2017年河北省石家庄市栾城区八年级(下)期末数学试卷与参考答案PDF

合集下载

2017-2018学年第二学期期末八年级数学试题(含答案)

2017-2018学年第二学期期末八年级数学试题(含答案)

2017—2018学年度第二学期期末考试八年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分.1.若x 是任意实数,下列各式中一定有意义的是 A.x B.2x C. 2x - D .12-x2.有下列二次根式:(1)12;(2)5.1;(3)23;(4)32.其中能与6合并的是 A .(1)和(2) B .(2)和(3) C .(1)和(3) D .(2)和(4)3.下列各组数中不能作为直角三角形的三边长的是A.5 ,5,10B. 9,12,17C. 7,24,25D. 0.6,0.8,14.在下列命题中,该命题的逆命题成立的是A .线段垂直平分线上的点到这条线段两个端点的距离相等B. 等边三角形是锐角三角形C. 如果两个角是直角,那么它们相等D. 如果两个实数相等,那么它们的平方相等5.顺次连接四边形各边中点得到的四边形一定是A.平行四边形B. 矩形C.菱形D.正方形 6.在□ABCD 中,AB =3,BC =4,当□ABCD 的面积最大时,下列结论中正确的有①AC =5; ②∠A +∠C =180°; ③AC ⊥BD ; ④AC =B D .A. ①②③B. ①②④C. ②③④D. ①③④7.如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH .若BE ∶EC =2∶1,则线段CH 的长是 A.3C.5D.6 8.下列式子中表示y 是x 的正比例函数的是A. 2x y = B. 22y x =C.2y x = D.22y x = 9.某油箱容量为60 L 的汽车,加满汽油后行驶了100 km 时,油箱中的汽油大约消耗了15,如果加满汽油后汽车行驶的路程为x km ,油箱中剩油量为y L ,那么y 与x 之间的函数解析式和自变量的取值范围分别是A. y =0.12x ,x >0B. y =60-0.12x ,x >0C. y =0.12x ,0≤x ≤500D. y =60-0.12x ,0≤x ≤50010.下列关于函数32y x =-+的表述中错误的是A. 函数32y x =-+的图象是一条经过点(0,2)的直线B. 函数32y x =-+的图象经过第一、二、四象限C. 函数32y x =-+的y 随x 的增大而增大D. 函数32y x =-+的图象可以由直线3y x =-向上平移2个单位长度而得到11.在期末考试中,某班的数学平均成绩为85分,方差为13.2,如果每名学生都多考5分,下列说法正确的是A.平均分不变,方差不变B. 平均分变大,方差不变C.平均分不变,方差变大D. 平均分变大,方差变大12.若一组数据1x ,2x ,…,n x 的方差是0,则 A.这组数据的中位数为0 B. 1x =2x =…=n x =0 C. 1x =2x =…=n x D. x =0第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分.13.如果a 是7的小数部分,那么代数式542++a a 的值是 .14.已知一个等边三角形的边长是6,则这个三角形的面积是 .15.晨光中学规定学生的学期体育成绩满分为100,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次是95,90,85.则小桐这学期的体育成绩是 .16.一组数据7,4,x ,8的平均数为5,则这组数据的中位数是 .17.已知直线6y x =-交x 轴于点A ,与直线y kx =(k>0)交于点B ,若以坐标原点O 及 点A 、B 为顶点的三角形的面积是12,则k = .18.直线3y kx =+经过点A (2,1),则不等式3kx +≥0的解集是 .19.以方程236x y -=的解为坐标(x ,y )的所有点组成的图形是函数 的图象.20.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,AC =8,OE ⊥BC ,垂足为点E ,若菱形ABCD 的面积是24,则OE = ___. 21.如图,在正方形ABCD 的外侧,作等边三角形DCE ,则∠AEB = .22.如图,正方形ABCD 的边长为4,E 为BC 上一点,BE =1,F 为AB 上一点,AF =2,P 为AC 上一点,则PF +PE 的最小值为 .三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程.23.计算:(1)23)6229(27168÷---; (2))2520)(5052()52(2-+--.24.要从甲、乙两名射击运动员中挑选一人参加全国比赛,在最近的5次选拔赛中,他们的成绩如下(单位:环):甲:7 , 8 , 6 , 8 , 9 ; 乙:9 , 7 , 5 , 8 , 6.(1)求甲运动员这5次选拔赛成绩的中位数和众数分别是多少?(2)求乙运动员这5次选拔赛成绩的平均数和方差;(3)若已知甲运动员的选拔赛成绩的方差为 1.04,为了保证稳定发挥,应选哪位运动员参加比赛?25.如图,在△ABC 中,AB =AC ,AD ⊥BC ,垂足为点D ,AN 是△ABC 外角∠CAM 的平分线,CE ⊥AN ,垂足为点E .(1)求证:四边形ADCE 为矩形;(2)当△ABC 满足什么条件时,四边形ADCE 是一个正方形?并给出证明.A C D EB O (第20题图) (第21题图) ACDE B (第22题图)F A C D E B PN A C D E B M (第25题图) (第26题图)26.有一科技小组进行了机器人行走性能试验,在试验场地有A 、B 、C 三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A 、B 两点同时同向出发,历时7分钟同时到达C 点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y (米)与他们的行走时间x (分钟)之间的函数图象,请结合图象,回答下列问题:(1)A 、B 两点之间的距离是 米,A 、C 两点之间的距离是 米;若线段FG ∥x 轴,则此段时间中甲机器人的速度为 米/分;(2)若前3分钟甲机器人的速度保持不变,求线段EF 所在直线的函数解析式.27.如图,△ACB 和△ECD 都是等腰直角三角形,CA =CB ,CE =CD ,并且△ACB 的顶点B 在△ECD 的斜边DE 上,连接AE .(1)求证:AE =BD ;(2)若BD =3,BE =15,求BC 的长.28.如图,将矩形ABCD 置于平面直角坐标系中,其中AD 边在x 轴上,点D 的坐标是(-3,0),点B 的坐标是(1,2),过点A 作直线AE ∥OB 交y 轴于点E .(1)求直线AE 的函数解析式;(2)现将直线AE 沿射线AD 的方向以每秒1个单位长度的速度平移,设平移t 秒时该直线能被矩形ABCD 的边截出线段,则t 的取值范围是 ;(3)在(2)的条件下,求t 取何值时,该线段与矩形的边及线段OB 所围成的四边形恰为菱形?并说明理由.(第28题图) A E xO D C B y A C D E B (第27题图)2017—2018学年第二学期八年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13.8 ; 14. 15.88.5 ; 16.5.5; 17.2;18.x ≤3; 19.223y x =-; 20. 2.4 ; 21.30°; 22三、解答题:(共74分)23. (1)23)6229(27168÷---=(3- ………………………………………………4分=3; ………………………………………………5分(2))2520)(5052()52(2-+--=72050--() ………………………………………………9分=37-. ………………………………………………10分4分6分 7分9分 10分11分12分∴∠CAD =12CAB ∠, ………………………………………………2分 ∵AN 是△ABC 外角∠CAM 的平分线,∴∠CAE =12CAM ∠, ………………………………………………3分∴∠DAE =∠CAD +∠CAE =12×180°=90°, ……………………5分 又∵AD ⊥BC ,CE ⊥AN ,∴∠ADC =∠CEA =∠DAE =90°, …………………………………6分 ∴四边形ADCE 为矩形. ………………………………………7分(2)当△ABC 满足∠BAC =90°时,四边形ADCE 是正方形. …………9分 证明:∵AB =AC ,AD ⊥BC ,∴DC =BD , ………………………………………10分又∠BAC =90°∴DC =AD . (11)分由(1)知四边形ADCE 为矩形,∴矩形ADCE 是正方形. ………………………………………12分26. 解:(1)70;490;60; ………………………………………6分(2)由图象可知,前3分钟甲机器人的速度为60+70÷2=95(米/分) ………………………………………7分 ∵(3-2)×(95﹣60)=35,∴点F 的坐标为(3,35), ………………………………………9分 又点E 的坐标为(2,0),设线段EF 所在直线的函数解析式为y =kx +b ,则335,20,k b k b +=⎧⎨+=⎩………………………………………11分 解得 35,70.k b =⎧⎨=-⎩………………………………………12分 ∴线段EF 所在直线的函数解析式为y =35x ﹣70. …………………………13分27. (1)证明:∵∠BCA =∠DCE =90°,∴∠BCA -∠BCE =∠DCE -∠BCE ,即∠ACE =∠DCB , …………………………………2分 又CA =CB ,CE =CD ,∴△ACE ≌△BCD , …………………………………4分 ∴AE =BD ; …………………………………5分(2)∵△ECD 都是等腰直角三角形,∴∠CE D =∠D =45°, …………………………………6分 ∵△ACE ≌△BCD ,∴∠CEA =∠D =45°,8分 ∴∠BEA =∠CED +∠CEA =90°, …………………………………9分又∴22231518AB AE BE =+=+=, …………………………………11分 ∵△ACB 是等腰直角三角形,CA =CB ,∴22222AB AC BC BC =+=, …………………………………12分∴2218BC =, ∴BC =3. …………………………………13分28.解:(1)∵点B 的坐标是(1,2),∴OA =1,AB =2,点A 的坐标是(1,0), …………………………………3分 ∵由题意知,AB ∥OE ,AE ∥OB ,∴四边形ABOE 是平行四边形, …………………………………4分 ∴OE =AB =2,∴点E 的坐标是(0,-2), …………………………………5分 设直线AE 的函数解析式为y =kx +b ,则 0,2,k b b +=⎧⎨=-⎩ ………………………………………6分 解得 2,2.k b =⎧⎨=-⎩ ………………………………………7分∴线段AE所在直线的函数解析式为y=2x﹣2. ………………………………8分(2)0<t <5;………………………………………10分(3)当t 1时,所围成的四边形恰为菱形.…………………………12分理由:∵∠OAB=90°,OA=1,AB=2,∴13分设t 与AD、BC分别交于点E、F,根据题意可知,此时OE OB,且OB∥EF,OE∥BF,∴四边形FBOE是菱形,即t OB所围成的四边形恰为菱形.…………………………14分。

