆt 表示,除此之外的表达方式都是错误的。 其中残差可以用 u
因此(2) 、 (6) 、 (7)为正确的表达方式。 2、 答:基本假设:解释变量是确定性的;随机干扰项具有 0 均值和同方差;随机干扰项在不同 样本点之间不存在序列相关;随机干扰项与解释变量之间不相关;随机干扰项服从 0 均值、 同方差的正态分布。 违背基本假设的计量经济学模型可以估计,但是不能使用最小二乘法。 3、 不可以。 而 表示随机干扰项的期望,是总体随机误差的平均数;实际上表示的是 ,即表示在 X 取特定值 Xi 的情况下,随机干扰项代表的因素对 Y 的平均影响为 0。 表示随机干扰项的一个样本的平均值,而样本平均值只是总体平均值(期望)的
比较①、②,知道都是 Yi 对 Xi 的回归 (2)加上 ,记为 ,则 对 Yi 回归模型可记为: 即为: 也即为: ③ 比较①、③,仍为 Yi 对 Xi 的回归分析。 7、解:根据题意,知: yi Yi Y 根据最小二乘法,得到:
xi X i X
1/5
醉客天涯之计量经济学答案
ˆ 1
2001
结果为(11460.59,14980.54) 最后预测财政收入均值的置信区间,预测的均值的标准差为:干扰项的标准差(S.E.of regression)为: 731.2086 计算公式:
《计量经济学》第三版课后习题答案李子奈
欢迎阅读第一章绪论参考重点:计量经济学的一般建模过程第一章课后题(1.4.5)1.什么是计量经济学?计量经济学方法与一般经济数学方法有什么区别?答:计量经济学是经济学的一个分支学科,是以揭示经济活动中客观存在的数量关系为内容的分支学科,是由经济学、统计学和数学三者结合而成的交叉学科。
一4.5.性,1.2.3.4.如何缩小置信区间?(P46)由上式可以看出(1).增大样本容量。
样本容量变大,可使样本参数估计量的标准差减小;同时,在同样置信水平下,n越大,t分布表中的临界值越小。
(2)提高模型的拟合优度。
因为样本参数估计量的标准差和残差平方和呈正比,模型的拟合优度越高,残差平方和应越小。
5.以一元线性回归为例,写出β的假设检验1).对总体参数提出假设H 0:?=0, H1:??02)以原假设H0构造t统计量,3)由样本计算其值4)给定显着性水平?,查t分布表得临界值t ?/2(n-2)5)比较,判断若 |t|> t ?/2(n-2),则拒绝H0,接受H1;若 |t|? t ?/2(n-2),则拒绝H1,接受H;上届重点:一元线性回归模型的基本假设、随机误差项产生的原因、最小二乘法、参数经济意义、决定系数、第二章PPT里的表(中国居民人均消费支出对人均GDP的回归)、t检验(△(平方)代表意义;△(平方)的认识)、能够读懂Eviews输出的估计结果第二章课后题(1.3.9.10)1.为什么计量经济学模型的理论方程中必须包含随机干扰项?3.假设6. 回归模型是正确设定的9、10题为计算题,见课本P52,答案见P17第三章经典单方程计量经济学模型:多元线性回归模型上届重点:F检验、t检验调整的样本决定系数、“多元”里为什么要对△(平方)系数进行调整?第三章课后题(1.2.7.9.10)1.多元线性回归模型的基本假设是什么?在证明最小二乘估计量的无偏性和有效性的过程中,哪些基本假设起了作用?答:多元线性回归模型的基本假定仍然是针对随机干扰项与针对解释变量两大类的假设。
《计量经济学》第五章最新完整知识
第五章 多元线性回归模型在第四章中,我们讨论只有一个解释变量影响被解释变量的情况,但在实际生活中,往往是多个解释变量同时影响着被解释变量。
需要我们建立多元线性回归模型。
一、多元线性模型及其假定 多元线性回归模型的一般形式是i iK K i i i x x x y εβββ++++= 2211令列向量x 是变量x k ,k =1,2,的n 个观测值,并用这些数据组成一个n ×K 数据矩阵X ,在多数情况下,X 的第一列假定为一列1,则β1就是模型中的常数项。
最后,令y 是n 个观测值y 1, y 2, …, y n 组成的列向量,现在可将模型写为:εββ++=K K x x y 11构成多元线性回归模型的一组基本假设为 假定1. εβ+=X y我们主要兴趣在于对参数向量β进行估计和推断。