2016-2017学年河北省八年级(下)期末数学试卷含答案

2016-2017学年河北省八年级(下)期末数学试卷含答案

2016-2017学年河北省八年级(下)期末数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)下列计算结果正确的是()A.+=B.3﹣=3 C.×=D.=52.(3分)由下列条件不能判定△ABC为直角三角形的是()A.(b+c)(b﹣c)=a2B.a=3+k,b=4+k,c=5+k(k>0)C.∠A+∠B=∠C D.∠A:∠B:∠C=1:3:23.(3分)在▱ABCD中,如果∠A+∠C=160°,那么∠B等于()A.20°B.100°C.60°D.80°4.(3分)如图,在△ABC中,D、E分别是AB、AC的中点,BC=12,则DE的长是()A.4 B.5 C.6 D.75.(3分)如图,在▱ABCD中,AD=8,AB=6,DE平分∠ADC交BC于点E,则BE 的长是()A.2 B.3 C.4 D.56.(3分)已知一次函数y=kx﹣1,若y随x的增大而增大,则该函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限7.(3分)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x <ax+4的解集为()A.x<B.x<3 C.x>D.x>38.(3分)已知,A、B两地相距120千米,甲骑自行车以20千米/时的速度由起点A前往终点B,乙骑摩托车以40千米/时的速度由起点B前往终点A.两人同时出发,各自到达终点后停止.设两人之间的距离为s(千米),甲行驶的时间为t(小时),则下图中正确反映s与t之间函数关系的是()A.B.C.D.二、填空题(本大题共7小题,每小题3分,共21分)9.(3分)要使分式有意义,x的取值范围为.10.(3分)在某次数学测验中,随机抽取了10份试卷,其成绩如下:72,77,79,81,81,81,83,83,85,89,则这组数据的众数、中位数分别为.11.(3分)在Rt△ABC中,∠C=90°,D为BC上的一点,AD=BD=2,AB=,则AC的长为.12.(3分)已知直角三角形的周长为14,斜边上的中线长为3.则直角三角形的面积是.13.(3分)如图,在平行四边形ABCD中,AB=10,BC=6,E、F分别是AD、DC 的中点,若EF=7,则四边形EACF的周长是.14.(3分)已知一个平行四边形的一条对角线将其分为全等的两个等腰直角三角形,且这条对角线的长为8,则另一条对角线长为.15.(3分)已知一次函数y=kx+b的图象与直线y=﹣x+1平行,且过点(1,﹣2),那么此一次函数的解析式为.三、解答题(本大题共8小题,共75分)16.(6分)计算:(﹣1)(+1)﹣(﹣)﹣2+|1﹣|﹣(π﹣2)0﹣.17.(6分)一次函数图象经过(3,5)和(﹣4,﹣9)两点,求这个一次函数的解析式.18.(9分)如图,△ABC中,CD⊥AB于D,若AD=2BD,AC=6,BC=4,求BD的长.19.(10分)如图,在▱ABDC中,分别取AC、BD的中点E和F,连接BE、CF,过点A作AP∥BC,交DC的延长线于点P.(1)求证:△ABE≌△DCF;(2)当∠P满足什么条件时,四边形BECF是菱形?证明你的结论.20.(10分)如图,已知,直线y=2x+3与直线y=﹣2x﹣1,求△ABC的面积.21.(12分)某商场欲购进果汁饮料和碳酸饮料共50箱,两种饮料每箱的进价和售价如下表所示.设购进果汁饮料x箱(x为正整数),且所购进的两种饮料能全部卖出,获得的总利润为W元(注:总利润=总售价﹣总进价).(1)设商场购进碳酸饮料y箱,直接写出y与x的函数关系式;(2)求总利润w关于x的函数关系式;(3)如果购进两种饮料的总费用不超过2100元,那么该商场如何进货才能获利最多?并求出最大利润.饮料果汁饮料碳酸饮料进价(元/箱)5136售价(元/箱)614322.(10分)八(2)班组织了一次经典诵读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):甲789710109101010乙10879810109109(1)甲队成绩的中位数是分,乙队成绩的众数是分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4,则成绩较为整齐的是队.23.(12分)如图,在平面直角坐标系中,已知O为原点,四边形ABCD为平行四边形,A、B、C的坐标分别是A(﹣5,1),B(﹣2,4),C(5,4),点D在第一象限.(1)写出D点的坐标;(2)求经过B、D两点的直线的解析式,并求线段BD的长;(3)将平行四边形ABCD先向右平移1个单位长度,再向下平移1个单位长度所得的四边形A1B1C1D1四个顶点的坐标是多少?并求出平行四边形ABCD与四边形A1B1C1D1重叠部分的面积.2016-2017学年河北省八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)(2010•南宁)下列计算结果正确的是()A.+=B.3﹣=3 C.×=D.=5【分析】按照二次根式的运算法则进行计算即可.【解答】解:A、和不是同类二次根式,不能合并,故A错误;B、3﹣=(3﹣1)=2,故B错误;C、×==,故C正确;D、,故D错误.故选:C.【点评】此题需要注意的是:二次根式的加减运算实质是合并同类二次根式的过程,不是同类二次根式的不能合并.2.(3分)(2017春•河北期末)由下列条件不能判定△ABC为直角三角形的是()A.(b+c)(b﹣c)=a2B.a=3+k,b=4+k,c=5+k(k>0)C.∠A+∠B=∠C D.∠A:∠B:∠C=1:3:2【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方或最大角是否是90°即可.【解答】解:A、∵(b+c)(b﹣c)=a2,∴b2﹣c2=a2,即a2+c2=b2,故是直角三角形,正确B、∵(3+k)2+(4+k)2≠(5+k)2,故不能判定是直角三角形C、∵∠A+∠B=∠C,∴∠C=90°,故是直角三角形,正确;D、∵∠A:∠B:∠C=1:3:2,∴∠B=×180°=90°,故是直角三角形,正确;故选B.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.3.(3分)(2017春•河北期末)在▱ABCD中,如果∠A+∠C=160°,那么∠B等于()A.20°B.100°C.60°D.80°【分析】直接利用平行四边形的对角相等,邻角互补即可得出答案.【解答】解:如图所示:∵四边形ABCD是平行四边形,∴∠A=∠C,∠A+∠B=180°,∵∠A+∠C=160°,∴∠A=∠C=80°,∴∠B=100°.故选:B.【点评】此题主要考查了平行四边形的性质,正确把握平行四边形各角之间的关系是解题关键.4.(3分)(2007•西藏)如图,在△ABC中,D、E分别是AB、AC的中点,BC=12,则DE的长是()A.4 B.5 C.6 D.7【分析】直接利用三角形中位线定理可求DE.【解答】解:∵△ABC中,D、E分别是AB、AC的中点,∴DE为三角形ABC的中位线,∴DE=BC=×12=6.故选C.【点评】本题考查了三角形中位线的性质,即三角形的中位线平行于第三边并等于第三边的一半.5.(3分)(2017春•河北期末)如图,在▱ABCD中,AD=8,AB=6,DE平分∠ADC 交BC于点E,则BE的长是()A.2 B.3 C.4 D.5【分析】由四边形ABCD是平行四边形,可得BC=AD=8,CD=AB=6,AD∥BC,得∠ADE=∠DEC,又由DE平分∠ADC,可得∠CDE=∠DEC,根据等角对等边,可得EC=CD=6,所以求得BE=BC﹣EC=2.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=8,CD=AB=6,AD∥BC,∴∠ADE=∠DEC,∵DE平分∠ADC,∴∠ADE=∠CDE,∴∠CDE=∠DEC,∴EC=CD=6,∴BE=BC﹣EC=2.故选A.【点评】此题考查了平行四边形的性质、角平分线的定义与等腰三角形的判定定理.注意当有平行线和角平分线出现时,会出现等腰三角形.6.(3分)(2017春•河北期末)已知一次函数y=kx﹣1,若y随x的增大而增大,则该函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】先根据一次函数的性质得到k>0,然后根据一次函数与系数的关系判断图象经过的象限.【解答】解:∵y随x的增大而增大,∴k>0,∴一次函数经过第一、三象限,而b=﹣1,∴一次函数与y轴的交点在x轴下方,∴一次函数经过第一、三、四象限.∴一次函数不经过第二象限;故选B.【点评】本题考查了一次函数与系数的关系:对于一次函数y=kx+b,k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降;当k>0,b>0⇔y=kx+b的图象在一、二、三象限;k>0,b<0⇔y=kx+b 的图象在一、三、四象限;k<0,b>0⇔y=kx+b的图象在一、二、四象限;k<0,b<0⇔y=kx+b的图象在二、三、四象限.7.(3分)(2013•黔西南州)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A.x<B.x<3 C.x>D.x>3【分析】先根据函数y=2x和y=ax+4的图象相交于点A(m,3),求出m的值,从而得出点A的坐标,再根据函数的图象即可得出不等式2x<ax+4的解集.【解答】解:∵函数y=2x和y=ax+4的图象相交于点A(m,3),∴3=2m,m=,∴点A的坐标是(,3),∴不等式2x<ax+4的解集为x<;故选A.【点评】此题考查的是用图象法来解不等式,充分理解一次函数与不等式的联系是解决问题的关键.8.(3分)(2014•盘锦)已知,A、B两地相距120千米,甲骑自行车以20千米/时的速度由起点A前往终点B,乙骑摩托车以40千米/时的速度由起点B前往终点A.两人同时出发,各自到达终点后停止.设两人之间的距离为s(千米),甲行驶的时间为t(小时),则下图中正确反映s与t之间函数关系的是()A.B.C.D.【分析】根据题意求出2小时两人就会相遇,甲6小时到达B地,乙3小时到达A地,进而根据相遇前、相遇后两个阶段得出相应的分段函数,从而找出符合题意的图象.【解答】解:根据题意,两人同时相向出发,甲到达B地时间为:=6小时,乙到达A地:=3小时.根据题意,分成两个阶段:相遇前、相遇后;相遇后可分成乙到达A地、甲到达B地;相遇前,s=120﹣(20+40)t=120﹣60t(0≤t≤2),当两者相遇时,t=2,s=0,相遇后,当乙到达A地前,甲乙均在行驶,即s=(20+40)(t﹣2)=60t﹣120(2≤t≤3),当乙到达A地时,此时两者相距60千米;当乙到达A地后,剩下甲在行驶,即s=60+20(t﹣3)=20t(3≤t≤6),故:法二:本题可无需列出方程,只需弄清楚题意,分清楚s与t的变化可分为几个阶段:相遇前、相遇后;相遇后可分成乙到达A地、甲到达B地,故求出各个时间点便可.∵A、B两地相距120千米,甲骑自行车以20千米/时的速度由起点A前往终点B,乙骑摩托车以40千米/时的速度由起点B前往终点A,∴两人同时出发,2小时两人就会相遇,甲6小时到达B地,乙3小时到达A地,故两人之间的距离为s(千米),甲行驶的时间为t(小时),则正确反映s与t 之间函数关系的是B.故选:B.【点评】此题主要考查了函数图象,根据题意得出关键转折点是解题关键.二、填空题(本大题共7小题,每小题3分,共21分)9.(3分)(2016•新县校级模拟)要使分式有意义,x的取值范围为x≥0.【分析】根据已知得出x≥0且x+5≠0,求出即可.【解答】解:要使分式有意义,必须x≥0且x+5≠0,解得:x≥0.故答案为:x≥0.【点评】本题考查了二次根式有意义的条件和分式有意义的条件的应用,能根据题意得出x≥0和x+5≠0是解此题的关键.10.(3分)(2017春•河北期末)在某次数学测验中,随机抽取了10份试卷,其成绩如下:72,77,79,81,81,81,83,83,85,89,则这组数据的众数、中位数分别为81,81.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:众数是一组数据中出现次数最多的数,在这一组数据中81是出现次数最多的,故众数是81;而将这组数据从小到大的顺序排列后,处于中间位置的那个数的是第5、6个数的平均数,则这组数据的中位数是=81.故答案为:81,81.【点评】本题考查了中位数和众数的概念.将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数;一组数据中出现次数最多的数据叫做众数.11.(3分)(2007•哈尔滨模拟)在Rt△ABC中,∠C=90°,D为BC上的一点,AD=BD=2,AB=,则AC的长为.【分析】根据题意作出图形,设CD=x,在直角三角形ACD中,根据勾股定理表示出AC的长,再在直角三角形ABC中,根据勾股定理求出x的值,从而可得AC 的长.【解答】解:如图:设CD=x,在Rt△ACD中,AC2=22﹣x2;在Rt△ACB中,AC2+BC2=AB2,即22﹣x2+(2+x)2=(2)2,解得x=1.则AC==.故答案为.【点评】本题考查了解直角三角形,利用勾股定理是解题的关键,正确设出未知数方可解答.12.(3分)(2015•鼓楼区校级自主招生)已知直角三角形的周长为14,斜边上的中线长为3.则直角三角形的面积是7.【分析】由∠ACB=90°,CD是斜边上的中线,求出AB=6,根据AB+AC+BC=14,求出AC+BC,根据勾股定理得出AC2+BC2=AB2=36推出AC•BC=14,根据S=AC•BC 即可求出答案.【解答】解:如图,∵∠ACB=90°,CD是斜边上的中线,∴AB=2CD=6,∵AB+AC+BC=14,∴AC+BC=8,由勾股定理得:AC2+BC2=AB2=36,∴(AC+BC)2﹣2AC•BC=36,AC•BC=14,∴S=AC•BC=7.故答案为:7.【点评】本题主要考查对直角三角形斜边上的中线,勾股定理,三角形的面积等知识点的理解和掌握,能根据性质求出AC•BC的值是解此题的关键.13.(3分)(2011•福州校级模拟)如图,在平行四边形ABCD中,AB=10,BC=6,E、F分别是AD、DC的中点,若EF=7,则四边形EACF的周长是29.【分析】首先根据平行四边形的性质可求出AD和CD,再由E、F分别是AD、DC的中点,可求出AE和CF,根据三角形中位线性质可求出AC,从而求出四边形EACF的周长.【解答】解:∵已知平行四边形ABCD,∴AD=BC=6,CD=AB=10,又E、F分别是AD、DC的中点,∴AC=2EF=14,AE=AD=3,CF=CD=5,所以四边形EACF的周长为:AE+EF+CF+AC=3+7+5+14=29.故答案为:29.【点评】此题考查的知识点是平行四边形的性质,解题的关键是运用平行四边形的性质和三角形中位线性质求解.14.(3分)(2017春•河北期末)已知一个平行四边形的一条对角线将其分为全等的两个等腰直角三角形,且这条对角线的长为8,则另一条对角线长为8或8.【分析】分两种情形①平行四边形是正方形,②这个平行四边形的四个角分别为45°,135°,45°,135°.【解答】解:①当平行四边形是正方形时,满足条件,∵一条对角线的长为8,∴另一条对角线长为:8.②当这个平行四边形的四个角分别为45°,135°,45°,135°.此时另外一条对角线的长度=2•=8.故另一条对角线长为8或8.【点评】此题主要考查了平行四边形的性质以及等腰直角三角形的性质,解题的关键是学会用分类讨论是思想思考问题,注意一题多解.15.(3分)(2017春•河北期末)已知一次函数y=kx+b的图象与直线y=﹣x+1平行,且过点(1,﹣2),那么此一次函数的解析式为y=﹣x﹣1.【分析】根据两直线平行结合一次函数图象上点的坐标特征,即可得出关于k、b的二元一次方程组,解之即可得出结论.【解答】解:∵一次函数y=kx+b的图象与直线y=﹣x+1平行,且过点(1,﹣2),∴,解得:,∴此一次函数的解析式为y=﹣x﹣1.故答案为:y=﹣x﹣1.【点评】本题考查了两条直线相交或平行问题以及一次函数图象上点的坐标特征,根据两直线平行结合一次函数图象上点的坐标特征,列出关于k、b的二元一次方程组是解题的关键.三、解答题(本大题共8小题,共75分)16.(6分)(2017春•河北期末)计算:(﹣1)(+1)﹣(﹣)﹣2+|1﹣|﹣(π﹣2)0﹣.【分析】利用平方差公式、零指数幂和负整数指数的意义计算.【解答】解:原式=5﹣1﹣9+﹣1﹣1﹣=﹣7.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.17.(6分)(2017春•河北期末)一次函数图象经过(3,5)和(﹣4,﹣9)两点,求这个一次函数的解析式.【分析】根据点的坐标,利用待定系数法即可求出该一次函数解析式.【解答】解:设这个一次函数的解析式为y=kx+b(k≠0),将(3,5)、(﹣4,﹣9)代入y=kx+b,,解得:,∴该一次函数的解析式为y=2x﹣1.【点评】本题考查了待定系数法求一次函数解析式,熟练掌握待定系数法求一次函数解析式的方法及步骤是解题的关键.18.(9分)(2017春•河北期末)如图,△ABC中,CD⊥AB于D,若AD=2BD,AC=6,BC=4,求BD的长.【分析】设BD=x,根据勾股定理列出方程,解方程即可.【解答】解:设BD=x,则AD=2x,在Rt△ACD中,由勾股定理得,AC2﹣AD2=CD2,在Rt△BCD中,BC2﹣BD2=CD2,∴AC2﹣AD2=BC2﹣BD2,即62﹣(2x)2=42﹣x2,解得,x=,则BD=.【点评】本题考查的是勾股定理的应用,直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.19.(10分)(2015•黄岛区校级模拟)如图,在▱ABDC中,分别取AC、BD的中点E和F,连接BE、CF,过点A作AP∥BC,交DC的延长线于点P.(1)求证:△ABE≌△DCF;(2)当∠P满足什么条件时,四边形BECF是菱形?证明你的结论.【分析】(1)根据平行四边形的对角相等可得∠BAC=∠D,对边相等可得AB=CD,AC=BD,再根据中点定义求出AE=DF,然后利用“边角边”证明即可;(2)∠P=90°时,四边形BECF是菱形.先判断出四边形ABCP是平行四边形,根据平行四边形的对角相等可得∠ABC=∠P,再根据直角三角形斜边上的中线等于斜边的一半可得BE=CE,利用一组对边平行且相等的四边形是平行四边形判断出四边形BECF是平行四边形,然后根据邻边相等的平行四边形是菱形证明.【解答】(1)证明:在▱ABDC中,∠BAC=∠D,AB=CD,AC=BD,∵E、F分别是AC、BD的中点,∴AE=DF,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS);(2)解:∠P=90°时,四边形BECF是菱形.理由如下:在▱ABCD中,AB∥CD,∵AP∥BC,∴四边形ABCP是平行四边形,∴∠ABC=∠P=90°,∵E是AC的中点,∴BE=CE=AC,∵E、F分别是AC、BD的中点,∴BF=CE,又∵AC∥BD,∴四边形BECF是平行四边形,∴四边形BECF是菱形(邻边相等的平行四边形是菱形).【点评】本题考查了平行四边形的性质,全等三角形的判定与性质,菱形的判定,直角三角形斜边上的中线等于斜边的一半的性质,熟记各性质是解题的关键.20.(10分)(2017春•河北期末)如图,已知,直线y=2x+3与直线y=﹣2x﹣1,求△ABC的面积.【分析】将直线y=2x+3与直线y=﹣2x﹣1组成方程组,求出方程组的解即为C 点坐标,求出A、B的坐标,得到AB的长,再利用C点横坐标即可求出△ABC 的面积;【解答】解:将直线y=2x+3与直线y=﹣2x﹣1组成方程组得,,解得.即C点坐标为(﹣1,1),∵直线y=2x+3与y轴的交点坐标为(0,3),直线y=﹣2x﹣1与y轴的交点坐标为(0,﹣1),∴AB=4,=×4×1=2.∴S△ABC【点评】本题考查了两条直线相交或平行的问题,熟悉函数图象上点的坐标特征是解题的关键.21.(12分)(2017春•河北期末)某商场欲购进果汁饮料和碳酸饮料共50箱,两种饮料每箱的进价和售价如下表所示.设购进果汁饮料x箱(x为正整数),且所购进的两种饮料能全部卖出,获得的总利润为W元(注:总利润=总售价﹣总进价).(1)设商场购进碳酸饮料y箱,直接写出y与x的函数关系式;(2)求总利润w关于x的函数关系式;(3)如果购进两种饮料的总费用不超过2100元,那么该商场如何进货才能获利最多?并求出最大利润.饮料果汁饮料碳酸饮料进价(元/箱)5136售价(元/箱)6143【分析】(1)根据购进果汁饮料和碳酸饮料共50箱即可求解;(2)根据总利润=每个的利润×数量就可以表示出w与x之间的关系式;(3)由题意得55x+36(50﹣x)≤2100,解得x的值,然后可求y值,根据一次函数的性质可以求出进货方案及最大利润.【解答】解:(1)y与x的函数关系式为:y=50﹣x;(2)总利润w关于x的函数关系式为:w=(61﹣51)x+(43﹣36)(50﹣x)=3x+350;(3)由题意,得51x+36(50﹣x)≤2100,解得x≤20,∵y=3x+350,y随x的增大而增大,=3×20+350=410元,此时购进B品牌的饮料50﹣20=30箱,∴当x=20时,y最大值∴该商场购进A、B两种品牌的饮料分别为20箱、30箱时,能获得最大利润410元.【点评】本题考查了一次函数的实际运用,由销售问题的数量关系求出函数的解析式,列一元一次不等式解实际问题的运用,一次函数的性质的运用,解答时求出函数的解析式是关键.22.(10分)(2014•扬州)八(2)班组织了一次经典诵读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):甲789710109101010乙10879810109109(1)甲队成绩的中位数是9.5分,乙队成绩的众数是10分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4,则成绩较为整齐的是乙队.【分析】(1)根据中位数的定义求出最中间两个数的平均数;根据众数的定义找出出现次数最多的数即可;(2)先求出乙队的平均成绩,再根据方差公式进行计算;(3)先比较出甲队和乙队的方差,再根据方差的意义即可得出答案.【解答】解:(1)把甲队的成绩从小到大排列为:7,7,8,9,9,10,10,10,10,10,最中间两个数的平均数是(9+10)÷2=9.5(分),则中位数是9.5分;乙队成绩中10出现了4次,出现的次数最多,则乙队成绩的众数是10分;故答案为:9.5,10;(2)乙队的平均成绩是:×(10×4+8×2+7+9×3)=9,则方差是:×[4×(10﹣9)2+2×(8﹣9)2+(7﹣9)2+3×(9﹣9)2]=1;(3)∵甲队成绩的方差是1.4,乙队成绩的方差是1,∴成绩较为整齐的是乙队;故答案为:乙.【点评】本题考查方差、中位数和众数:中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),一般地设n 个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n ﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.23.(12分)(2017春•河北期末)如图,在平面直角坐标系中,已知O为原点,四边形ABCD为平行四边形,A、B、C的坐标分别是A(﹣5,1),B(﹣2,4),C(5,4),点D在第一象限.(1)写出D点的坐标;(2)求经过B、D两点的直线的解析式,并求线段BD的长;(3)将平行四边形ABCD先向右平移1个单位长度,再向下平移1个单位长度所得的四边形A1B1C1D1四个顶点的坐标是多少?并求出平行四边形ABCD与四边形A1B1C1D1重叠部分的面积.【分析】(1)根据点B、C的坐标求出BC的长度,再根据平行四边形的对边相等列式求出点D的横坐标,然后写出D点坐标即可;(2)设直线BD的解析式为y=kx+b,然后利用待定系数法求一次函数解析式解答;过点B作BE⊥AD于E,求出BE、DE的长,然后利用勾股定理列式计算即可得解;(3)根据向右平移横坐标加,向下平移纵坐标减求出A1、B1、C1、D1的坐标,然后求出重叠部分平行四边形的底边和高,再根据平行四边形的面积公式列式计算即可得解.【解答】解:(1)∵B(﹣2,4),C(5,4),∴BC=5﹣(﹣2)=5+2=7,∵A(﹣5,1),∴点D的横坐标为﹣5+7=2,∴点D的坐标为(2,1);(2)设直线BD的解析式为y=kx+b,将B(﹣2,4)、D(2,1)代入得:,解得,∴经过B、D两点的直线的解析式为y=﹣x+,过B点作AD的垂线,垂足为E,则BE=4﹣1=3,DE=2﹣(﹣2)=2+2=4,在Rt△BDE中,BD===5;(3)∵▱ABCD向右平移1个单位长度,再向下平移1个单位长度,∴A1(﹣4,0),B1(﹣1,3),C1(6,3)D1(3,0),∴重叠部分的底边长7﹣1﹣1=5,高为3﹣1=2,∴重叠部分的面积S=5×2=10.【点评】本题是一次函数综合题型,主要利用了平行四边形的性质,待定系数法求一次函数解析式,勾股定理的应用,难点在于(3)判断出重叠部分是平行四边形并且求出底边和高的长度.。

2017年八年级下册数学期末试卷【含答案】

2017年八年级下册数学期末试卷【含答案】

2017年八年级下册数学期末试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个三角形的两边长分别为8cm和10cm,且这两边的夹角为60°,则这个三角形的周长为多少cm?A. 16cmB. 26cmC. 28cmD. 36cm2. 下列函数中,哪个函数在其定义域内是增函数?A. y = -x^2B. y = x^3C. y = 1/xD. y = -2x3. 在直角坐标系中,点P(2, -3)关于原点的对称点是?A. (2, 3)B. (-2, 3)C. (-2, -3)D. (2, -3)4. 若一个等腰三角形的底边长为10cm,腰长为13cm,则这个三角形的面积是多少平方厘米?A. 60cm^2B. 78cm^2C. 80cm^2D. 130cm^25. 下列数列中,哪个数列是等差数列?A. 1, 3, 6, 10,B. 2, 4, 8, 16,C. 3, 6, 12, 24,D. 1, 4, 9, 16,二、判断题(每题1分,共5分)1. 两个锐角互余。

()2. 任何两个等边三角形都是全等的。

()3. 两条平行线上的任意一对同位角相等。

()4. 任何一个正整数都可以表示为两个整数的平方差。

()5. 对角线互相垂直的四边形一定是菱形。

()三、填空题(每题1分,共5分)1. 若一个等腰三角形的周长为20cm,腰长为8cm,则底边长为______cm。

2. 若一个数的平方根是4,则这个数是______。

3. 在直角坐标系中,点A(3, 4)到原点的距离是______。

4. 若一个等差数列的首项为2,公差为3,则第10项是______。

5. 若一个圆的半径为5cm,则这个圆的面积是______cm^2。

四、简答题(每题2分,共10分)1. 简述等腰三角形的性质。

2. 什么是勾股定理?给出一个应用勾股定理的例子。

3. 简述一次函数的性质。

4. 什么是等差数列?给出一个等差数列的例子。

2017-2018 学年河北省八年级(下)期末数学试卷题及答案解析

2017-2018 学年河北省八年级(下)期末数学试卷题及答案解析

3 2017-2018 学年河北省八年级(下)期末数学试卷题及答案解析一、选择题(本大题共 16 小题,共 42.0 分)1.下列根式中是最简二次根式的是( )A. √ 2B. √3C. √9D. √122. 三角形的三边长分别为①5,12,13;②9,40,41;③8,15,17;④13,84,85, 其中能够构成直角三角形的有( )A. 1 个B. 2 个C. 3 个D. 4 个3.下列哪个点在一次函数1 y =2x +1的图象上( )A. (2,1)B. (2,0)C. (-2,1)D. (-2,0)4.一次函数 y =5x +3 的图象经过的象限是( ) A. 一、二、三 B. 二、三、四C. 一、二、四D. 一、三、四√3 5.下列计算正确的是( )A. √5-√3=√2B. 3√5×2 √3=6√15 C. (2√2)2=16D . 3=16.不能判定一个四边形是平行四边形的条件是( ) A. 两组对边分别平行 B. 一组对边平行另一组对边相等C. 一组对边平行且相等D. 两组对边分别相等 7. 已知 A 样本的数据如下:72,73,76,76,77,78,78,B 样本的数据恰好是 A 样本数据每个都加 2,则 A ,B 两个样本的下列统计量对应相同的是( ) A. 平均数B. 方差C. 中位数D. 众数8. 若√x − 2y + 9与|x -y -3|互为相反数,则 x +y 的值为( ) A. 3B. 9C. 12D. 279.矩形具有而菱形不具有的性质是( ) A. 对角线互相平分 B. 对角线互相垂直 C. 对角线相等D. 对角线平分一组对角10.一支蜡烛长 20 厘米,点燃后每小时燃烧 5 厘米,燃烧时剩下的高度 h (厘米)与燃烧时间 t (时)的函数关系的图象是()A. B.C. D.11.如图,平行四边形ABCD 中,对角线AC、BD 交于点O,点E 是BC 的中点.若OE=3cm,则AB 的长为()A. 3cmB. 6cmC. 9cmD. 12cm12.直角三角形斜边上的高与中线分别为5cm 和6cm,则它的面积为()cm2.A. 30B. 60C. 45D. 1513.函数y=ax+b 与y=bx+a 的图象在同一坐标系内的大致位置正确的是()A. B.C. D.D. 9°14.已知:如图,在矩形 ABCD 中,E 、F 、G 、H 分别为边 AB 、BC 、CD 、DA 的中点.若 AB =2,AD =4,则图中阴影部分的面积为( )A. 8B. 6C. 4D. 315.如图,矩形 ABCD 中,DE ⊥AC 于 E ,且∠ADE :∠EDC =3:2, 则∠BDE 的度数为( ) A. 36°B. 18°C. 27°16.如图中的图象(折线 ABCDE )描述了一汽车在某一直线上的行驶过程中,汽车离出发地的距离 s (千米)和行驶时间 t (小时)之间的函数关系,根据图中提供的信息,给出下列说法: ①汽车共行驶了 120 千米; ②汽车在行驶途中停留了 0.5 小时;80③汽车在整个行驶过程中的平均速度为 3 千米/时; ④汽车自出发后 3 小时至 4.5 小时之间行驶的速度在逐渐减少. 其中正确的说法共有()√x+1 A. 1个 B. 2 个 C. 3 个 D. 4 个二、填空题(本大题共 4 小题,共12.0 分)17.函数y=1 中自变量x 的取值范围是.18.如图,矩形ABCD 的对角线AC=8cm,∠AOD=120°,则AB 的长为cm.19.已知点A(-1,a),B(2,b)在函数y=-3x+4 的图象上,则a 与b 的大小关系是.20.已知:如图,正方形ABC D中,对角线AC 和BD相交于点O.E、F 分别是边AD、CD上的点,若AE=4cm,CF=3cm,且OE⊥OF,则EF 的长为cm.3x 2−y2三、计算题(本大题共 2 小题,共 22.0 分)21.计算(1)√27-√12+√45;(2)√27×√1 -(√5+√3)(√5-√3).22. 已知 x =√3+1,y =√3-1,求x 2 −2xy +y 2的值.四、解答题(本大题共 4 小题,共 44.0 分)23.如图,四边形 ABC D 是菱形,对角线 AC =8cm ,BD =6cm , DH ⊥AB 于 H ,求:DH 的长.24.已知一次函数y=kx+b 的图象经过点(-1,-5),且与正比例函数于点(2,a),求(1)a 的值;(2)k,b 的值;(3)这两个函数图象与x 轴所围成的三角形的面积.1y=2x的图象相交25.甲、乙两名射击运动员进行射击比赛,两人在相同条件下各射击10 次,射击的成绩如图所示.根据图中信息,回答下列问题:(1)甲的平均数是,乙的中位数是;(2)分别计算甲、乙成绩的方差,并从计算结果来分析,你认为哪位运动员的射击成绩更稳定?26.抗震救灾中,某县粮食局为了保证库存粮食的安全,决定将甲、乙两个仓库的粮食,全部转移到具有较强抗震功能的A、B 两仓库.已知甲库有粮食100 吨,乙库有粮食80 吨,而A 库的容量为70 吨,B 库的容量为110 吨.从甲、乙两库到A、B 两库的路程和运费如下表:(表中“元/吨•千米”表示每吨粮食运送 1 千米所需人民币)(1)若甲库运往 A 库粮食x 吨,请写出将粮食运往A、B 两库的总运费y(元)与x(吨)的函数关系式;(2)当甲、乙两库各运往A、B 两库多少吨粮食时,总运费最省,最省的总运费是多少?答案和解析1.【答案】B【解析】解:A、= ,故此选项错误;B、是最简二次根式,故此选项正确;C、=3,故此选项错误;D、=2 ,故此选项错误;故选:B.直接利用最简二次根式的定义分析得出答案.此题主要考查了最简二次根式,正确把握定义是解题关键.2.【答案】C【解析】解:①、∵52+122=169=132,∴能构成直角三角形,故本小题正确;②、92+402=1681=412=169,∴能构成直角三角形,故本小题正确;③、82+152=289=172,∴能构成直角三角形,故本小题正确;④、132+842=6973≠852,∴不能构成直角三角形,故本小题错误.故选:C.根据勾股定理的逆定理对四个答案进行逐一判断即可.本题考查的是勾股定理的逆定理,即若三角形的三边符合a2+b2=c2,则此三角形是直角三角形.3.【答案】D【解析】解:A、把(2,1)代入得,×2+1=2≠1,故本题选项错误;B、把(2,0)代入得,×2+1=2≠0,故本选项错误;C、把(-2,1)代入得,×(-2)+1=0≠1,故本选项错误;D、把(-2,0)代入得,×(-2)+1=0,故本选项正确.故选:D.将四个点分别代入函数的解析式进行验证即可.此题考查的是一次函数图象上点的坐标特点,即一次函数图象上点的坐标一定适合此一次函数的解析式.比较简单.4.【答案】A【解析】解:∵一次函数y=5x+3 中,k=5>0,b=3>0,∴该直线从左往右上升,与y 轴交于正半轴,∴图象经过的象限是:一、二、三.故选:A.直接利用一次函数y=5x+3 的性质得出其经过的象限.此题主要考查了一次函数的性质,解题时注意:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.当b>0 时,直线与y 轴交于正半轴;当b<0 时,直线与y 轴交于负半轴.5.【答案】B【解析】解:A、不能化简,所以此选项错误;B、3 ×=6,所以此选项正确;C、(2)2=4×2=8 ,所以此选项错误;D、= = ,所以此选项错误;本题选择正确的,故选B.A、和不是同类二次根式,不能合并;B、二次根式相乘,系数相乘作为积的系数,被开方数相乘,作为积中的被开方数;C、二次根式的乘方,把每个因式分别平方,再相乘;D、二次根式的除法,把分母中的根号化去.本题考查了二次根式的混合运算,熟练掌握二次根式的计算法则是关键,要注意:①二次根式的运算结果要化为最简二次根式;②与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的;③灵活运用二次根式的性质,选择恰当的解题途径.6.【答案】B【解析】解:A、两组对边分别平行,可判定该四边形是平行四边形,故A 不符合题意;B、一组对边平行另一组对边相等,不能判定该四边形是平行四边形,也可能是等腰梯形,故 B 符合题意;C、一组对边平行且相等,可判定该四边形是平行四边形,故 C 不符合题意;D、两组对边分别相等,可判定该四边形是平行四边形,故D 不符合题意故选:B.根据平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形,即可选出答案.此题主要考查学生对平行四边形的判定的掌握情况.对于判定定理:“一组对边平行且相等的四边形是平行四边形.”应用时要注意必须是“一组”,而“一组对边平行且另一组对边相等”的四边形不一定是平行四边形.7.【答案】B【解析】解:设样本 A 中的数据为x i,则样本 B 中的数据为y i=x i+2,则样本数据B 中的众数和平均数以及中位数和A 中的众数,平均数,中位数相差2,只有方差没有发生变化;故选:B.根据样本A,B 中数据之间的关系,结合众数,平均数,中位数和标准差的定义即可得到结论.此题主要考查统计的有关知识,掌握平均数、中位数、众数、方差的意义是解题的关键.8.【答案】D【解析】解:∵与|x-y-3|互为相反数,∴+|x-y-3|=0,∴,②-①得,y=12,把y=12 代入②得,x-12-3=0,解得x=15,∴x+y=12+15=27.故选:D.根据互为相反数的和等于0 列式,再根据非负数的性质列出关于x、y 的二元一次方程组,求解得到x、y 的值,然后代入进行计算即可得解.本题主要考查了非负数的性质,初中阶段有三种类型的非负数:绝对值、偶次方、二次根式(算术平方根).当它们相加和为0 时,必须满足其中的每一项都等于0.9.【答案】C【解析】解:A、对角线互相平分是菱形矩形都具有的性质,故A 选项错误;B、对角线互相垂直是菱形具有而矩形不具有的性质,故B 选项错误;C、矩形的对角线相等,菱形的对角线不相等,故C 选项正确;D、对角线平分一组对角是菱形具有而矩形不具有的性质,故D 选项错误;故选:C.根据矩形的对角线互相平分、相等和菱形的对角线互相平分、垂直、对角线平分一组对角,即可推出答案.本题主要考查对矩形的性质,菱形的性质等知识点的理解和掌握,能熟练地根据矩形和菱形的性质进行判断是解此题的关键.10.【答案】D【解析】解:设蜡烛点燃后剩下h 厘米时,燃烧了t 小时,则h 与t 的关系是为h=20-5t,是一次函数图象,即t 越大,h 越小,符合此条件的只有D.故选:D.随着时间的增多,蜡烛的高度就越来越小,由于时间和高度都为正值,所以函数图象只能在第一象限,由此即可求出答案.本题主要考查函数的图象的知识点,解答时应看清函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.11.【答案】B【解析】解:∵四边形ABCD 是平行四边形,∴OA=OC;又∵点 E 是BC 的中点,∴BE=CE,∴AB=2OE=2×3=6 (cm)故选:B.因为四边形ABCD 是平行四边形,所以OA=OC;又因为点E 是BC 的中点,所以OE 是△ABC 的中位线,由OE=3cm,即可求得AB=6cm.此题考查了平行四边形的性质:平行四边形的对角线互相平分.还考查了三角形中位线的性质:三角形的中位线平行且等于三角形第三边的一半.12.【答案】A【解析】解:解:∵直角三角形的斜边上的中线为6cm,∴斜边为2×6=12 (cm),∵直角三角形斜边上的高为5cm,∴此直角三角形的面积为×12×5=30 (cm2),故选:A.据直角三角形斜边上中线性质求出斜边长,再根据直角三角形的面积公式求出面积即可.本题考查了直角三角形斜边上中线性质的应用,注意:直角三角形斜边上中线等于斜边的一半.13.【答案】C【解析】解:分四种情况:①当a>0,b>0 时,y=ax+b 的图象经过第一、二、三象限,y=bx+a 的图象经过第一、二、三象限,无选项符合;②当a>0,b<0 时,y=ax+b 的图象经过第一、三、四象限;y=bx+a的图象经过第一、二、四象限,C 选项符合;③当a<0,b>0 时,y=ax+b 的图象经过第一、二、四象限;y=bx+a的图象经过第一、三、四象限,C 选项符合;④当a<0,b<0 时,y=ax+b 的图象经过第二、三、四象限;y=bx+a的图象经过第二、三、四象限,无选项符合.故选:C.根据a、b 的符号进行判断,两函数图象能共存于同一坐标系的即为正确答案.一次函数y=kx+b 的图象有四种情况:①当k>0,b>0,函数y=kx+b 的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b 的图象经过第一、三、四象限;③当k<0,b>0 时,函数y=kx+b 的图象经过第一、二、四象限;④当k<0,b<0 时,函数y=kx+b 的图象经过第二、三、四象限.14.【答案】C【解析】解:连接AC,BD,FH,EG,∵E,F,G,H 分别为边AB,BC,CD,DA 的中点,∴AH= AD,BF= BC,∵四边形ABCD 是矩形,∴AD=BC,AD∥BC,∴AH=BF,AH∥BF,∴四边形AHFB 是平行四边形,∴FH=AB=2,同理EG=AD=4,∵四边形ABCD 是矩形,∴AC=BD,∵E,F,G,H 分别为边AB,BC,CD,DA 的中点,∴HG∥AC,HG= AC,EF∥AC,EF= AC,EH= BD,∴EH=HG,GH=EF,GH∥EF,∴四边形EFGH 是平行四边形,∴平行四边形EFGH 是菱形,∴FH⊥EG,∴阴影部分EFGH 的面积是×HF×EG= ×2×4=4 ,故选:C.连接AC,BD,FH,EG,得出平行四边形ABFH,推出HF=AB=2,同理EG=AD=4,求出四边形EFGH 是菱形,根据菱形的面积等于×GH×HF ,代入求出即可.本题考查了矩形的性质,菱形的判定和性质,平行四边形的判定等知识点,关键是求出四边形EFGH 是菱形.15.【答案】B【解析】解:已知∠ADE:∠EDC=3:2⇒∠ADE=54°,∠EDC=36°,又因为DE⊥AC,所以∠DCE=90°-36°=54°,根据矩形的性质可得∠DOC=180°-2×54°=72°所以∠BDE=180°-∠DOC-∠DEO=18°故选:B.本题首先根据∠ADE:∠EDC=3:2 可推出∠ADE 以及∠EDC 的度数,然后求出△ODC 各角的度数便可求出∠BDE.本题考查的是三角形内角和定理以及矩形的性质,难度一般.16.【答案】A【解析】解:由图象可知,汽车走到距离出发点120 千米的地方后又返回出发点,所以汽车共行驶了240 千米,①错;从 1.5 时开始到 2 时结束,时间在增多,而路程没有变化,说明此时在停留,停留了2-1.5=0.5 小时,②对;汽车用4.5 小时走了240 千米,平均速度为:240÷4.5=千米/时,③错.汽车自出发后3 小时至4.5 小时,图象是直线形式,说明是在匀速前进,④错.故选:A.根据图象上的特殊点的实际意义即可作出判断.本题考查由图象理解对应函数关系及其实际意义,注意总路程应包括往返路程,平均速度=总路程÷总时间.17.【答案】x>-1【解析】解:由题意得,x+1>0,解得x>-1.故答案为:x>-1.根据被开方数大于等于0,分母不等于0 列式计算即可得解.本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.18.【答案】4【解析】解:∵∠AOD=120°,∴∠AOB=60°,∵四边形ABCD 是矩形,∴AC=BD,AO=OC= cm,BO=OD,∴AO=BO=4cm,∴△ABO 是等边三角形,∴AB=AO=4cm,故答案为:4根据矩形的性质求出AO=BO=4cm,求出△AOB 是等边三角形,即可求出AB.本题考查了矩形的性质和等边三角形的性质和判定,能根据矩形的性质求出AO=BO 是解此题的关键.19.【答案】a>b【解析】解:∵点A(-1,a),B(2,b)在函数y=-3x+4 的图象上,∴a=3+4=7,b=-6+4=-2,∵7>-2,∴a>b.故答案为:a>b.分别把点A(-1,a),B(2,b)代入函数y=-3x+4,求出a、b 的值,并比较出其大小即可.本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.20.【答案】5【解析】解:连接EF,∵OD=OC,∵OE⊥OF∴∠EOD+∠FOD=90°∵正方形ABCD∴∠COF+∠DOF=90°∴∠EOD=∠FOC而∠ODE=∠OCF=45°∴△OFC≌△OED,∴OE=OF,CF=DE=3cm,则AE=DF=4,根据勾股定理得到EF==5cm.故答案为5.3 连接 EF ,根据条件可以证明△OED ≌△OFC ,则 OE=OF ,CF=DE=3Ccm ,则AE=DF=4,根据勾股定理得到 EF==5cm .根据已知条件以及正方形的性质求证出两个全等三角形是解决本题的关键. 21.【答案】解:(1)√27-√12+√45=3√3 − 2√3 + 3√5=√3 + 3√5;(2)√27×√1-(√5+√3)(√5-√3)=√9 − (5 − 3)=3-2=1.【解析】(1) 根据二次根式的加减法可以解答本题;(2) 根据二次根式的乘法、平方差公式可以解答本题.= 22. = 本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法. 【答案】解:原式 (x−y )2 (x +y )(x−y )当 x =√3+1,y =√3-1 时, 原式=√3+1−√3+1=2 √3.x−y=x +y ,√3+1+√3−1 2√3 3【解析】先将分子、分母因式分解,再约分即可化简原式,继而将x 、y 的值代入计算可得.2 22 本题主要考查二次根式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则及二次根式的混合运算.23. 【答案】解:∵四边形 ABCD 是菱形,AC =8cm ,BD =6cm ,∴AC ⊥BD ,OA =1AC =4cm,OB =1BD =3cm ,∴Rt △AOB 中,AB =√AO 2 + BO 2 =√32 + 42=5, ∵DH ⊥AB ,∵菱形 ABCD 的面积 1•BD =AB •DH ,S =2AC∴1×6×8=5 DH ,5 2 ∴DH =24. 【解析】先根据菱形对角线互相垂直平分得:OA= AC=4cm ,OB= BD=3cm ,根据勾股定理求得AB=5cm ,由菱形面积公式的两种求法列式可以求得高 DH 的长.本题考查了菱形的性质,熟练掌握菱形以下几个性质:①菱形的对角线互相 垂直平分,②菱形面积=两条对角线积的一半,③菱形面积=底边×高;本题利用了面积法求菱形的高线的长.24. 【答案】解:(1)由题知,把(2,a )代入 y =1 x , 解得 a =1;(2) 由题意知,把点(-1,-5)及点(2,a )代入一次函数解析式得:-k +b =-5,2k +b =a , 又由(1)知a =1,解方程组得:k =2,b =-3;(3) 由(2)知一次函数解析式为:y =2x -3,30)直线y=2x-3 与x轴交点坐标为(,233.∴所求三角形面积1=2×1×2=4【解析】(1)由题知,点(2,a)在正比例函数图象上,代入即可求得a 的值.(2)把点(-1,-5)及点(2,a)代入一次函数解析式,再根据(1)即可求得k,b 的值.(3)由于正比例函数过原点,又有两个函数交点,求面积只需知道一次函数与x 轴的交点即可.本题考查了一次函数图象上点的坐标的性质以及正比例函数图象上点的坐标的性质,注意直线上任意一点的坐标都满足函数关系式y=kx+b.25.【答案】8;7.5【解析】解:(1)甲的平均数=故答案为:8;7.5;(2);…==8,乙的中位数是7.5;,= ,∵,∴乙运动员的射击成绩更稳定.(1)根据平均数和中位数的定义解答即可;(2)计算方差,并根据方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定解答.此题主要考查了方差和平均数,关键是掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳70 − x ≥ 0 定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小, 即波动越小,数据越稳定.26.【答案】解:(1)依题意有:若甲库运往 A 库粮食 x 吨,则甲库运到 B 库(100-x ) 吨,乙库运往 A 库(70-x )吨,乙库运到 B 库(10+x )吨.x ≥ 0则{100 − x ≥ 0,解得:0≤x ≤70. 10 + x ≥y =12×20 x +10×25 (100-x )+12×15 (70-x )+8×20×[110 -(100-x )]=-30x +39200其中 0≤x ≤70(2)上述一次函数中 k =-30<0∴y 随 x 的增大而减小∴当 x =70 吨时,总运费最省最省的总运费为:-30×70+39200=37100 (元)答:从甲库运往 A 库 70 吨粮食,往 B 库运送 30 吨粮食,从乙库运往 A 库 0 吨粮食,从乙库运往 B 库 80 吨粮食时,总运费最省为 37100 元.【解析】弄清调动方向,再依据路程和运费列出 y (元)与 x (吨)的函数关系式,最后可以利用一次函数的增减性确定“最省的总运费”.本题是一次函数与不等式的综合题,先解不等式确定自变量的取值范围,然后依据一次函数的增减性来确定“最佳方案”.。

2017年八年级下册数学期末试卷及答案(新人教版)

2017年八年级下册数学期末试卷及答案(新人教版)

八年级下数学期末调研测试一、选择题(本题共10小题,满分共30分) 1.二次根式21、12 、30 、x+2 、240x 、22y x +中,最简二次根式有( )个。