假定2. ,0][][][][21=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n E E E E εεεε 假定3. n I E 2][σεε='假定4. 0]|[=X E ε我们假定X 中不包含ε的任何信息,由于)],|(,[],[X E X Cov X Cov εε= (1)所以假定4暗示着0],[=εX Cov 。
(1)式成立是因为,对于任何的双变量X ,Y ,有E(XY)=E(XE(Y|X)),而且])')|()([(])')((),(EY X Y E EX X E EY Y EX X E Y X Cov --=--=))|(,(X Y E X Cov =这也暗示 βX X y E =]|[假定5 X 是秩为K 的n ×K 随机矩阵 这意味着X 列满秩,X 的各列是线性无关的。
在需要作假设检验和统计推断时,我们总是假定: 假定6 ],0[~2I N σε 二、最小二乘回归 1、最小二乘向量系数采用最小二乘法寻找未知参数β的估计量βˆ,它要求β的估计βˆ满足下面的条件 22min ˆ)ˆ(ββββX y X y S -=-∆ (2)其中()()∑∑==-'-=⎪⎪⎭⎫ ⎝⎛-∆-nj Kj j ij i X y X y x y X y 1212ββββ,min 是对所有的m 维向量β取极小值。
计量经济学名词解释
计量经济学名词解释数理经济学:要紧关怀的是用数学公式或数学模型来描述经济理论,而不考虑对经济理论的度量和体会说明。
而经济计量学要紧是对经济理论的体会确认。
计量经济学方法与一样经济数学方法有什么区别:计量经济学方法揭示经济活动中各个因素之间的定量关系,用随机性的数学方程加以描述;一样经济数学方法揭示经济活动中各个因素之间的理论关系,用确定性的数学方程加以描述计量经济学的研究的对象和内容是什么:计量经济学的研究对象是经济现象,是研究经济现象中的具体数量规律(或者说,计量经济学是利用数学方法,依照统计测定的经济数据,对反映经济现象本质的经济数量关系进行研究)。
计量经济模型包括一个或一个以上的随机方程式,它简洁有效地描述、概括某个真实经济系统的数量特点,更深刻地揭示出该经济系统的数量变化规律。
是由系统或方程组成,方程由变量和系数组成。
其中,系统也是由方程组成。
计量经济模型揭示经济活动中各个因素之间的定量关系,用随机性的数学方程加以描述。
广义地说,一切包括经济、数学、统计三者的模型;狭义地说,仅只用参数估量和假设检验的数理统计方法研究体会数据的模型。
简述建立计量经济学模型的步骤:第一步:设计理论模型,包括确定模型所包含的变量、确定模型的数学形式、拟定模型中的待估参数的符号和大小的理论期望值。
第二步:收集数据样本,要考虑数据的完整性、准确性、可比性和一致性;第三步:估量模型参数;第四步:模型检验,包括经济意义检验、统计检验、计量经济学检验和模型推测检验。
几种常用的样本数据有哪些:(1) 时刻序列数据;(2) 横截面数据;(3) 虚拟变量数据(1)时刻序列数据:在不同时刻点上收集到的数据,这类数据反映了某一事物、现象等随时刻的变化状态或程度。
(2)横截面数据:横截面数据是在同一时刻,不同统计单位相同统计指标组成的数据列。
(3)面板数据:是截面数据与时刻序列数据综合起来的一种数据类型。
一样计量经济学模型应当通过哪几种检验模型检验:要紧包括经济意义检验、统计检验、计量经济学检验和模型推测检验四个方面。
计量经济学(第四版)习题及参考答案解析详细版
计量经济学(第四版)习题参考答案潘省初第一章 绪论1.1 试列出计量经济分析的主要步骤。
一般说来,计量经济分析按照以下步骤进行:(1)陈述理论(或假说) (2)建立计量经济模型 (3)收集数据 (4)估计参数 (5)假设检验 (6)预测和政策分析 1.2 计量经济模型中为何要包括扰动项?为了使模型更现实,我们有必要在模型中引进扰动项u 来代表所有影响因变量的其它因素,这些因素包括相对而言不重要因而未被引入模型的变量,以及纯粹的随机因素。
1.3什么是时间序列和横截面数据? 试举例说明二者的区别。
时间序列数据是按时间周期(即按固定的时间间隔)收集的数据,如年度或季度的国民生产总值、就业、货币供给、财政赤字或某人一生中每年的收入都是时间序列的例子。
横截面数据是在同一时点收集的不同个体(如个人、公司、国家等)的数据。
如人口普查数据、世界各国2000年国民生产总值、全班学生计量经济学成绩等都是横截面数据的例子。
1.4估计量和估计值有何区别?估计量是指一个公式或方法,它告诉人们怎样用手中样本所提供的信息去估计总体参数。
在一项应用中,依据估计量算出的一个具体的数值,称为估计值。
如Y就是一个估计量,1nii YY n==∑。
现有一样本,共4个数,100,104,96,130,则根据这个样本的数据运用均值估计量得出的均值估计值为5.107413096104100=+++。
第二章 计量经济分析的统计学基础2.1 略,参考教材。
2.2请用例2.2中的数据求北京男生平均身高的99%置信区间NS S x ==45=1.25 用α=0.05,N-1=15个自由度查表得005.0t =2.947,故99%置信限为 x S t X 005.0± =174±2.947×1.25=174±3.684也就是说,根据样本,我们有99%的把握说,北京男高中生的平均身高在170.316至177.684厘米之间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课本中相关章节的证明过程第2章有关的证明过程2.1 一元线性回归模型有一元线性回归模型为:y t = 0 + 1 x t + u t上式表示变量y t 和x t之间的真实关系。
其中y t 称被解释变量(因变量),x t称解释变量(自变量),u t称随机误差项,0称常数项,1称回归系数(通常未知)。
上模型可以分为两部分。
(1)回归函数部分,E(y t) = 0 + 1 x t,(2)随机部分,u t。
图2.8 真实的回归直线这种模型可以赋予各种实际意义,收入与支出的关系;如脉搏与血压的关系;商品价格与供给量的关系;文件容量与保存时间的关系;林区木材采伐量与木材剩余物的关系;身高与体重的关系等。
以收入与支出的关系为例。
假设固定对一个家庭进行观察,随着收入水平的不同,与支出呈线性函数关系。
但实际上数据来自各个家庭,来自各个不同收入水平,使其他条件不变成为不可能,所以由数据得到的散点图不在一条直线上(不呈函数关系),而是散在直线周围,服从统计关系。
随机误差项u t中可能包括家庭人口数不同,消费习惯不同,不同地域的消费指数不同,不同家庭的外来收入不同等因素。
所以,在经济问题上“控制其他因素不变”实际是不可能的。
回归模型的随机误差项中一般包括如下几项内容,(1)非重要解释变量的省略,(2)人的随机行为,(3)数学模型形式欠妥,(4)归并误差(粮食的归并)(5)测量误差等。
回归模型存在两个特点。
(1)建立在某些假定条件不变前提下抽象出来的回归函数不能百分之百地再现所研究的经济过程。
(2)也正是由于这些假定与抽象,才使我们能够透过复杂的经济现象,深刻认识到该经济过程的本质。
通常,线性回归函数E(y t) = 0 + 1 x t是观察不到的,利用样本得到的只是对E(y t) = 0 + 1 x t 的估计,即对0和1的估计。
在对回归函数进行估计之前应该对随机误差项u t做出如下假定。
(1) u t 是一个随机变量,u t 的取值服从概率分布。
(2) E(u t) = 0。
(3) D(u t) = E[u t - E(u t) ]2 = E(u t)2 = 2。
称u i 具有同方差性。
(4) u t 为正态分布(根据中心极限定理)。
以上四个假定可作如下表达:u t N(0,)。
(5) Cov(u i, u j) = E[(u i - E(u i) ) ( u j - E(u j) )] = E(u i, u j) = 0, (i j )。
含义是不同观测值所对应的随机项相互独立。
称为u i 的非自相关性。
(6) x i是非随机的。
(7) Cov(u i, x i) = E[(u i - E(u i) ) (x i - E(x i) )] = E[u i (x i - E(x i) ] = E[u i x i - u i E(x i) ] = E(u ix i) = 0.u i与x i相互独立。