A 、1 个B 、2 个C 、3 个D 、4个 2.若式子23x x --有意义,则x 的取值范围为( ).A 、x≥2B 、x≠3C 、x≥2或x≠3D 、x≥2且x≠33.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A .7,24,25B .1113,4,5222 C .3,4, 5 D .114,7,822 4、在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的是( )(A )AC=BD ,AB ∥CD ,AB=CD (B )AD ∥BC ,∠A=∠C (C )AO=BO=CO=DO ,AC ⊥BD (D )AO=CO ,BO=DO ,AB=BC5、如下左图,在平行四边形ABCD 中,∠B =80°,AE 平分∠BAD 交BC 于点E ,CF ∥AE交AE 于点F ,则∠1=( )1FEDCBAA .40°B .50°C .60°D .80°6、表示一次函数y =mx +n 与正比例函数y =mnx (m 、n 是常数且mn ≠0)图象是( )7.如图所示,函数x y =1和34312+=x y 的图象相交于(-1,1),(2,2)两点.当21y y >时,x 的取值范围是( )A .x <-1B .—1<x <2C .x >2D . x <-1或x >28、 在方差公式()()()[]2222121xx x x x x nS n -++-+-= 中,下列说法不正确的是(-1,1)1y (2,2)2yxyO(第7题)ADO( )A. n 是样本的容量B. n x 是样本个体C. x 是样本平均数D. S 是样本方差9、多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( ) (A )极差是47(B )众数是42(C )中位数是58(D )每月阅读数量超过40的有4个月10、如上右图,在△ABC 中,AB =3,AC =4,BC =5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为【 】A .54 B .52C .53D .65二、填空题(本题共10小题,满分共30分)11.48-133-⎛⎫ ⎪ ⎪⎝⎭+)13(3--30-23-= 12.边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )13. 平行四边形ABCD 的周长为20cm ,对角线AC 、BD 相交于点O ,若△BOC 的周长比△AOB 的周长大2cm ,则CD = cm 。

2017---2018学年度第二学期冀教版八年级期末考试数学试卷

2017---2018学年度第二学期冀教版八年级期末考试数学试卷

……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………绝密★启用前2017---2018学年度第二学期 冀教版八年级期末考试数学试卷考时试间:100分钟;满分120分一、选择题(本大题共10小题,共30分)1. 青蛙是我们人类的朋友,为了了解某池塘里青蛙的数量,先从池塘里捕捞20只青蛙,作上标记后放回池塘,经过一段时间后,再从池塘中捕捞出40只青蛙,其中有标记的青蛙有4只,请你估计一下这个池塘里有多少只青蛙?( )A. 100只B. 150只C. 180只D.200只2. 将50个数据分成5组列出频数分布表,其中第一组的频数为6,第二组与第五组的频数和为20,那么第三组与第四组的频数之和与频率之和分别为( )A. 20;0.4B. 24;0.48C. 26;0.52D. 31;0.623. 在平面直角坐标系中,点P (-1,1)关于原点对称的点在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 4. 如图,△ABO 关于x 轴对称,点A 的坐标为(1,-2),则点B 的坐标为( ).A. (-1,2)B. (-1,-2)C. (-2,1)D. (1,2)5. 某人骑自行车沿直线旅行,先前进了akm ,休息了一段时间后又按原路返回 bkm (b <a ),再前进ckm ,则此人离出发点的距离s 与时间t 的关系示意图是( )A. B.题号一二三总分得分初中数学试卷第2页,共16页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………C. D.6. 某天早上王文上学, 先步行一段路, 因时间紧,他又改乘出租车,结果到校时还是迟到了5分钟,其行程情况如下图,若他出门时直接乘出租车(车速不变),则他A. 仍会迟到2分钟到校B. 刚好按时到校C. 可以提前2分钟到校D. 可以提前5分钟到校 7. 如图,在直角梯形ABCD 中,AB=2,BC=4,AD=6,M 是CD 的中点,点P 在直角梯形的边上沿A→B→C→M 运动,则△APM 的面积y 与点P 经过的路程x 之间的函数关系用图象表示是( )A. B.C. D.8. 若是正比例函数,则m 的值为( )A. 2B. -2C. ±2D. 任意实数 9. 一个多边形的内角和是1980°,那么这个多边形的边数为 ( )A. 11B. 12C. 13D. 14……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………10. 如图,菱形ABCD 中,AB=2,△A=120°,点P ,Q ,K 分别为线段BC ,CD ,BD 上的任意一点,则PK+QK 的最小值为( )A. 1B. 3C. 2D. 3+1二、填空题(本大题共8小题,共24分)11. 在扇形统计图中, A 项目所占总体的份额是30%,则扇形统计图中 A 项目的扇形圆心角 等于 °.12. 小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表: 通话时间x/min0<x≤55<x≤10 10<x≤15 15<x≤20 频数(通话次数) 201695则通话时间超过15min 的频率为 ______ .13. 如图,临沧市位置点的坐标为(-1,0),昆明市点的坐标为(1,1),则香格里拉位置点的坐标为 ______ .14. 在平面直角坐标系中,已知一次函数y=2x+1的图象经过P 1(x 1,y 1)、P 2(x 2,y 2)两点,若x 1<x 2,则y 1 y 2.(填“>”“<”或“=”)15. 若一个多边形的每一个外角都等于20°,则它的内角和等于 ______ .16. 如图,一块长为a 米,宽为b 米的矩形土地被踩出两条小路(过A ,B 间任意一点作AD 的平行线,被每条小路截得的线段长都是2米).若小路①,②的面积分别为S 1,S 2,则S 1,S 2的大小关系是s 1 ______ s 2. 17. 如图,矩形ABCD 的对角线AC ,BD 相交于点O ,△AOD=120°,AB=4cm .则AC= ______ .初中数学试卷第4页,共16页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………18. 如下图,在对角线长分别为12和16的菱形ABCD 中,E 、F 分别是边AB 、AD 的中点,P 是对角线BD 上任意一点,则PE+PF 的最小值是_________。

2017年河北省八年级(下)期末数学试卷与参考答案PDF

2016-2017学年河北省八年级(下)期末数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)下列计算结果正确的是()A.+=B.3﹣=3 C.×=D.=52.(3分)由下列条件不能判定△ABC为直角三角形的是()A.(b+c)(b﹣c)=a2B.a=3+k,b=4+k,c=5+k(k>0)C.∠A+∠B=∠C D.∠A:∠B:∠C=1:3:23.(3分)在▱ABCD中,如果∠A+∠C=160°,那么∠B等于()A.20°B.100°C.60°D.80°4.(3分)如图,在△ABC中,D、E分别是AB、AC的中点,BC=12,则DE的长是()A.4 B.5 C.6 D.75.(3分)如图,在▱ABCD中,AD=8,AB=6,DE平分∠ADC交BC于点E,则BE 的长是()A.2 B.3 C.4 D.56.(3分)已知一次函数y=kx﹣1,若y随x的增大而增大,则该函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限7.(3分)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x <ax+4的解集为()A.x<B.x<3 C.x>D.x>38.(3分)已知,A、B两地相距120千米,甲骑自行车以20千米/时的速度由起点A前往终点B,乙骑摩托车以40千米/时的速度由起点B前往终点A.两人同时出发,各自到达终点后停止.设两人之间的距离为s(千米),甲行驶的时间为t(小时),则下图中正确反映s与t之间函数关系的是()A.B.C.D.二、填空题(本大题共7小题,每小题3分,共21分)9.(3分)要使分式有意义,x的取值范围为.10.(3分)在某次数学测验中,随机抽取了10份试卷,其成绩如下:72,77,79,81,81,81,83,83,85,89,则这组数据的众数、中位数分别为.11.(3分)在Rt△ABC中,∠C=90°,D为BC上的一点,AD=BD=2,AB=,则AC的长为.12.(3分)已知直角三角形的周长为14,斜边上的中线长为3.则直角三角形的面积是.13.(3分)如图,在平行四边形ABCD中,AB=10,BC=6,E、F分别是AD、DC 的中点,若EF=7,则四边形EACF的周长是.角形,且这条对角线的长为8,则另一条对角线长为.15.(3分)已知一次函数y=kx+b的图象与直线y=﹣x+1平行,且过点(1,﹣2),那么此一次函数的解析式为.三、解答题(本大题共8小题,共75分)16.(6分)计算:(﹣1)(+1)﹣(﹣)﹣2+|1﹣|﹣(π﹣2)0﹣.17.(6分)一次函数图象经过(3,5)和(﹣4,﹣9)两点,求这个一次函数的解析式.18.(9分)如图,△ABC中,CD⊥AB于D,若AD=2BD,AC=6,BC=4,求BD的长.19.(10分)如图,在▱ABDC中,分别取AC、BD的中点E和F,连接BE、CF,过点A作AP∥BC,交DC的延长线于点P.(1)求证:△ABE≌△DCF;(2)当∠P满足什么条件时,四边形BECF是菱形?证明你的结论.20.(10分)如图,已知,直线y=2x+3与直线y=﹣2x﹣1,求△ABC的面积.21.(12分)某商场欲购进果汁饮料和碳酸饮料共50箱,两种饮料每箱的进价能全部卖出,获得的总利润为W元(注:总利润=总售价﹣总进价).(1)设商场购进碳酸饮料y箱,直接写出y与x的函数关系式;(2)求总利润w关于x的函数关系式;(3)如果购进两种饮料的总费用不超过2100元,那么该商场如何进货才能获利最多?并求出最大利润.饮料果汁饮料碳酸饮料进价(元/箱)5136售价(元/箱)614322.(10分)八(2)班组织了一次经典诵读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):甲789710109101010乙10879810109109(1)甲队成绩的中位数是分,乙队成绩的众数是分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4,则成绩较为整齐的是队.23.(12分)如图,在平面直角坐标系中,已知O为原点,四边形ABCD为平行四边形,A、B、C的坐标分别是A(﹣5,1),B(﹣2,4),C(5,4),点D在第一象限.(1)写出D点的坐标;(2)求经过B、D两点的直线的解析式,并求线段BD的长;(3)将平行四边形ABCD先向右平移1个单位长度,再向下平移1个单位长度所得的四边形A1B1C1D1四个顶点的坐标是多少?并求出平行四边形ABCD与四边形A1B1C1D1重叠部分的面积.2016-2017学年河北省八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)下列计算结果正确的是()A.+=B.3﹣=3 C.×=D.=5【解答】解:A、和不是同类二次根式,不能合并,故A错误;B、3﹣=(3﹣1)=2,故B错误;C、×==,故C正确;D、,故D错误.故选:C.2.(3分)由下列条件不能判定△ABC为直角三角形的是()A.(b+c)(b﹣c)=a2B.a=3+k,b=4+k,c=5+k(k>0)C.∠A+∠B=∠C D.∠A:∠B:∠C=1:3:2【解答】解:A、∵(b+c)(b﹣c)=a2,∴b2﹣c2=a2,即a2+c2=b2,故是直角三角形,正确B、∵(3+k)2+(4+k)2≠(5+k)2,故不能判定是直角三角形C、∵∠A+∠B=∠C,∴∠C=90°,故是直角三角形,正确;D、∵∠A:∠B:∠C=1:3:2,∴∠B=×180°=90°,故是直角三角形,正确;故选:B.3.(3分)在▱ABCD中,如果∠A+∠C=160°,那么∠B等于()A.20°B.100°C.60°D.80°【解答】解:如图所示:∵四边形ABCD是平行四边形,∴∠A=∠C,∠A+∠B=180°,∵∠A+∠C=160°,∴∠A=∠C=80°,4.(3分)如图,在△ABC中,D、E分别是AB、AC的中点,BC=12,则DE的长是()A.4 B.5 C.6 D.7【解答】解:∵△ABC中,D、E分别是AB、AC的中点,∴DE为三角形ABC的中位线,∴DE=BC=×12=6.故选:C.5.(3分)如图,在▱ABCD中,AD=8,AB=6,DE平分∠ADC交BC于点E,则BE 的长是()A.2 B.3 C.4 D.5【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=8,CD=AB=6,AD∥BC,∴∠ADE=∠DEC,∵DE平分∠ADC,∴∠ADE=∠CDE,∴∠CDE=∠DEC,∴EC=CD=6,∴BE=BC﹣EC=2.故选:A.6.(3分)已知一次函数y=kx﹣1,若y随x的增大而增大,则该函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵y随x的增大而增大,∴k>0,∴一次函数经过第一、三象限,而b=﹣1,∴一次函数与y轴的交点在x轴下方,∴一次函数经过第一、三、四象限.∴一次函数不经过第二象限;故选:B.7.(3分)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x <ax+4的解集为()A.x<B.x<3 C.x>D.x>3【解答】解:∵函数y=2x和y=ax+4的图象相交于点A(m,3),∴3=2m,m=,∴点A的坐标是(,3),∴不等式2x<ax+4的解集为x<;故选:A.点A前往终点B,乙骑摩托车以40千米/时的速度由起点B前往终点A.两人同时出发,各自到达终点后停止.设两人之间的距离为s(千米),甲行驶的时间为t(小时),则下图中正确反映s与t之间函数关系的是()A.B.C.D.【解答】解:根据题意,两人同时相向出发,甲到达B地时间为:=6小时,乙到达A地:=3小时.根据题意,分成两个阶段:相遇前、相遇后;相遇后可分成乙到达A地、甲到达B地;相遇前,s=120﹣(20+40)t=120﹣60t(0≤t≤2),当两者相遇时,t=2,s=0,相遇后,当乙到达A地前,甲乙均在行驶,即s=(20+40)(t﹣2)=60t﹣120(2≤t≤3),当乙到达A地时,此时两者相距60千米;当乙到达A地后,剩下甲在行驶,即s=60+20(t﹣3)=20t(3≤t≤6),故:法二:本题可无需列出方程,只需弄清楚题意,分清楚s与t的变化可分为几个阶段:相遇前、相遇后;相遇后可分成乙到达A地、甲到达B地,故求出各个时间点便可.∵A、B两地相距120千米,甲骑自行车以20千米/时的速度由起点A前往终点B,乙骑摩托车以40千米/时的速度由起点B前往终点A,∴两人同时出发,2小时两人就会相遇,甲6小时到达B地,乙3小时到达A地,故两人之间的距离为s(千米),甲行驶的时间为t(小时),则正确反映s与t 之间函数关系的是B.二、填空题(本大题共7小题,每小题3分,共21分)9.(3分)要使分式有意义,x的取值范围为x≥0.【解答】解:要使分式有意义,必须x≥0且x+5≠0,解得:x≥0.故答案为:x≥0.10.(3分)在某次数学测验中,随机抽取了10份试卷,其成绩如下:72,77,79,81,81,81,83,83,85,89,则这组数据的众数、中位数分别为81,81.【解答】解:众数是一组数据中出现次数最多的数,在这一组数据中81是出现次数最多的,故众数是81;而将这组数据从小到大的顺序排列后,处于中间位置的那个数的是第5、6个数的平均数,则这组数据的中位数是=81.故答案为:81,81.11.(3分)在Rt△ABC中,∠C=90°,D为BC上的一点,AD=BD=2,AB=,则AC的长为.【解答】解:如图:设CD=x,在Rt△ACD中,AC2=22﹣x2;在Rt△ACB中,AC2+BC2=AB2,即22﹣x2+(2+x)2=(2)2,解得x=1.则AC==.故答案为.12.(3分)已知直角三角形的周长为14,斜边上的中线长为3.则直角三角形的面积是7.【解答】解:如图,∵∠ACB=90°,CD是斜边上的中线,∴AB=2CD=6,∵AB+AC+BC=14,∴AC+BC=8,由勾股定理得:AC2+BC2=AB2=36,∴(AC+BC)2﹣2AC•BC=36,AC•BC=14,∴S=AC•BC=7.故答案为:7.13.(3分)如图,在平行四边形ABCD中,AB=10,BC=6,E、F分别是AD、DC 的中点,若EF=7,则四边形EACF的周长是29.【解答】解:∵已知平行四边形ABCD,∴AD=BC=6,CD=AB=10,又E、F分别是AD、DC的中点,∴AC=2EF=14,AE=AD=3,CF=CD=5,所以四边形EACF的周长为:AE+EF+CF+AC=3+7+5+14=29.故答案为:29.14.(3分)已知一个平行四边形的一条对角线将其分为全等的两个等腰直角三角形,且这条对角线的长为8,则另一条对角线长为8或8.【解答】解:①当平行四边形是正方形时,满足条件,∵一条对角线的长为8,∴另一条对角线长为:8.②当这个平行四边形的四个角分别为45°,135°,45°,135°.此时另外一条对角线的长度=2•=8.故另一条对角线长为8或8.15.(3分)已知一次函数y=kx+b的图象与直线y=﹣x+1平行,且过点(1,﹣2),那么此一次函数的解析式为y=﹣x﹣1.【解答】解:∵一次函数y=kx+b的图象与直线y=﹣x+1平行,且过点(1,﹣2),∴,解得:,∴此一次函数的解析式为y=﹣x﹣1.故答案为:y=﹣x﹣1.三、解答题(本大题共8小题,共75分)16.(6分)计算:(﹣1)(+1)﹣(﹣)﹣2+|1﹣|﹣(π﹣2)0﹣.【解答】解:原式=5﹣1﹣9+﹣1﹣1﹣=﹣7.17.(6分)一次函数图象经过(3,5)和(﹣4,﹣9)两点,求这个一次函数的解析式.【解答】解:设这个一次函数的解析式为y=kx+b(k≠0),将(3,5)、(﹣4,﹣9)代入y=kx+b,,解得:,∴该一次函数的解析式为y=2x﹣1.18.(9分)如图,△ABC中,CD⊥AB于D,若AD=2BD,AC=6,BC=4,求BD的长.【解答】解:设BD=x,则AD=2x,在Rt△ACD中,由勾股定理得,AC2﹣AD2=CD2,在Rt△BCD中,BC2﹣BD2=CD2,∴AC2﹣AD2=BC2﹣BD2,即62﹣(2x)2=42﹣x2,解得,x=,则BD=.19.(10分)如图,在▱ABDC中,分别取AC、BD的中点E和F,连接BE、CF,过点A作AP∥BC,交DC的延长线于点P.(1)求证:△ABE≌△DCF;(2)当∠P满足什么条件时,四边形BECF是菱形?证明你的结论.【解答】(1)证明:在▱ABDC中,∠BAC=∠D,AB=CD,AC=BD,∵E、F分别是AC、BD的中点,∴AE=DF,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS);(2)解:∠P=90°时,四边形BECF是菱形.理由如下:在▱ABCD中,AB∥CD,∵AP∥BC,∴四边形ABCP是平行四边形,∴∠ABC=∠P=90°,∵E是AC的中点,∴BE=CE=AC,∵E、F分别是AC、BD的中点,∴BF=CE,又∵AC∥BD,∴四边形BECF是平行四边形,∴四边形BECF是菱形(邻边相等的平行四边形是菱形).20.(10分)如图,已知,直线y=2x+3与直线y=﹣2x﹣1,求△ABC的面积.【解答】解:将直线y=2x+3与直线y=﹣2x﹣1组成方程组得,,解得.即C点坐标为(﹣1,1),∵直线y=2x+3与y轴的交点坐标为(0,3),直线y=﹣2x﹣1与y轴的交点坐标为(0,﹣1),∴AB=4,=×4×1=2.∴S△ABC21.(12分)某商场欲购进果汁饮料和碳酸饮料共50箱,两种饮料每箱的进价和售价如下表所示.设购进果汁饮料x箱(x为正整数),且所购进的两种饮料能全部卖出,获得的总利润为W元(注:总利润=总售价﹣总进价).(1)设商场购进碳酸饮料y箱,直接写出y与x的函数关系式;(2)求总利润w关于x的函数关系式;(3)如果购进两种饮料的总费用不超过2100元,那么该商场如何进货才能获利最多?并求出最大利润.饮料果汁饮料碳酸饮料进价(元/箱)5136售价(元/箱)6143【解答】解:(1)y与x的函数关系式为:y=50﹣x;(2)总利润w关于x的函数关系式为:w=(61﹣51)x+(43﹣36)(50﹣x)=3x+350;(3)由题意,得51x+36(50﹣x)≤2100,解得x≤20,∵y=3x+350,y随x的增大而增大,∴当x=20时,y=3×20+350=410元,此时购进B品牌的饮料50﹣20=30箱,最大值∴该商场购进A、B两种品牌的饮料分别为20箱、30箱时,能获得最大利润410元.22.(10分)八(2)班组织了一次经典诵读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):甲789710109101010乙10879810109109(1)甲队成绩的中位数是9.5分,乙队成绩的众数是10分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4,则成绩较为整齐的是乙队.【解答】解:(1)把甲队的成绩从小到大排列为:7,7,8,9,9,10,10,10,10,10,最中间两个数的平均数是(9+10)÷2=9.5(分),则中位数是9.5分;乙队成绩中10出现了4次,出现的次数最多,则乙队成绩的众数是10分;故答案为:9.5,10;(2)乙队的平均成绩是:×(10×4+8×2+7+9×3)=9,则方差是:×[4×(10﹣9)2+2×(8﹣9)2+(7﹣9)2+3×(9﹣9)2]=1;(3)∵甲队成绩的方差是1.4,乙队成绩的方差是1,∴成绩较为整齐的是乙队;故答案为:乙.23.(12分)如图,在平面直角坐标系中,已知O为原点,四边形ABCD为平行四边形,A、B、C的坐标分别是A(﹣5,1),B(﹣2,4),C(5,4),点D在第一象限.(1)写出D点的坐标;(2)求经过B、D两点的直线的解析式,并求线段BD的长;(3)将平行四边形ABCD先向右平移1个单位长度,再向下平移1个单位长度所得的四边形A1B1C1D1四个顶点的坐标是多少?并求出平行四边形ABCD与四边形A1B1C1D1重叠部分的面积.【解答】解:(1)∵B(﹣2,4),C(5,4),∴BC=5﹣(﹣2)=5+2=7,∵A(﹣5,1),∴点D的横坐标为﹣5+7=2,∴点D的坐标为(2,1);(2)设直线BD的解析式为y=kx+b,将B(﹣2,4)、D(2,1)代入得:,解得,∴经过B、D两点的直线的解析式为y=﹣x+,过B点作AD的垂线,垂足为E,则BE=4﹣1=3,DE=2﹣(﹣2)=2+2=4,在Rt△BDE中,BD===5;(3)∵▱ABCD向右平移1个单位长度,再向下平移1个单位长度,∴A1(﹣4,0),B1(﹣1,3),C1(6,3)D1(3,0),∴重叠部分的底边长7﹣1=6,高为3﹣1=2,∴重叠部分的面积S=6×2=12.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.O DAB CEAOD CB2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。