否则,分不清是谁对y t的贡献。
(8) 对于多元线性回归模型,解释变量之间不能完全相关或高度相关(非多重共线性)。
在假定(1),(2)成立条件下有E(y t) = E(0+ 1 x t+ u t) = 0+ 1 x t。
2.2 最小二乘估计(OLS)对于所研究的经济问题,通常真实的回归直线是观测不到的。
收集样本的目的就是要对这条真实的回归直线做出估计。
图2.9怎样估计这条直线呢?显然综合起来看,这条直线处于样本数据的中心位置最合理。
怎样用数学语言描述“处于样本数据的中心位置”?设估计的直线用t y ˆ =0ˆβ+1ˆβ x t 表示。
其中t y ˆ称y t 的拟合值(fitted value ),0ˆβ和1ˆβ分别是 0 和1的估计量。
观测值到这条直线的纵向距离用t uˆ表示,称为残差。
y t =t y ˆ+t u ˆ=0ˆβ+1ˆβ x t +t u ˆ 称为估计的模型。
假定样本容量为T 。
(1)用“残差和最小”确定直线位置是一个途径。
但很快发现计算“残差和”存在相互抵消的问题。
(2)用“残差绝对值和最小”确定直线位置也是一个途径。
但绝对值的计算比较麻烦。
(3)最小二乘法的原则是以“残差平方和最小”确定直线位置。
用最小二乘法除了计算比较方便外,得到的估计量还具有优良特性(这种方法对异常值非常敏感)。
设残差平方和用Q 表示,Q = ∑=Ti t u 12ˆ= ∑=-Ti t t y y 12)ˆ(= ∑=--Ti tt x y 1210)ˆˆ(ββ, 则通过Q 最小确定这条直线,即确定0ˆβ和1ˆβ的估计值。
以0ˆβ和1ˆβ为变量,把Q 看作是0ˆβ和1ˆβ的函数,这是一个求极值的问题。
求Q 对0ˆβ和1ˆβ的偏导数并令其为零,得正规方程,ˆβ∂∂Q= 2∑=--Ti tt x y 110)ˆˆ(ββ(-1) = 0 (2.7) 1ˆβ∂∂Q= 2∑=--Ti tt x y 110)ˆˆ(ββ(- x t ) = 0 (2.8) 下面用代数和矩阵两种形式推导计算结果。
首先用代数形式推导。
由(2.7)、(2.8)式得,∑=--Ti tt x y 110)ˆˆ(ββ= 0 (2.9) ∑=--Ti tt x y 110)ˆˆ(ββx t = 0 (2.10) (2.9)式两侧用除T ,并整理得,0ˆβ= x y 1ˆβ- (2.11)把(2.11)式代入(2.10)式并整理,得,])(ˆ)[(11∑=---Ti ttx x y yβx t = 0 (2.12) ∑∑==---Ti t tTi t t x x xx y y 111)(ˆ)(β= 0 (2.13)1ˆβ= ∑∑--t tt txx x y y x )()( (2.14) 因为∑=-Ti t y y x 1)(= 0,∑=-Ti t x x x 1)(= 0,[采用离差和为零的结论:∑==-Ti t x x 10)(,0)(1=-∑=Ti ty y]。
所以,通过配方法,分别在(2.14)式的分子和分母上减∑=-Ti t y y x 1)(和∑=-Ti t x x x 1)(得,1ˆβ= ∑∑∑∑------)()()()(x xx x x xy yx y y x ttttt t (2.15)= ∑∑---2)())((x x y y x x ttt(2.16) 即有结果:1ˆβ= ∑∑---2)())((x x y y x x t t t t t (2.17)0ˆβ= x y 1ˆβ- 这是观测值形式。
如果以离差形式表示,就更加简洁好记。