2017八年级下册数学期末试卷及答案

2017八年级下册数学期末试卷一、选择题(每小题3分,共48分)1.下列调查中,适宜采用普查方式的是( )A.了解某校初三一班的体育学考成绩B.了解某种节能灯的使用寿命C.了解我国青年人喜欢的电视节目D.了解全国九年级学生身高的现状2.函数y= 中,自变量x的取值范围是( )A.x>3B.x<3C.x=3D.x≠33.点A的坐标为(2,3),点B的坐标为(﹣2,3),则点A与点B( )A.关于x轴对称B.关于y轴对称C.关于原点对称D.不是对称点4.已知函数y=(1﹣3m)x是正比例函数,且y随x的增大而增大,那么m 的取值范围是( )A.m>B.m<C.m>1D.m<15.点B(m2+1,﹣1)一定在( )A.第一象限B.第二象限C.第三象限D.第四象限6.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:通话时间x/分钟 0频数(通话次数) 20 16 9 5则通话时间不超过15分钟的频率是( )A.0.1B.0.4C.0.5D.0.97.在下列图象中,能作为一次函数y=﹣x+1的图象的是( )A. B. C. D.8.已知四边形ABCD是平行四边形,下列结论不正确的是( )A.当AC=BD时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AB=BC时,它是菱形9.某校的校内有一个两个相同的正六边形(即六条边都相等,六个角都相等)围成的花坛,边长为2.5m,如图中的阴影部分所示,校方先要将这个花坛在原有的基础上扩建成一个菱形区域如图所示,并在新扩充的部分种上草坪,则扩建后菱形区域的周长为( )A.20mB.25mC.30mD.35m10.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为( )A.x≤3B.x≥3C.x≤D.x≥11.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长度恰好为24米.要围成的菜园是如图所示的长方形ABCD.设BC 边的长为x米,AB边的长为y米,则y与x之间的函数关系式是( )A.y= x+12B.y=﹣2x+24C.y=2x﹣24D.y= x﹣1212.A、B两地相距20千米,甲、乙两人都从A地去B地,图中l1和l2分别表示甲、乙两人所走路程s(千米)与时间t(小时)之间的关系,下列说法:①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是4千米/小时;④乙先到达B地.其中正确的个数是( )A.1B.2C.3D.413.如图,△AOB是等边三角形,B(2,0),将△AOB绕O点逆时针方向旋转90°到△A′OB′位置,则A′坐标是( )A.(﹣1, )B.(﹣,1)C.( ,﹣1)D.(1,﹣ )14.如图,在边长为1的正方形ABCD中,对角线AC和BD相交于点O,P 是BC边上任意一点,PE⊥BD于点E,PF⊥AC于点F,则PE+PF=( )A. B. C. D.15.如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是( )A.②③B.②⑤C.①③④D.④⑤16.如图,在平面直角坐标系中,直线y=﹣ x+3与矩形OABC的边AB、BC分别交于点E、F,若点B的坐标为(m,2),则m的值可能为( )A. B. C. D.二、填空题(每小题3分,共12分)17.P(m﹣4,1﹣m)在x轴上,则m= .18.一次函数y=(m﹣1)x+m2的图象过点(0,4),且y随x的增大而增大,则m= .19.如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AB=1,则AC的长为.20.如图,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0)、(5,0)、(2,3),则顶点C的坐标是.三、解答题(本题8分)21.一个多边形的内角和是它的外角和的4倍,求这个多边形的边数.22.如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C点的坐标为(0,6),点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣A﹣B﹣C﹣O的路线移动(即:沿着长方形移动一周)(1)写出点B的坐标.(2)当P点移动了4秒时,直接写出点P的坐标(3)在移动过程中,当点P到x轴距离为5个单位长度时,则点P移动的时间为.23.如图,将▱ABCD沿CE折叠,使点D落在BC边上的F处,点E在AD上.(1)求证:四边形ABFE为平行四边形;(2)若AB=4,BC=6,则四边形ABFE的周长为.24.为了了解某校七年级男生的体能情况,从该校七年级抽取50名男生进行1分钟跳绳测试,把所得数据整理后,画出频数分布直方图.已知图中从左到右第一、第二、第三、第四小组的频数的比为1:3:4:2.(1)总体是,个体是,样本容量是;(2)求第四小组的频数和频率;(3)求所抽取的50名男生中,1分钟跳绳次数在100次以上(含100次)的人数占所抽取的男生人数的百分比.25.如图,直线l1在平面直角坐标系中,直线l1与y轴交于点A,点B(﹣3,3)也在直线l1上,将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,点C恰好也在直线l1上.(1)求点C的坐标和直线l1的解析式;(2)若将点C先向左平移3个单位长度,再向上平移6个单位长度得到点D,请你判断点D是否在直线l1上;(3)已知直线l2:y=x+b经过点B,与y轴交于点E,求△ABE的面积.26.如图,在△ABC中,按如下步骤作图:①以点A为圆心,AB长为半径画弧;②以点C为圆心,CB长为半径画弧,两弧相交于点D;③连接BD,与AC交于点E,连接AD、CD;(1)求证:∠BAE=∠DAE;(2)当AB=BC时,猜想四边形ABCD是什么四边形,并证明你的结论;(3)当AC=8cm,BD=6cm,现将四边形ABCD通过割补,拼成一个正方形,那么这个正方形的边长是多少?2017八年级下册数学期末试卷参考答案一、选择题(每小题3分,共48分)1.下列调查中,适宜采用普查方式的是( )A.了解某校初三一班的体育学考成绩B.了解某种节能灯的使用寿命C.了解我国青年人喜欢的电视节目D.了解全国九年级学生身高的现状【考点】全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、了解某校初三一班的体育学考成绩,适合普查,故A正确;B、了解某种节能灯的使用寿命,调查具有破坏性,适合抽样调查,故B 错误;C、了解我国青年人喜欢的电视节目,调查范围广,适合抽样调查,故C 错误;D、了解全国九年级学生身高的现状,调查范围广,适合抽样调查,故D 错误;故选:A.2.函数y= 中,自变量x的取值范围是( )A.x>3B.x<3C.x=3D.x≠3【考点】函数自变量的取值范围.【分析】根据分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣3≠0,解得x≠3.故选D.3.点A的坐标为(2,3),点B的坐标为(﹣2,3),则点A与点B( )A.关于x轴对称B.关于y轴对称C.关于原点对称D.不是对称点【考点】关于x轴、y轴对称的点的坐标;关于原点对称的点的坐标.【分析】根据关于y轴对称的点的纵坐标相等,横坐标互为相反数,可得答案.【解答】解:由A的坐标为(2,3),点B的坐标为(﹣2,3),得点A与点B关于y轴对称,故选:B.4.已知函数y=(1﹣3m)x是正比例函数,且y随x的增大而增大,那么m 的取值范围是( )A.m>B.m<C.m>1D.m<1【考点】正比例函数的定义.【分析】先根据正比例函数的性质列出关于m的不等式,求出m的取值范围即可.【解答】解:∵正比例函数y=(1﹣3m)x中,y随x的增大而增大,∴1﹣3m>0,解得m< .故选:B.5.点B(m2+1,﹣1)一定在( )A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标;非负数的性质:偶次方.【分析】根据非负数的性质确定出点B的横坐标是正数,再根据各象限内点的坐标特征解答.【解答】解:∵m2≥0,∴m2+1≥1,∴点B(m2+1,﹣1)一定在第四象限.故选D.6.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:通话时间x/分钟 0频数(通话次数) 20 16 9 5则通话时间不超过15分钟的频率是( )A.0.1B.0.4C.0.5D.0.9【考点】频数(率)分布表.【分析】根据表格可以得到总的频数和通话时间不超过15分钟的频数,从而可以求得通话时间不超过15分钟的频率.【解答】解:由表格可得,通话时间不超过15分钟的频率是:,故选D.7.在下列图象中,能作为一次函数y=﹣x+1的图象的是( )A. B. C. D.【考点】一次函数的图象.【分析】先根据一次函数y=﹣x+1中k=﹣1,b=1判断出函数图象即可.【解答】解:∵一次函数y=﹣x+1中k=﹣1<0,b=1>0,∴此函数的图象经过一、二、四象限,故选A.8.已知四边形ABCD是平行四边形,下列结论不正确的是( )A.当AC=BD时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AB=BC时,它是菱形【考点】菱形的判定;平行四边形的性质;矩形的判定.【分析】根据对角线相等的平行四边形是矩形可得A错误;根据对角线互相垂直的平行四边形是菱形可得B正确;根据有一个角是直角的平行四边形是矩形可得C正确;根据一组邻边相等的平行四边形是菱形可得D正确.【解答】解:A、当AC=BD时,它是菱形,说法错误;B、当AC⊥BD时,它是菱形,说法正确;C、当∠ABC=90°时,它是矩形,说法正确;D、当AB=BC时,它是菱形,说法正确,故选:A.9.某校的校内有一个两个相同的正六边形(即六条边都相等,六个角都相等)围成的花坛,边长为2.5m,如图中的阴影部分所示,校方先要将这个花坛在原有的基础上扩建成一个菱形区域如图所示,并在新扩充的部分种上草坪,则扩建后菱形区域的周长为( )A.20mB.25mC.30mD.35m【考点】正多边形和圆;菱形的性质.【分析】根据题意和正六边形的性质得出△BMG是等边三角形,再根据正六边形的边长得出BG=GM=2.5m,同理可证出AF=EF=2.5m,再根据AB=BG+GF+AF,求出AB,从而得出扩建后菱形区域的周长.【解答】解:如图,∵花坛是由两个相同的正六边形围成,∴∠FGM=∠GMN=120°,GM=GF=EF,∴∠BMG=∠BGM=60°,∴△BMG是等边三角形,∴BG=GM=2.5(m),同理可证:AF=EF=2.5(m)∴AB=BG+GF+AF=2.5×3=7.5(m),∴扩建后菱形区域的周长为7.5×4=30(m).故选:C.10.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为( )A.x≤3B.x≥3C.x≤D.x≥【考点】一次函数与二元一次方程(组).【分析】首先利用待定系数法求出A点坐标,再以交点为分界,结合图象写出不等式2x≥ax+4的解集即可.【解答】解:∵函数y=2x的图象过点A(m,3),∴将点A(m,3)代入y=2x得,2m=3,解得,m= ,∴点A的坐标为( ,3),∴由图可知,不等式2x≥ax+4的解集为x≥ .故选:D.11.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长度恰好为24米.要围成的菜园是如图所示的长方形ABCD.设BC 边的长为x米,AB边的长为y米,则y与x之间的函数关系式是( )A.y= x+12B.y=﹣2x+24C.y=2x﹣24D.y= x﹣12【考点】函数关系式.【分析】根据题意可得2y+x=24,继而可得出y与x之间的函数关系式.【解答】解:由题意得:2y+x=24,故可得:y=﹣ x+12(0故选:A.12.A、B两地相距20千米,甲、乙两人都从A地去B地,图中l1和l2分别表示甲、乙两人所走路程s(千米)与时间t(小时)之间的关系,下列说法:①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是4千米/小时;④乙先到达B地.其中正确的个数是( )A.1B.2C.3D.4【考点】一次函数的应用.【分析】观察函数图象,从图象中获取信息,根据速度,路程,时间三者之间的关系求得结果.【解答】解:由函数图象可知,乙比甲晚出发1小时,故①正确;乙出发3﹣1=2小时后追上甲,故②错误;甲的速度为:12÷3=4(千米/小时),故③正确;乙的速度为:12÷(3﹣1)=6(千米/小时),则甲到达B地用的时间为:20÷4=5(小时),乙到达B地用的时间为:20÷6= (小时),1+3 ,∴乙先到达B地,故④正确;正确的有3个.故选:C.13.如图,△AOB是等边三角形,B(2,0),将△AOB绕O点逆时针方向旋转90°到△A′OB′位置,则A′坐标是( )A.(﹣1, )B.(﹣,1)C.( ,﹣1)D.(1,﹣ )【考点】坐标与图形变化-旋转.【分析】过点A′作A′C⊥x轴于C,根据点B的坐标求出等边三角形的边长,再求出∠A′OC=30°,然后求出OC、A′C,再根据点A′在第二象限写出点A′的坐标即可.【解答】解:如图,过点A′作A′C⊥x轴于C,∵B(2,0),∴等边△AOB的边长为2,又∵∠A′OC=90°﹣60°=30°,∴OC=2× = ,A′C=2× =1,∵点A′在第二象限,∴点A′(﹣,1).故选B.14.如图,在边长为1的正方形ABCD中,对角线AC和BD相交于点O,P是BC边上任意一点,PE⊥BD于点E,PF⊥AC于点F,则PE+PF=( )A. B. C. D.【考点】正方形的性质.【分析】先根据勾股定理求出对角线BD,证明△BEP是等腰直角三角形,得出PE=BE,再证明四边形OEPF是矩形,得出PF=OE,得出PE+PF=BE+OE=OB即可.【解答】解:∵四边形ABCD是正方形,∴AB=AD=1,AC⊥BD,∠ABC=∠BCD=90°,∠CBO=∠BCO=45°,OB= BD,∴BD= = ,∠BOC=90°,∴OB= ,∵PE⊥BD于点E,PF⊥AC于点F,∴∠OEP=∠OFP=90°=∠EOF,△BEP是等腰直角三角形,∴四边形OEPF是矩形,PE=BE,∴PF=OE,∴PE+PF=BE+OE=OB= ;故选:B.15.如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是( )A.②③B.②⑤C.①③④D.④⑤【考点】三角形中位线定理;平行线之间的距离.【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得MN= AB,从而判断出①不变;再根据三角形的周长的定义判断出②是变化的;确定出点P到MN的距离不变,然后根据等底等高的三角形的面积相等确定出③不变;根据平行线间的距离相等判断出④不变;根据角的定义判断出⑤变化.【解答】解:∵点A,B为定点,点M,N分别为PA,PB的中点,∴MN是△PAB的中位线,∴M N= AB,即线段MN的长度不变,故①错误;PA、PB的长度随点P的移动而变化,所以,△PAB的周长会随点P的移动而变化,故②正确;∵MN的长度不变,点P到MN的距离等于l与AB的距离的一半,∴△PMN的面积不变,故③错误;直线MN,AB之间的距离不随点P的移动而变化,故④错误;∠APB的大小点P的移动而变化,故⑤正确.综上所述,会随点P的移动而变化的是②⑤.故选:B.16.如图,在平面直角坐标系中,直线y=﹣ x+3与矩形OABC的边AB、BC 分别交于点E、F,若点B的坐标为(m,2),则m的值可能为( )A. B. C. D.【考点】一次函数图象上点的坐标特征;矩形的性质.【分析】求出点F和直线y=﹣ x+3与x轴交点的坐标,即可判断m的范围,由此可以解决问题.【解答】解:∵B、F两点的纵坐标相同,B点的纵坐标为2,∴点F的纵坐标为2,∵点F在y=﹣ x+3上,∴点F的坐标( ,2),∵直线y=﹣ x+3与x轴的交点为(2,0),∴由图象可知点B的横坐标∴选项中只有B符合.故选B.二、填空题(每小题3分,共12分)17.P(m﹣4,1﹣m)在x轴上,则m= 1 .【考点】点的坐标.【分析】根据x轴上的点的纵坐标为0列式计算即可得解.【解答】解:∵P(m﹣4,1﹣m)在x轴上,∴1﹣m=0,解得m=1.故答案为:1.18.一次函数y=(m﹣1)x+m2的图象过点(0,4),且y随x的增大而增大,则m= 2 .【考点】一次函数的性质.【分析】根据一次函数的增减性列出关于m的不等式组,求出m的值即可.【解答】解:∵一次函数y=(m﹣1)x+m2的图象过点(0,4),且y随x的增大而增大,∴ ,解得m=2.故答案为:2.19.如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AB=1,则AC的长为 2 .【考点】矩形的性质.【分析】由矩形的性质得出OA=OB,再证明△AOB是等边三角形,即可得出AB=OA,问题得解.【解答】解:∵四边形ABCD是矩形,∴OA= AC,OB= BD,BD=AC,∴OA=OB=1,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=1,∴AC=2OA=2,故答案为:2.20.如图,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0)、(5,0)、(2,3),则顶点C的坐标是(7,3) .【考点】平行四边形的性质;坐标与图形性质.【分析】首先过点D作DE⊥OB于点E,过点C作CF⊥OB于点F,易证得△ODE≌△CBF,则可得CF=DE=3,BF=OE=2,继而求得OF的长,则可求得顶点C的坐标.【解答】解:过点D作DE⊥OB于点E,过点C作CF⊥OB于点F,∴∠OED=∠BFC=90°,∵平行四边形ABCD的顶点A,B,D的坐标分别是(0,0)、(5,0)、(2,3),∴OB∥CD,OD∥BC,∴DE=CF=3,∠DOE=∠CBF,在△ODE和△CBF中,,∴△ODE≌△CBF(AAS),∴BF=OE=2,∴OF=OB+BF=7,∴点C的坐标为:(7,3).故答案为:(7,3).三、解答题(本题8分)21.一个多边形的内角和是它的外角和的4倍,求这个多边形的边数.【考点】多边形内角与外角.【分析】一个多边形的内角和是它的外角和的4倍,而外角和是360°,则内角和是4×360°.n边形的内角和可以表示成(n﹣2)•180°,设这个多边形的边数是n,就得到方程,从而求出边数.【解答】解:设这个多边形有n条边.由题意得:(n﹣2)×180°=360°×4,解得n=10.故这个多边形的边数是10.22.如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C点的坐标为(0,6),点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣A﹣B﹣C﹣O的路线移动(即:沿着长方形移动一周)(1)写出点B的坐标(4,6) .(2)当P点移动了4秒时,直接写出点P的坐标(4,4)(3)在移动过程中,当点P到x轴距离为5个单位长度时,则点P移动的时间为 4.5秒或7.5秒.【考点】四边形综合题.【分析】(1)由题意,根据A与C坐标确定出OC与OA的长,即可确定出B的坐标;(2)由P移动的速度与时间确定出移动的路程,求出AP的长,根据此时P 在AB边上,确定出P的坐标即可;(3)分两种情况考虑:当P在AB边上;当P在OC边上,分别求出P移动的时间即可.【解答】解:(1)∵长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C点的坐标为(0,6),B在第一象限,∴OA=BC=4,OC=AB=6,则B坐标为(4,6);(2)∵P移动的速度为每秒2个单位,且运动时间是4秒,∴P移动的路程为8个单位,∴此时P在AB边上,且AP=4,则P坐标为(4,4);(3)分两种情况考虑:当P在AB边上时,由PA=5,得到P移动的路程为5+4=9,此时P移动的时间为9÷2=4.5(秒);当P在CO边上时,由OP=5,得到P移动的路程为4+6+6﹣5=11,此时P移动的时间是11÷2=5.5(秒),综上,P移动的时间为4.5秒或7.5秒.故答案为:(1)(4,6);(2)(4,4);(3)4.5秒或7.5秒23.如图,将▱ABCD沿CE折叠,使点D落在BC边上的F处,点E在AD上.(1)求证:四边形ABFE为平行四边形;(2)若AB=4,BC=6,则四边形ABFE的周长为12 .【考点】翻折变换(折叠问题);平行四边形的判定与性质.【分析】(1)根据折叠的性质得到EF=ED,∠CFE=∠CDE,根据平行四边形的性质得到AD∥BC,∠B=∠D,由平行线的判定得到AE∥BF,即可得到结论;(2)根据平行四边形的性质得到EF=AB=4.求得ED=4,得到AE=BF=6﹣4=2,于是得到结论.【解答】(1)证明:∵将 ABCD沿CE折叠,使点D落在BC边上的F处,∴EF=ED,∠CFE=∠CDE,∵四边形ABCD是平行四边形,∴AD∥BC,∠B=∠D,∴AE∥BF,∠B=∠CFE,∴AB∥EF,∴四边形ABFE为平行四边形;(2):∵四边形ABFE为平行四边形,∴EF=AB=4,∵EF=ED,∴ED=4,∴AE=BF=6﹣4=2,∴四边形ABFE的周长=AB+BF+EF+EA=12,故答案为:1224.为了了解某校七年级男生的体能情况,从该校七年级抽取50名男生进行1分钟跳绳测试,把所得数据整理后,画出频数分布直方图.已知图中从左到右第一、第二、第三、第四小组的频数的比为1:3:4:2.(1)总体是某校七年级男生的体能情况,个体是每个男生的体能情况,样本容量是50 ;(2)求第四小组的频数和频率;(3)求所抽取的50名男生中,1分钟跳绳次数在100次以上(含100次)的人数占所抽取的男生人数的百分比.【考点】频数(率)分布直方图.【分析】(1)根据总体、个体和样本容量的定义分别进行解答即可;(2)根据第一、第二、第三、第四小组的频数的比为1:3:4:2,可得第四小组的频率是,再用抽查的总人数乘以第四小组的频率即可求出频数;(3)根据1分钟跳绳次数在100次以上(含100次)的人数是第三、第四小组,再求出第三、第四小组的频率之和即可.【解答】解:(1)总体是某校七年级男生的体能情况;个体是每个男生的体能情况,样本容量是50;故答案为:某校七年级男生的体能情况;每个男生的体能情况;50.(2)第四小组的频率是: =0.2;第四小组的频数是:50× =10;(3)根据题意得:1分钟跳绳次数在100次以上(含100次)的人数占所抽取的男生人数的百分比是:×100%=60%.25.如图,直线l1在平面直角坐标系中,直线l1与y轴交于点A,点B(﹣3,3)也在直线l1上,将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,点C恰好也在直线l1上.(1)求点C的坐标和直线l1的解析式;(2)若将点C先向左平移3个单位长度,再向上平移6个单位长度得到点D,请你判断点D是否在直线l1上;(3)已知直线l2:y=x+b经过点B,与y轴交于点E,求△ABE的面积.【考点】一次函数图象与几何变换.【分析】(1)根据平移的性质得到点C的坐标;把点B、C的坐标代入直线方程y=kx+b(k≠0)来求该直线方程;(2)根据平移的性质得到点D的坐标,然后将其代入(1)中的函数解析式进行验证即可;(3)根据点B的坐标求得直线l2的解析式,据此求得相关线段的长度,并利用三角形的面积公式进行解答.【解答】解:(1)∵B(﹣3,3),将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,∴﹣3+1=﹣2,3﹣2=1,∴C的坐标为(﹣2,1),设直线l1的解析式为y=kx+c,∵点B、C在直线l1上,∴代入得:解得:k=﹣2,c=﹣3,∴直线l1的解析式为y=﹣2x﹣3;(2)∵将点C先向左平移3个单位长度,再向上平移6个单位长度得到点D,C(﹣2,1),∴﹣2﹣3=﹣5,1+6=7,∴D的坐标为(﹣5,7),代入y=﹣2x﹣3时,左边=右边,即点D在直线l1上;(3)把B的坐标代入y=x+b得:3=﹣3+b,解得:b=6,∴y=x+6,∴E的坐标为(0,6),∵直线y=﹣2x﹣3与y轴交于A点,∴A的坐标为(0,﹣3),∴AE=6+3=9,∵B(﹣3,3),∴△ABE的面积为×9×|﹣3|=13.5.26.如图,在△ABC中,按如下步骤作图:①以点A为圆心,AB长为半径画弧;②以点C为圆心,CB长为半径画弧,两弧相交于点D;③连接BD,与AC交于点E,连接AD、CD;(1)求证:∠BAE=∠DAE;(2)当AB=BC时,猜想四边形ABCD是什么四边形,并证明你的结论;(3)当AC=8cm,BD=6cm,现将四边形ABCD通过割补,拼成一个正方形,那么这个正方形的边长是多少?【考点】正方形的性质;线段垂直平分线的性质;作图—基本作图.【分析】(1)由SSS证明△ABC≌△ADC,得出对应角相等即可;(2)证出AB=BC=DC=AD,即可得出结论;(3)由等腰三角形的性质得出AC⊥BD,求出四边形ABCD的面积,即可得出拼成的正方形的边长.【解答】(1)证明:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠BAE=∠DAE;(2)解:四边形ABCD是菱形,理由如下:∵AB=AD,BC=DC,AB=BC,∴AB=BC=DC=AD,∴四边形ABCD是菱形;(3)解:∵AB=AD,∠BAE=∠DAE,∴AC⊥BD,∴四边形ABCD的面积= AC•BD=8×6=24(cm2),∴拼成的正方形的边长= =2 (cm).。

中学八级(下)期末数学试卷两套合集二附答案解析

中学八级(下)期末数学试卷两套合集二附答案解析2017年中学八年级(下)期末数学试卷两套合集二附答案解析2017年八年级(下)期末数学试卷一.选择题(本大题共10小题,每小题2分,满分20分.)1.计算的结果是()A.B.4 C.8 D.±42.当x=3时,函数y=﹣2x+1的值是()A.﹣5 B.3 C.7 D.53.若正比例函数y=kx的图象经过点(2,1),则k的值为()A.﹣B.C.﹣2 D.24.正方形的一条对角线长为4,则这个正方形的面积是()A.8 B.4 C.8 D.165.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.B.C.D.6.不能判定一个四边形是平行四边形的条件是()A.两组对边分别平行B.一组对边平行且相等C.一组对边平行,另一组对边相等D.两组对边分别相等7.如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于x的不等式x+1≥mx+n 的解集为()A.x≥m B.x≥2 C.x≥1 D.y≥28.某校有甲、乙两个合唱队,两队队员的平均身高都为160cm,标准差分别是S甲、S乙,且S甲>S乙,则两个队的队员的身高较整齐的是()A.甲队B.两队一样整齐C.乙队D.不能确定9.小强所在学校离家距离为2千米,某天他放学后骑自行车回家,先骑了5分钟后,因故停留10分钟,再继续骑了5分钟到家.下面哪一个图象能大致描述他回家过程中离家的距离s(千米)与所用时间t(分)之间的关系()A.B.C.D.10.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC的长为()A.﹣1 B. +1 C.﹣1 D. +1二.填空题(共6题,每题2分,共12分,直接把最简答案填写在题中的横线上)11.在函数y=中,自变量x的取值范围是______.12.比较大小:4______(填“>”或“<”)13.如图所示,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为______.14.把直线y=x+1沿x轴向右平移2个单位,所得直线的函数解析式为______.15.有一组数据:3,a,4,6,7.它们的平均数是5,那么这组数据的方差是______.16.如图是“赵爽弦图”,△ABH、△CDF和△DAE是四个全等的直角三角形,四边形ABCD 和EFGH都是正方形,如果AH=6,EF=2,那么AB等于______.三.解答题(本大题共9小题,满分68分.解答应写出文字说明、证明过程或演算步骤.)17.(1)计算:;(2)化简:(x>0).18.在▱ABCD中,过点D作DE⊥AB于点E,点F 在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.19.已知y是x的一次函数,当x=3时,y=1;当x=﹣2时,y=﹣4.(1)求此一次函数的解析式;(2)求一次函数的图象与两坐标轴的交点坐标.20.如图,▱ABCD的对角线AC、BD相交于点O,AE=CF.(1)求证:△BOE≌△DOF;(2)连接DE、BF,若BD⊥EF,试探究四边形EBDF的形状,并对结论给予证明.21.老师想知道某校学生每天上学路上要花多少时间,于是随机选取30名同学每天来校的大致时间(单位:分钟)进行统计,统计表如下:时间 5 10 15 20 25 30 35 45人数 3 3 6 12 2 2 1 1 (1)写出这组数据的中位数和众数;(2)求这30名同学每天上学的平均时间.22.如图,四边形ABCD是菱形,对角线AC、BD相交于点O,DH⊥AB于H,连接OH,(1)求证:∠DHO=∠DCO.(2)若OC=4,BD=6,求菱形ABCD的周长和面积.23.如图,一次函数的图象分别与x轴、y轴交于A、B,已线段AB为边在第一象限内作等腰Rt△ABC,使∠BAC=90°.(1)分别求点A、C的坐标;(2)在x轴上求一点P,使它到B、C两点的距离之和最小.24.甲、乙两家商场平时以同样的价格出售某种商品,“五一节”期间,两家商场都开展让利酬宾活动,其中甲商场打8折出售,乙商场对一次性购买商品总价超过300元后的部分打7折.(1)设商品原价为x元,某顾客计划购此商品的金额为y元,分别就两家商场让利方式求出y 关于x的函数解析式,并写出x的取值范围,作出函数图象(不用列表);(2)顾客选择哪家商场购物更省钱?25.已知,矩形ABCD中,AB=4cm,AD=2AB,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图1,连接AF、CE.求证四边形AFCE 为菱形,并求AF的长;(2)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周,即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,①已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒.当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值;②若点P、Q的速度分别为v1、v2(cm/s),点P、Q的运动路程分别为a、b(单位:cm,ab≠0),已知A、C、P、Q四点为顶点的四边形是平行四边形,试探究a与b满足的数量关系.参考答案与试题解析一.选择题(本大题共10小题,每小题2分,满分20分.)1.计算的结果是()A.B.4 C.8 D.±4【考点】二次根式的乘除法.【分析】根据=(a≥0,b≥0)进行计算即可.【解答】解:原式===4,故选:B.2.当x=3时,函数y=﹣2x+1的值是()A.﹣5 B.3 C.7 D.5【考点】一次函数的性质.【分析】把x=3代入函数解析式求得相应的y 值即可.【解答】解:当x=3时,y=﹣2x+1=﹣2×3+1=﹣6+1=﹣5.故选:A.3.若正比例函数y=kx的图象经过点(2,1),则k的值为()A.﹣B.C.﹣2 D.2【考点】一次函数图象上点的坐标特征.【分析】根据一次函数图象上点的坐标特征,把(2,1)代入y=kx中即可计算出k的值.【解答】解:把(2,1)代入y=kx得2k=1,解得k=.故选B.4.正方形的一条对角线长为4,则这个正方形的面积是()A.8 B.4 C.8 D.16【考点】正方形的性质.【分析】根据正方形的面积等于对角线乘积的一半列式计算即可得解.【解答】解:∵正方形的一条对角线长为4,∴这个正方形的面积=×4×4=8.故选:A.5.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.B.C.D.【考点】勾股定理;点到直线的距离;三角形的面积.【分析】根据题意画出相应的图形,如图所示,在直角三角形ABC中,由AC及BC的长,利用勾股定理求出AB的长,然后过C作CD垂直于AB,由直角三角形的面积可以由两直角边乘积的一半来求,也可以由斜边AB乘以斜边上的高CD除以2来求,两者相等,将AC,AB及BC的长代入求出CD的长,即为C到AB的距离.【解答】解:根据题意画出相应的图形,如图所示:在Rt△ABC中,AC=9,BC=12,根据勾股定理得:AB==15,过C作CD⊥AB,交AB于点D,又S△ABC=AC•BC=AB•CD,∴CD===,则点C到AB的距离是.故选A6.不能判定一个四边形是平行四边形的条件是()A.两组对边分别平行B.一组对边平行且相等C.一组对边平行,另一组对边相等D.两组对边分别相等【考点】平行四边形的判定.【分析】根据平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形,即可选出答案.【解答】解:A、两组对边分别平行,可判定该四边形是平行四边形,故A不符合题意;B、一组对边平行且相等,可判定该四边形是平行四边形,故B不符合题意;C、一组对边平行另一组对边相等,不能判定该四边形是平行四边形,也可能是等腰梯形,故C 符合题意;D、两组对边分别相等,可判定该四边形是平行四边形,故D不符合题意故选:C.7.如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于x的不等式x+1≥mx+n 的解集为()A.x≥m B.x≥2 C.x≥1 D.y≥2【考点】一次函数与一元一次不等式.【分析】首先将已知点的坐标代入直线y=x+1求得a的值,然后观察函数图象得到在点P的右边,直线y=x+1都在直线y=mx+n的上方,据此求解.【解答】解:∵直线l1:y=x+1与直线l2:y=mx+n 相交于点P(a,2),∴a+1=2,解得:a=1,观察图象知:关于x的不等式x+1≥mx+n的解集为x≥1,故选C.8.某校有甲、乙两个合唱队,两队队员的平均身高都为160cm,标准差分别是S甲、S乙,且S甲>S乙,则两个队的队员的身高较整齐的是()A.甲队B.两队一样整齐C.乙队D.不能确定【考点】标准差.【分析】根据标准差是方差的算术平方根以及方差的意义,方差越小数据越稳定,故比较方差后可以作出判断.【解答】解:因为S甲>S乙,所以S甲2>S乙2,故有甲的方差大于乙的方差,故乙队队员的身高较为整齐.故选C.9.小强所在学校离家距离为2千米,某天他放学后骑自行车回家,先骑了5分钟后,因故停留10分钟,再继续骑了5分钟到家.下面哪一个图象能大致描述他回家过程中离家的距离s(千米)与所用时间t(分)之间的关系()A.B.C.D.【考点】函数的图象.【分析】根据题意分析可得:他回家过程中离家的距离S(千米)与所用时间t(分)之间的关系有3个阶段;(1)、行使了5分钟,位移减小;(2)、因故停留10分钟,位移不变;(3)、继续骑了5分钟到家,位移继续减小,直到为0;【解答】解:因为小强家所在学校离家距离为2千米,某天他放学后骑自行车回家,行使了5分钟后,因故停留10分钟,继续骑了5分钟到家,所以图象应分为三段,根据最后离家的距离.故选D.10.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC的长为()A.﹣1 B. +1 C.﹣1 D. +1【考点】勾股定理.【分析】根据∠ADC=2∠B,∠ADC=∠B+∠BAD判断出DB=DA,根据勾股定理求出DC的长,从而求出BC的长.【解答】解:∵∠ADC=2∠B,∠ADC=∠B+∠BAD,∴∠B=∠DAB,∴DB=DA=5,在Rt△ADC中,DC===1,∴BC=+1.故选D.二.填空题(共6题,每题2分,共12分,直接把最简答案填写在题中的横线上)11.在函数y=中,自变量x的取值范围是x ≥1.【考点】函数自变量的取值范围.【分析】因为当函数表达式是二次根式时,被开方数为非负数,所以x﹣1≥0,解不等式可求x 的范围.【解答】解:根据题意得:x﹣1≥0,解得:x≥1.故答案为:x≥1.12.比较大小:4>(填“>”或“<”)【考点】实数大小比较;二次根式的性质与化简.【分析】根据二次根式的性质求出=4,比较和的值即可.【解答】解:4=,>,∴4>,故答案为:>.13.如图所示,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为45°.【考点】等腰直角三角形;勾股定理;勾股定理的逆定理.【分析】分别在格点三角形中,根据勾股定理即可得到AB,BC,AC的长度,继而可得出∠ABC 的度数.【解答】解:如图,连接AC.根据勾股定理可以得到:AC=BC=,AB=,∵()2+()2=()2,即AC2+BC2=AB2,∴△ABC是等腰直角三角形.∴∠ABC=45°.故答案为:45°.14.把直线y=x+1沿x轴向右平移2个单位,所得直线的函数解析式为y=x﹣1.【考点】一次函数图象与几何变换.【分析】直接根据“左加右减”的平移规律求解即可.【解答】解:把直线y=x+1沿x轴向右平移2个单位,所得直线的函数解析式为y=(x﹣2)+1,即y=x﹣1.故答案为y=x﹣1.15.有一组数据:3,a,4,6,7.它们的平均数是5,那么这组数据的方差是2.【考点】方差;算术平均数.【分析】先由平均数的公式计算出a的值,再根据方差的公式计算.一般地设n个数据,x1,x 2,…,x n的平均数为,=(x1+x2+…+x n),则方差S 2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2].【解答】解:a=5×5﹣3﹣4﹣6﹣7=5,s2= [(3﹣5)2+(5﹣5)2+(4﹣5)2+(6﹣5)2+(7﹣5)2]=2.故答案为:2.16.如图是“赵爽弦图”,△ABH、△CDF和△DAE是四个全等的直角三角形,四边形ABCD 和EFGH都是正方形,如果AH=6,EF=2,那么AB等于10.【考点】勾股定理的证明.【分析】在直角三角形AHB中,利用勾股定理进行解答即可.【解答】解:∵AH=6,EF=2,∴BG=AH=6,HG=EF=2,∴BH=8,∴在直角三角形AHB中,由勾股定理得到:AB===10.故答案是:10.三.解答题(本大题共9小题,满分68分.解答应写出文字说明、证明过程或演算步骤.)17.(1)计算:;(2)化简:(x>0).【考点】二次根式的混合运算.【分析】(1)首先化简二次根式,再合并即可;(2)首先把分子分母化简二次根式,再分母有理化即可.【解答】(1)解:=2﹣=;(2)解:(x>0)==x.18.在▱ABCD中,过点D作DE⊥AB于点E,点F 在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.【考点】平行四边形的性质;角平分线的性质;勾股定理的逆定理;矩形的判定.【分析】(1)根据平行四边形的性质,可得AB 与CD的关系,根据平行四边形的判定,可得BFDE是平行四边形,再根据矩形的判定,可得答案;(2)根据平行线的性质,可得∠DFA=∠FAB,根据等腰三角形的判定与性质,可得∠DAF=∠DFA,根据角平分线的判定,可得答案.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)解:∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DFA=∠FAB.在Rt△BCF中,由勾股定理,得BC===5,∴AD=BC=DF=5,∴∠DAF=∠DFA,∴∠DAF=∠FAB,即AF平分∠DAB.19.已知y是x的一次函数,当x=3时,y=1;当x=﹣2时,y=﹣4.(1)求此一次函数的解析式;(2)求一次函数的图象与两坐标轴的交点坐标.【考点】待定系数法求一次函数解析式;一次函数图象上点的坐标特征.【分析】(1)设一次函数解析式为y=kx+b,将x=3、y=1,x=﹣2、y=﹣4代入求得k、b的值即可;(2)在解析式中分别令x=0和y=0求解可得.【解答】解:(1)设一次函数解析式为y=kx+b,∵当x=3时,y=1;当x=﹣2时,y=﹣4,∴,解得:,∴该一次函数解析式为y=x﹣2;(2)当x=0时,y=﹣2,∴一次函数图象与y轴交点为(0,﹣2),当y=0时,得:x﹣2=0,解得:x=2,∴一次函数图象与x轴交点为(2,0).20.如图,▱ABCD的对角线AC、BD相交于点O,AE=CF.(1)求证:△BOE≌△DOF;(2)连接DE、BF,若BD⊥EF,试探究四边形EBDF的形状,并对结论给予证明.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】(1)根据平行四边形的性质可得BO=DO,AO=CO,再利用等式的性质可得EO=FO,然后再利用SAS定理判定△BOE≌△DOF即可;(2)根据BO=DO,FO=EO可得四边形BEDF 是平行四边形,再根据对角线互相垂直的平行四边形是菱形可得四边形EBDF为菱形.