1ˆβ=∑∑2ttt xy x0ˆβ= x y 1ˆβ- 矩阵形式推导计算结果:由正规方程,ˆβ∂∂Q= 2∑=--Ti tt x y 110)ˆˆ(ββ(-1) = 0 1ˆβ∂∂Q= 2∑=--T i tt x y 110)ˆˆ(ββ(- x t ) = 0 0ˆβT +1ˆβ (∑=Ti t x 1) = ∑=Ti t y 1ˆβ∑=Ti t x 1+1ˆβ (∑=T i t x 12) = ∑=Ti t t y x 1⎥⎦⎤⎢⎣⎡∑∑∑2ttt xx xT⎥⎥⎦⎤⎢⎢⎣⎡10ˆˆββ=⎥⎥⎦⎤⎢⎢⎣⎡∑∑t t t y x y ⎥⎥⎦⎤⎢⎢⎣⎡10ˆˆββ=12-⎥⎥⎦⎤⎢⎢⎣⎡∑∑∑t tt x x x T⎥⎥⎦⎤⎢⎢⎣⎡∑∑t t t y x y =22)(1∑∑-t t x x T ⎥⎥⎦⎤⎢⎢⎣⎡--∑∑∑T x x x tt t 2⎥⎥⎦⎤⎢⎢⎣⎡∑∑t t t y x y = ⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛----∑∑∑∑∑∑∑∑∑∑∑22222)()(t t t t t t t t t t t t t x x T y x y x Tx x T y x x y x 注意:关键是求逆矩阵12-⎥⎥⎦⎤⎢⎢⎣⎡∑∑∑t tt x x x T。
它等于其伴随阵除以其行列式,伴随阵是其行列式对应的代数余子式构成的方阵的转置。
写成观测值形式。
1ˆβ= ∑∑---2)())((x x y y x x t t t t t0ˆβ= x y 1ˆβ-如果,以离式形式表示更为简洁: 1ˆβ=∑∑2ttt xy x0ˆβ= x y 1ˆβ-2.3 一元线性回归模型的特性1. 线性特性(将结果离差转化为观测值表现形式) 2. 无偏性其中:0)222=-===∑∑∑∑∑∑∑i i i i i ii x X X x x x x K (故有:∑+=i i u K 22ˆββ3. 有效性首先讨论参数估计量的方差。
即: ∑=222)ˆ(i x Var οβ同理有:显然各自的标准误差为:∑=22)ˆ(i x se οβ,∑∑=221)ˆ(i i x n X se οβ标准差的作用:衡量估计值的精度。
由于σ为总体方差,也需要用样本进行估计。
证明过程如下: 因此有: u X Y ++=21ββ那么:)()()(2121u X u X y Y Y i i i i++-++==-ββββ根据定义:i i ix y e 2ˆβ-=, (实际观测值与样本回归线的差值)则有:两边平方,再求和: 对上式两边取期望有:其中:2222οο==∑∑i i x x A故有:22)1(ο-=∑n e E i即有:⎥⎥⎦⎤⎢⎢⎣⎡-=∑222n e E i ο, 令2ˆ22-=∑n e i ο,则问题得证。
关于∑2i e 的计算:关于22R R≤的证明:()()22211111R a k n n RR -⨯-=----=,其中:1≥a 。
当 11=⇒=a k当11>⇒>a k,当102≤≤R 时,有:关于2R 可能小于0的证明。
设:t t t u X Y +=2β则有:那么 0ˆ2=∂∂βJ但:0≠∑t e ,因为没有0ˆ1=∂∂βJ存在。
同时,还有: 其中:()01=-=-=-∑∑∑∑t t t t e nne e n e e e Θ,和 0=∑t t e X则:考虑到: 若定义可能小于0。
参考书:Dennis J. Aigner Basic Econometrics, Prentice-Hall, Englewood Cliffs, N. J. 1971,pp85-88第二章2.1 简单线性回归最小二乘估计最小方差性质的证明对于OLS 估计式^1β和^2β,已知其方差为这里只证明^2()Var β最小,^1()Var β最小的证明可以类似得出。
设2β的另一个线性无偏估计为*2β,即其中2,i i i i i x w k k x ≠=∑因为*2β也是2β的无偏估计,即*22()E ββ=,必须有0i w =∑,1i i w X =∑同时*2()()i i Var Var wY β=∑ 22i w σ=∑ [因为2()i Var Y σ=]上式最后一项中22222()i i i i iiiiw x x w k k x x -=-∑∑∑∑∑∑0= (因为0iw =∑,1iiw X=∑)所以2*222222()()[]()i i i i x Var w k x βσσ=-+∑∑∑ 而20σ≥,因为i i w k ≠,则有2()0i i w k -≥,为此只有i i w k =时,^*22()()Var Var ββ=,由于*2β是任意设定的2β的线性无偏估计式,这表明2β的OLS 估计式具有最小方差性。