【解答】证明:(1)∵四边形ABCD是平行四边形,∴BO=DO,AO=CO,∵AE=CF,∴AO﹣AE=CO﹣FO,∴EO=FO,在△BOE和△DOF中,∴△BOE≌△DOF(SAS);(2)四边形EBDF为菱形,等三角形的判定,以及菱形的判定,关键是掌握理由:∵BO=DO,FO=EO,∴四边形BEDF是平行四边形,∵BD⊥EF,∴四边形EBDF为菱形.21.老师想知道某校学生每天上学路上要花多少时间,于是随机选取30名同学每天来校的大致时间(单位:分钟)进行统计,统计表如下:时间 5 10 15 20 25 30 35 45 人数 3 3 6 12 2 2 1 1 (1)写出这组数据的中位数和众数;(2)求这30名同学每天上学的平均时间.【考点】众数;加权平均数;中位数.【分析】(1)根据中位数和众数的含义和求法,写出这组数据的中位数和众数即可.(2)首先求出这30名同学每天上学一共要用多少时间;然后用它除以30,求出平均时间是多少即可.【解答】解:(1)根据统计表,可得这组数据的第15个数、第16个数都是20,∴这组数据的中位数是:(20+20)÷2=40÷2=20这组数据的众数是20.(2)(5×3+10×3+15×6+20×12+25×2+30×2+35×1+45×1)÷30=(15+30+90+240+50+60+35+45)÷30=565÷30=18(分钟)答:这30名同学每天上学的平均时间是18分钟.22.如图,四边形ABCD是菱形,对角线AC、BD相交于点O,DH⊥AB于H,连接OH,(1)求证:∠DHO=∠DCO.(2)若OC=4,BD=6,求菱形ABCD的周长和面积.【考点】菱形的性质.【分析】(1)先根据菱形的性质得OD=OB,AB ∥CD,BD⊥AC,则利用DH⊥AB得到DH⊥CD,∠DHB=90°,所以OH为Rt△DHB的斜边DB上的中线,得到OH=OD=OB,利用等腰三角形的性质得∠1=∠DHO,然后利用等角的余角相等证明结论;(2)先根据菱形的性质得OD=OB=BD=3,OA=OC=4,BD⊥AC,再根据勾股定理计算出CD,然后利用菱形的性质和面积公式求菱形ABCD的周长和面积.【解答】(1)证明:∵四边形ABCD是菱形,∴OD=OB,AB∥CD,BD⊥AC,∵DH⊥AB,∴DH⊥CD,∠DHB=90°,∴OH为Rt△DHB的斜边DB上的中线,∴OH=OD=OB,∴∠1=∠DHO,∵DH⊥CD,∴∠1+∠2=90°,∵BD⊥AC,∴∠2+∠DCO=90°,∴∠1=∠DCO,∴∠DHO=∠DCO;(2)解:∵四边形ABCD是菱形,∴OD=OB=BD=3,OA=OC=4,BD⊥AC,在Rt△OCD中,CD==5,∴菱形ABCD的周长=4CD=20,菱形ABCD的面积=×6×8=24.23.如图,一次函数的图象分别与x轴、y轴交于A、B,已线段AB为边在第一象限内作等腰Rt△ABC,使∠BAC=90°.(1)分别求点A、C的坐标;(2)在x轴上求一点P,使它到B、C两点的距离之和最小.【考点】一次函数图象上点的坐标特征;等腰直角三角形;轴对称-最短路线问题.【分析】(1)作CD⊥x轴,易证∠OAB=∠ACD,即可证明△ABO≌△CAD,可得AD=OB,CD=OA,即可解题;(2)作C点关于x轴对称点E,连接BE,即可求得E点坐标,根据点P在直线BE上即可求得点P坐标,即可解题.【解答】解:(1)作CD⊥x轴,∵∠OAB+∠CAD=90°,∠CAD+∠ACD=90°,∴∠OAB=∠ACD,在△ABO和△CAD中,,∴△ABO≌△CAD(AAS)∴AD=OB,CD=OA,∵y=﹣x+2与x轴、y轴交于点A、B,∴A(2,0),B(0,2),∴点C坐标为(4,2);(2)作C点关于x轴对称点E,连接BE,则E点坐标为(4,﹣2),△ACD≌△AED,∴AE=AC,∴直线BE解析式为y=﹣x+2,设点P坐标为(x,0),则(x,0)位于直线BE上,∴点P坐标为(2,0)于点A重合.24.甲、乙两家商场平时以同样的价格出售某种商品,“五一节”期间,两家商场都开展让利酬宾活动,其中甲商场打8折出售,乙商场对一次性购买商品总价超过300元后的部分打7折.(1)设商品原价为x元,某顾客计划购此商品的金额为y元,分别就两家商场让利方式求出y 关于x的函数解析式,并写出x的取值范围,作出函数图象(不用列表);(2)顾客选择哪家商场购物更省钱?【考点】一次函数的应用.【分析】(1)根据两家商场的让利方式分别列式整理即可;(2)利用两点法作出函数图象即可;(3)求出两家商场购物付款相同的x的值,然后根据函数图象作出判断即可.【解答】解:(1)甲商场:y=0.8x,乙商场:y=x(0≤x≤300),y=0.7(x﹣300)+300=0.7x+90,即y=0.7x+90(x>300);(2)如图所示;(3)当0.8x=0.7x+90时,x=900,所以,x<900时,甲商场购物更省钱,x=900时,甲、乙两商场购物更花钱相同,x>900时,乙商场购物更省钱.25.已知,矩形ABCD中,AB=4cm,AD=2AB,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图1,连接AF、CE.求证四边形AFCE 为菱形,并求AF的长;(2)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周,即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,①已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒.当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值;②若点P、Q的速度分别为v1、v2(cm/s),点P、Q的运动路程分别为a、b(单位:cm,ab≠0),已知A、C、P、Q四点为顶点的四边形是平行四边形,试探究a与b满足的数量关系.【考点】四边形综合题.【分析】(1)先证明四边形ABCD为平行四边形,再根据对角线互相垂直平分的平行四边形是菱形作出判定,根据勾股定理即可求AF的长;(2)①分情况讨论可知,P点在BF上,Q点在ED上时,才能构成平行四边形,根据平行四边形的性质列出方程求解即可;②由①的结论用v1、v2表示出A、C、P、Q四点为顶点的四边形是平行四边形时所需的时间,计算即可.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠CAD=∠ACB,∠AEF=∠CFE.∵EF垂直平分AC,∴OA=OC.∵在△AOE和△COF中,,∴△AOE≌△COF(AAS),∴OE=OF.∵EF⊥AC,∴四边形AFCE为菱形.设菱形的边长AF=CF=xcm,则BF=(8﹣x)cm,在Rt△ABF中,AB=4cm,由勾股定理得:AB2+BF2=AF2,即42+(8﹣x)2=x2,解得:x=5,∴AF=5;(2)①解:根据题意得,P点AF上时,Q点CD上,此时A,C,P,Q四点不可能构成平行四边形;同理P点AB上时,Q点DE或CE上,也不能构成平行四边形.∴只有当P点在BF上,Q点在ED上时,才能构成平行四边形,∴以A,C,P,Q四点为顶点的四边形是平行四边形时,PC=QA,∵点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,∴PC=5t,QA=12﹣4t,∴5t=12﹣4t,解得:t=,∴以A,C,P,Q四点为顶点的四边形是平行四边形时,t=秒;②由①得,PC=QA时,以A,C,P,Q四点为顶点的四边形是平行四边形,设运动时间为y秒,则yv1=12﹣yv2,解得,y=,∴a=×v1,b=×v2,∴=.八年级(下)期末数学试卷一、选择题(本题共30分,每小题3分)1.下列二次根式中,是最简二次根式的是()A.B.C.D.2.平行四边形ABCD中,若∠B=2∠A,则∠C 的度数为()A.120°B.60°C.30°D.15°3.甲、乙、丙、丁四人进行射击测试,每人测试10次,平均成绩均为9.2环,方差如表所示()选手甲乙丙丁方差0.56 0.60 0.50 0.45则在这四个选手中,成绩最稳定的是()A.甲B.乙C.丙D.丁4.若A(1,y1),B(2,y2)两点都在反比例函数y=的图象上,则y1与y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.无法确定5.如图,菱形ABCD的两条对角线AC,BD相交于点O,若AC=4,BD=6,则菱形ABCD的周长为()A.16 B.24 C.4D.86.下列命题中,正确的是()A.有一组邻边相等的四边形是菱形B.对角线互相平分且垂直的四边形是矩形C.两组邻角相等的四边形是平行四边形D.对角线互相垂直且相等的平行四边形是正方形7.如图,正方形ABCD的两条对角线AC,BD 相交于点O,点E在BD上,且BE=CD,则∠BEC的度数为()A.22.5°B.60°C.67.5°D.75°8.关于x的一元二次方程x2﹣2x+k=0有两个实数根,则实数k的取值范围是()A.k≤1 B.k>1 C.k=1 D.k≥19.已知正比例函数y=kx的图象与反比例函数y=的图象交于A,B两点,若点A的坐标为(﹣2,1),则关于x的方程=kx的两个实数根分别为()A.x1=﹣1,x2=1 B.x1=﹣1,x2=2 C.x1=﹣2,x2=1 D.x1=﹣2,x2=210.中国数学史上最先完成勾股定理证明的数学家是公元3世纪三国时期的赵爽,他为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是用八个全等的直角三角形拼接而成.将图中正方形MNKT,正方形EFGH,正方形ABCD的面积分别记为S1,S2,S3,若S1+S2+S3=18,则正方形EFGH的面积为()A.9 B.6 C.5 D.二、填空题(本题共20分,第11-14题,每小题3分,第15-18题,每小题3分)11.关于x的一元二次方程x2﹣6x+m=0有一个根为2,则m的值为______.12.如图,在Rt△ABC中,∠ACB=90°,点D,E,F分别为AB,AC,BC的中点.若CD=5,则EF的长为______.13.某校开展了“书香校园”的活动,小腾班长统计了本学期全班40名同学课外图书的阅读数量(单位:本),绘制了折线统计图(如图所示),在这40名学生的图书阅读数量中,中位数是______.14.将一元二次方程x2+4x+1=0化成(x+a)2=b 的形式,其中a,b是常数,则a+b=______.15.反比例函数y=在第一象限的图象如图,请写出一个满足条件的k值,k=______.16.如图,将矩形ABCD沿对角线BD所在直线折叠,点C落在同一平面内,落点记为C′,BC′与AD交于点E,若AB=3,BC=4,则DE 的长为______.17.如图,平安路与幸福路是两条平行的道路,且与新兴大街垂直,老街与小米胡同垂直,书店位于老街与小米胡同的交口处,如果小强同学站在平安路与新兴大街的交叉路口,准备去书店,按图中的街道行走,最近的路程为______m.18.如图,在△ABC中,点P从点A出发向点C运动,在运动过程中,设x表示线段AP的长,y表示线段BP的长,y与x之间的关系如图2所示,则线段AB的长为______,线段BC的长为______.三、解答题(本题共16分,第19题8分,第20题8分)19.计算:(1)﹣+(+1)(﹣1)(2)×÷.20.解方程:(1)x2﹣6x+5=0(2)2x2﹣3x﹣1=0.四、解答题(本题共34分,第21-22题,每小题7分,第23题6分,第24-25题,每小题7分)21.如图,在▱ABCD中,点E,M分别在边AB,CD上,且AE=CM,点F,N分别在边BC,AD上,且DN=BF.(1)求证:△AEN≌△CMF;(2)连接EM,FN,若EM⊥FN,求证:EFMN 是菱形.22.为了让同学们了解自己的体育水平,初二1班的体育康老师对全班45名学生进行了一次体育模拟测试(得分均为整数)成绩满分为10分,成绩达到9分以上(包含9分)为优秀,成绩达到6分以上(包含6分)为合格,1班的体育委员根据这次测试成绩,制作了统计图和分析表如下:初二1班体育模拟测试成绩分析表平均分方差中位数众数合格率优秀率男生 2 8 7 95% 40% 女生7.92 1.99 8 96% 36% 根据以上信息,解答下列问题:(1)在这次测试中,该班女生得10分的人数为4人,则这个班共有女生______人;(2)补全初二1班男生体育模拟测试成绩统计图,并把相应的数据标注在统计图上;(3)补全初二1班体育模拟测试成绩分析表;(4)你认为在这次体育测试中,1班的男生队、女生队哪个表现更突出一些?并写出一条支持你的看法的理由;(5)体育康老师说,从整体看,1班的体育成绩在合格率方面基本达标,但在优秀率方面还不够理想,因此他希望全班同学继续加强体育锻炼,争取在期末考试中,全班的优秀率达到60%,若男生优秀人数再增加6人,则女生优秀人数再增加多少人才能完成康老师提出的目标?23.已知:如图,在四边形ABCD中,∠B=90°,AB=BC=2,CD=3,AD=1,求∠DAB的度数.24.如图,矩形ABCD的对角线AC,BD相交于点O,点E,F,M,N分别为OA,OB,OC,OD的中点,连接EF,FM,MN,NE.(1)依题意,补全图形;(2)求证:四边形EFMN是矩形;(3)连接DM,若DM⊥AC于点M,ON=3,求矩形ABCD的面积.25.在平面直角坐标系xOy中,四边形OABC 是矩形,点B的坐标为(4,3),反比例函数y=的图象经过点B.(1)求反比例函数的解析式;(2)一次函数y=ax﹣1的图象与y轴交于点D,与反比例函数y=的图象交于点E,且△ADE的面积等于6,求一次函数的解析式;(3)在(2)的条件下,直线OE与双曲线y=(x>0)交于第一象限的点P,将直线OE向右平移个单位后,与双曲线y=(x>0)交于点Q,与x轴交于点H,若QH=OP,求k的值.26.如图,在数轴上点A表示的实数是______.27.我们已经学习了反比例函数,在生活中,两个变量间具有反比例函数关系的实例有许多,例如:在路程s一定时,平均速度v是运行时间t 的反比例函数,其函数关系式可以写为:v=(s 为常数,s≠0).请你仿照上例,再举一个在日常生活、学习中,两个变量间具有反比例函数关系的实例:______;并写出这两个变量之间的函数解析式:______.28.已知:关于x的一元二次方程mx2﹣3(m﹣1)x+2m﹣3=0(m>3).(1)求证:方程总有两个不相等的实数根;(2)设方程的两个实数根分别为x1,x2(用含m 的代数式表示);①求方程的两个实数根x1,x2(用含m的代数式表示);②若mx1<8﹣4x2,直接写出m的取值范围.29.四边形ABCD是正方形,对角线AC,BD 相交于点O.(1)如图1,点P是正方形ABCD外一点,连接OP,以OP为一边,作正方形OPMN,且边ON与边BC相交,连接AP,BN.①依题意补全图1;②判断AP与BN的数量关系及位置关系,写出结论并加以证明;(2)点P在AB延长线上,且∠APO=30°,连接OP,以OP为一边,作正方形OPMN,且边ON与BC的延长线恰交于点N,连接CM,若AB=2,求CM的长(不必写出计算结果,简述求CM长的过程)参考答案与试题解析一、选择题(本题共30分,每小题3分)1.下列二次根式中,是最简二次根式的是()A.B.C.D.【考点】最简二次根式.【分析】利用最简二次根式的定义判断即可.【解答】解:A、为最简二次根式,符合题意;B、=2,不合题意;C、=,不合题意;D、=2,不合题意,故选A【点评】此题考查了最简二次根式,熟练掌握最简二次根式的定义是解本题的关键.2.平行四边形ABCD中,若∠B=2∠A,则∠C 的度数为()A.120°B.60°C.30°D.15°【考点】平行四边形的性质.。

石家庄市八年级下学期期末考试数学试卷

石家庄市八年级下学期期末考试数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)分解因式2x2 − 4x + 2的最终结果是()A . 2x(x − 2)B . 2(x2 − 2x +1)C . 2(x − 1)2D . (2x − 2)22. (2分) (2018八下·邯郸开学考) 已知a , b , c是△ABC的三条边长,则(a﹣b)2﹣c2的值是()A . 正数B . 负数C . 0D . 无法确定3. (2分)下列说法正确的是()A . 最小的有理数是0B . 射线OM的长度是5cmC . 两数相加,和一定大于任何一个加数D . 两点确定一条直线4. (2分) (2019八下·高阳期中) 如图所示,在数轴上点A所表示的数为,则的值为()A .B .C .D .5. (2分)下列命题是真命题的是()A . 若ac>bc,则a>bB . 4的平方根是2C . 一组对边平行,另一组对边相等的四边形是平行四边形D . 顺次连接任意四边形各边中点所得的四边形是平行四边形6. (2分) (2020七下·云梦期中) 下列五个命题:①如果两个数的绝对值相等,那么这两个数的平方相等;②内错角相等;③在同一平面内,垂直于同一条直线的两条直线互相平行;④两个无理数的和一定是无理数;⑤坐标平面内的点与有序数对是一一对应的.其中真命题的个数是()A . 2个B . 3个C . 4个D . 5个7. (2分)在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1 ,作正方形A1B1C1C;延长C1B1交x轴于点A2 ,作正方形A2B2C2C1 ,…,按这样的规律进行下去,第2013个正方形的面积为()A .B .C .D .8. (2分) (2017八下·西华期末) 甲、乙、丙、丁四位选手各射击10次,每人的平均成绩都是9.3环,方差如下表所示:选手甲乙丙丁方差0.0350.0360.0280.015则这四人中成绩最稳定的是()A . 甲B . 乙C . 丙D . 丁9. (2分) (2017八下·西华期末) 某交通管理人员星期天在市中心的某十字路口对7:00~12:00各时间段闯红灯的人数进行了统计,制作如下表格:时间段7~88~99~1010~1111~12人数2015101540则各时间段闯红灯人数的众数和中位数分别为()A . 10人,15人B . 15人,15人C . 15人,20人D . 10人,20人10. (2分) (2017八下·西华期末) 如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF ,连接DE、DF、EF ,在此运动变化的过程中,有下列结论:①∠DEF是等腰直角三角形;②四边形CEDF不可能为正方形;③四边形CEDF的面积随点E位置的改变而发生改变;④点C到线段EF的最大距离为.其中正确结论的个数是()A . 1B . 2C . 3D . 4二、填空题 (共5题;共9分)11. (1分) (2019七下·峄城月考) 如果10m=2,10n=3,那么103m+2n=________.12. (1分) (2020七下·成都期中) 已知长方形,,,将两张边长分别为a 和b()的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S1 ,图2中阴影部分的面积为S2 .当时,AB=________.13. (1分)(2017·苏州模拟) 在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,3).延长CB交x轴于点A1 ,作正方形A1B1C1C;延长C1B1交x轴于点A2 ,作正方形A2B2C2C1…,按这样的规律进行下去,第4个正方形的边长为________.14. (5分)点P(-2,m)在第二象限的角平分线上,则m=____。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年河北省石家庄市栾城区八年级(下)期末数学试卷一、选择题(本大题共12小题,每小题2分,共24分)1.(2分)下列调查方式中,适合用普查方式的是()A.要了解一批等灯泡的使用寿命B.要了解栾城电视台“栾城新闻”的收视率C.要了解某校篮球队12名队员的身高状况D.要了解全国人民对“春节连欢晚会”的满意度2.(2分)在平面直角坐标系中,点P(﹣1,2)的位置在()A.第一象限B.第二象限C.第三象限D.第四象限3.(2分)一个多边形的内角和是外角和的3倍,则这个多边形是()A.五边形B.六边形C.七边形D.八边形4.(2分)如图,在菱形ABCD中,已知AB=10,AC=16,那么菱形ABCD的面积为()A.48 B.96 C.80 D.1925.(2分)如果点A(﹣2,a)在函数y=﹣x+3的图象上,那么a的值等于()A.﹣7 B.3 C.﹣1 D.46.(2分)如图,顺次连接四边形ABCD各边中点得四边形EFGH,要使四边形EFGH为矩形,应添加的条件是()A.AB∥DC B.AC=BD C.AC⊥BD D.AB=DC7.(2分)如图,在矩形ABCD中,已知AB=3,AD=8,点E为BC的中点,连接AE,EF是∠AEC的平分线,交AD于点F,则FD=()A.3 B.4 C.5 D.68.(2分)在1000个数据中,用适当的方法抽取50个体为样本进行统计,频数分布表中54.5~57.5这一组的频率为0.12,估计总体数据落在54.5~57.5之间的约有()个.A.120 B.60 C.12 D.69.(2分)已知点P(1,3),将线段OP绕原点O按顺时针方向旋转90°得到线段OP′,则点P′的坐标是()A.(﹣1,3)B.(1,﹣3)C.(3,﹣1)D.(3,1)10.(2分)在整理数据5,5,3,■,2,4时,■处的数据看不清,但从扇形统计图的答案上发现数据5的圆心角是180°,则■处的数据是()A.2 B.3 C.4 D.511.(2分)如图,平行四边形ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24cm,△OAB的周长是18cm,则EF等于()A.2cm B.3cm C.4cm D.5cm12.(2分)甲、乙两人在操场上赛跑,他们赛跑的路程S(米)与时间t(分钟)之间的函数关系如图所示,则下列说法错误的是()A.甲、乙两人进行1000米赛跑B.甲先慢后快,乙先快后慢C.比赛到2分钟时,甲、乙两人跑过的路程相等D.甲先到达终点二、填空题(本大题共8小题,每小题3分,共24分)13.(3分)函数的自变量x的取值范围是.14.(3分)一次函数y=2x﹣1一定不经过第象限.15.(3分)平面直角坐标系中,已知点P的坐标坐标为(﹣2,3),点P′与点P 关于原点对称,则点P′的坐标为.16.(3分)已知点A的坐标为(1,0),点P在直线y=﹣x上运动,则PA的最小值为.17.(3分)如图,若将四根木条钉成的矩形木框变成平行四边形ABCD的形状,并使其面积为矩形面积的一半,则这个平行四边形的最小内角等于度.18.(3分)如图,已知正方形ABCD的边长为2,△ABE时等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为.19.(3分)已知一次函数y=﹣3x+3,当0<x<1时,y的取值范围是.20.(3分)观察下列等式:1=12,1+3=22,1+3+5=32,1+3+5+7=42,…,则1+3+5+7+…+2017=(写成某数平方的形式即可,不必计算结果)三、解答题(本大题共5小题,共52分)21.(8分)在平面直角坐标系中,已知点A(2﹣a,2a+3)在第四象限.(1)若点A到x轴的距离与到y轴的距离相等,求a的值;(2)若点A到x轴的距离小于到y轴的距离,求a的取值范围.22.(10分)目前,谷歌人工智能AlphaGo机器人引起了人们的广泛关注,某教学网站开设了有关人工智能的课程并策划了A,B两种网上学习的月收费方式:收费方式月使用费(元)包月上网时间超时费(元/h)(h)A725 3.6B1050 4.8设小明每月上网学习人工智能课程的时间为x小时,方案A,B的收费金额分别为y A元,y B元.(1)当x≥50时,分别求出y A,y B与x之间的函数关系式;(2)若小明3月份上该网站学习的时间为60小时,则他选择哪种方式上网学习更合算?23.(10分)2017年6月5日是第46个“世界环境日”,为提高学生的环保意识,某校组织该校2000名学生参加了“环保知识”竞赛,为了解“环保知识”的笔试情况,学校随机抽取了部分参赛同学的成绩,整理并绘制成如图所示的不完整的图表.分数段频数频率60≤x<70300.170≤x<8090n80≤x<90m0.490≤x<100600.2请你根据表中提供的信息,解答下列问题:(1)此次调查的样本容量为;(2)在表中:m=,n=;(3)补全频数分布直方图;(4)如果比赛成绩80分以上(含80分)为优秀,那么请你估计该校学生笔试成绩的优秀人数大约是名.24.(12分)已知一次函数y=kx+b的图象经过点(﹣1,﹣5),且与正比例函数的图象相交于点(2,a).(1)求实数a的值及一次函数的解析式;(2)求这两个函数图象与x轴所围成的三角形面积.25.(12分)如图,在平行四边形ABCD中,已知对角线AC、BD相交于点O,若E、F是AC上两动点,分别从A、C两点以相同的速度1cm/s向点O运动.(1)当E与F不重合时,四边形DEBF是否是平行四边形?请说明理由;(2)若AC=16cm,BD=12cm,点E,F在运动过程中,四边形DEBF能否为矩形?如能,求出此时的运动时间t的值,如不能,请说明理由.2016-2017学年河北省石家庄市栾城区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题2分,共24分)1.(2分)下列调查方式中,适合用普查方式的是()A.要了解一批等灯泡的使用寿命B.要了解栾城电视台“栾城新闻”的收视率C.要了解某校篮球队12名队员的身高状况D.要了解全国人民对“春节连欢晚会”的满意度【解答】解:∵要了解一批等灯泡的使用寿命适合用抽样调查,∴选项A不符合题意;∵要了解栾城电视台“栾城新闻”的收视率适合用抽样调查,∴选项B不符合题意;∵要了解某校篮球队12名队员的身高状况适合用普查方式,∴选项C符合题意;∵要了解全国人民对“春节连欢晚会”的满意度适合用抽样调查,∴选项D不符合题意.故选:C.2.(2分)在平面直角坐标系中,点P(﹣1,2)的位置在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵点P(﹣1,2)的横坐标﹣1<0,纵坐标2>0,∴点P在第二象限.故选:B.3.(2分)一个多边形的内角和是外角和的3倍,则这个多边形是()A.五边形B.六边形C.七边形D.八边形【解答】解:设多边形的边数是n,则(n﹣2)•180=3×360,解得:n=8.故选:D.4.(2分)如图,在菱形ABCD中,已知AB=10,AC=16,那么菱形ABCD的面积为()A.48 B.96 C.80 D.192【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=AC,在Rt△AOB中,BO==6,则BD=2BO=12,故S=AC×BD=96.菱形ABCD故选:B.5.(2分)如果点A(﹣2,a)在函数y=﹣x+3的图象上,那么a的值等于()A.﹣7 B.3 C.﹣1 D.4【解答】解:根据题意,把点A的坐标代入函数解析式,得:a=﹣×(﹣2)+3=4,故选:D.6.(2分)如图,顺次连接四边形ABCD各边中点得四边形EFGH,要使四边形EFGH为矩形,应添加的条件是()A.AB∥DC B.AC=BD C.AC⊥BD D.AB=DC【解答】解:依题意得,四边形EFGH是由四边形ABCD各边中点连接而成,连接AC、BD,故EF∥AC∥HG,EH∥BD∥FG,所以四边形EFGH是平行四边形,要使四边形EFGH为矩形,根据矩形的判定(有一个角为直角的平行四边形是矩形)故当AC⊥BD时,∠EFG=∠EHG=90度.四边形EFGH为矩形.故选:C.7.(2分)如图,在矩形ABCD中,已知AB=3,AD=8,点E为BC的中点,连接AE,EF是∠AEC的平分线,交AD于点F,则FD=()A.3 B.4 C.5 D.6【解答】解:∵四边形ABCD是矩形,∴AD=BC=8,AD∥BC,∴∠AFE=∠FEC,∵EF平分∠AEC,∴∠AEF=∠FEC,∴∠AFE=∠AEF,∴AE=AF,∵E为BC中点,BC=8,∴BE=4,在Rt△ABE中,AB=3,BE=4,由勾股定理得:AE=5,∴AF=AE=5,∴DF=AD﹣AF=8﹣5=3,故选:A.8.(2分)在1000个数据中,用适当的方法抽取50个体为样本进行统计,频数分布表中54.5~57.5这一组的频率为0.12,估计总体数据落在54.5~57.5之间的约有()个.A.120 B.60 C.12 D.6【解答】解:0.12×50=6,在总体1000个数据中,数据落在54.5~57.5之间的约有120个.故选:A.9.(2分)已知点P(1,3),将线段OP绕原点O按顺时针方向旋转90°得到线段OP′,则点P′的坐标是()A.(﹣1,3)B.(1,﹣3)C.(3,﹣1)D.(3,1)【解答】解:如图所示,由旋转可得OP=OP',∠POP'=90°,过P作PD⊥x轴于D,过P'作P'E⊥x轴于E,则∠PDO=∠OEP'=90°,∠P+∠POD=∠P'OE+∠POD=90°,∴∠P=∠P'OE,在△POD和△OP'E中,,∴△POD≌△OP'E(AAS),∴P'E=OD=1,OE=PD=3,∴P'(3,﹣1),故选:C.10.(2分)在整理数据5,5,3,■,2,4时,■处的数据看不清,但从扇形统计图的答案上发现数据5的圆心角是180°,则■处的数据是()A.2 B.3 C.4 D.5【解答】解:∵扇形统计图的答案上发现数据5的圆心角是180°,∴5所占的百分比为=,又∵共有6个数据,∴5有3个数据,∴■处的数据是5.故选:D.11.(2分)如图,平行四边形ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24cm,△OAB的周长是18cm,则EF等于()A.2cm B.3cm C.4cm D.5cm【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,又∵AC+BD=24cm,∴OA+OB=12cm,∵△OAB的周长是18cm,∴AB=6cm,∵点E,F分别是线段AO,BO的中点,∴EF是△OAB的中位线,∴EF=AB=3cm.故选:B.12.(2分)甲、乙两人在操场上赛跑,他们赛跑的路程S(米)与时间t(分钟)之间的函数关系如图所示,则下列说法错误的是()A.甲、乙两人进行1000米赛跑B.甲先慢后快,乙先快后慢C.比赛到2分钟时,甲、乙两人跑过的路程相等D.甲先到达终点【解答】解:从图象可以看出,甲、乙两人进行1000米赛跑,A说法正确;甲先慢后快,乙先快后慢,B说法正确;比赛到2分钟时,甲跑了500米,乙跑了600米,甲、乙两人跑过的路程不相等,C说法不正确;甲先到达终点,D说法正确,故选:C.二、填空题(本大题共8小题,每小题3分,共24分)13.(3分)函数的自变量x的取值范围是x>2.【解答】解:根据题意得,x﹣2>0,解得x>2.故答案为:x>2.14.(3分)一次函数y=2x﹣1一定不经过第二象限.【解答】解:∵k=2>0,b=﹣1<0,∴一次函数图象在一、三、四象限,即一次函数图象不经过第二象限.故答案为:二.15.(3分)平面直角坐标系中,已知点P的坐标坐标为(﹣2,3),点P′与点P 关于原点对称,则点P′的坐标为(2,﹣3).【解答】解:∵点P的坐标坐标为(﹣2,3),点P′与点P关于原点对称,∴点P′的坐标为(2,﹣3),故答案为:(2,﹣3)16.(3分)已知点A的坐标为(1,0),点P在直线y=﹣x上运动,则PA的最小值为.【解答】解:作AP⊥直线y=﹣x,∵点A的坐标为(1,0),∴OA=1,∵∠AOP=45°,∴AP=OA•sin45°=1×=,故答案为:.17.(3分)如图,若将四根木条钉成的矩形木框变成平行四边形ABCD的形状,并使其面积为矩形面积的一半,则这个平行四边形的最小内角等于30度.【解答】解:∵平行四边形的面积为矩形的一半且同底BC,∴平行四边形ABCD的高AE是矩形宽AB的一半.在直角三角形ABE中,AE=AB,∴∠ADC=30°.故答案为:30.18.(3分)如图,已知正方形ABCD的边长为2,△ABE时等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为2.【解答】解:设AC交BE于P′,连接DP′、PB.∵四边形ABCD是正方形,∴B、D关于AC对称,∴PD=PB,P′D=P′B,∴PD+PE=PB+PE,∴当P与P′重合时,PD+PE=P′E+P′B=BE=2,此时PD+PE的值最小,故答案为2.19.(3分)已知一次函数y=﹣3x+3,当0<x<1时,y的取值范围是0<y<3.【解答】解:∵k=﹣3<0,∴y随x的睁大而减小,∴当0<x<1时,y的取值范围0<y<3,故答案为0<y<3.20.(3分)观察下列等式:1=12,1+3=22,1+3+5=32,1+3+5+7=42,…,则1+3+5+7+…+2017=10092(写成某数平方的形式即可,不必计算结果)【解答】解:观察,发现:1+3=4=22;1+3+5=9=32;1+3+5+7=16=42,…,∴1+3+5+…+(2n+1)=()2=(n+1)2(n为自然数),∴1+3+5+7+…+2017=()2=10092.故答案为:10092.三、解答题(本大题共5小题,共52分)21.(8分)在平面直角坐标系中,已知点A(2﹣a,2a+3)在第四象限.(1)若点A到x轴的距离与到y轴的距离相等,求a的值;(2)若点A到x轴的距离小于到y轴的距离,求a的取值范围.【解答】解:(1)∵点A(2﹣a,2a+3)在第四象限,∴2﹣a>0,2a+3,0,∵点A到x轴的距离与到y轴的距离相等,∴2﹣a=﹣(2a+3),解得:a=﹣5;(2)∵点A到x轴的距离小于到y轴的距离,∴,解得:﹣5<a <﹣.22.(10分)目前,谷歌人工智能AlphaGo机器人引起了人们的广泛关注,某教学网站开设了有关人工智能的课程并策划了A,B两种网上学习的月收费方式:收费方式月使用费(元)包月上网时间(h)超时费(元/h)A725 3.6B1050 4.8设小明每月上网学习人工智能课程的时间为x小时,方案A,B的收费金额分别为y A元,y B元.(1)当x≥50时,分别求出y A,y B与x之间的函数关系式;(2)若小明3月份上该网站学习的时间为60小时,则他选择哪种方式上网学习更合算?【解答】解:(1)当x≥50时,y A与x之间的函数关系式为:y A=7+(x﹣25)×3.6=3.6x﹣83,当x≥50时,y B与x之间的函数关系式为:y B=10+(x﹣50)×4.8=4.8x﹣230.(2)当x=60时,y A=3.6×60﹣83=133(元),y B=4.8×60﹣230=58,∴y A>y B.故选择B方式上网学习合算.23.(10分)2017年6月5日是第46个“世界环境日”,为提高学生的环保意识,某校组织该校2000名学生参加了“环保知识”竞赛,为了解“环保知识”的笔试情况,学校随机抽取了部分参赛同学的成绩,整理并绘制成如图所示的不完整的图表.分数段频数频率60≤x<70300.170≤x<8090n80≤x<90m0.490≤x<100600.2请你根据表中提供的信息,解答下列问题:(1)此次调查的样本容量为300;(2)在表中:m=120,n=0.30;(3)补全频数分布直方图;(4)如果比赛成绩80分以上(含80分)为优秀,那么请你估计该校学生笔试成绩的优秀人数大约是1200名.【解答】解:(1)此次调查的样本容量为30÷0.1=300人,故答案为300.(2)m=300×0.4=120人,n==0.30.故答案为120,0.30.(3)条形图如图所示,(4)2000×(0.4+0.2)=1200人,估计该校学生笔试成绩的优秀人数大约是1200人,故答案为1200.24.(12分)已知一次函数y=kx+b的图象经过点(﹣1,﹣5),且与正比例函数的图象相交于点(2,a).(1)求实数a的值及一次函数的解析式;(2)求这两个函数图象与x轴所围成的三角形面积.【解答】解:(1)∵的图象过(2,a),∴a=1,∵一次函数y=kx+b的图象经过点(﹣1,﹣5)、(2,1),∴,解得:;(2)一次函数为y=2x﹣3,交x轴于点,∴这两个函数图象与x轴所围成的三角形面积为:.25.(12分)如图,在平行四边形ABCD中,已知对角线AC、BD相交于点O,若E、F是AC上两动点,分别从A、C两点以相同的速度1cm/s向点O运动.(1)当E与F不重合时,四边形DEBF是否是平行四边形?请说明理由;(2)若AC=16cm,BD=12cm,点E,F在运动过程中,四边形DEBF能否为矩形?如能,求出此时的运动时间t的值,如不能,请说明理由.【解答】解:(1)当E与F不重合时,四边形DEBF是平行四边形理由:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD;∵E、F两动点,分别从A、C两点以相同的速度向C、A运动,∴AE=CF;∴OE=OF;∴BD、EF互相平分;∴四边形DEBF是平行四边形;(2)∵四边形DEBF是平行四边形,∴当BD=EF时,四边形DEBF是矩形;∵BD=12cm,∴EF=12cm;∴OE=OF=6cm;∵AC=16cm;∴OA=OC=8cm;∴AE=2cm或14cm,由于动点的速度都是1cm/s,所以t=2(s)或14(s)故当运动时间t=2s或14s时,以D、E、B、F为顶点的四边形是矩形.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.O DAB CEAOD CB2.如图,已知四边形ABCD内接于⊙O,对角线AC⊥BD于P,设⊙O的半径是2。

相关文档
最新文档