2007年中山大学高等数学A考研真题详解
2007年考研数学一真题与解析

2007年硕士研究生入学考试数学一试题及答案解析一、选择题:(本题共10小题,每小题4分,共40分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1) 当0x +→(A) 1-. (B) ln. (C)1. (D) 1-.[ B ]【分析】 利用已知无穷小量的等价代换公式,尽量将四个选项先转化为其等价无穷小量,再进行比较分析找出正确答案.【详解】 当0x +→时,有1(1)~-=--1~2111~.22x -= 利用排除法知应选(B).(2) 曲线1ln(1)x y e x=++,渐近线的条数为(A) 0. (B) 1. (C) 2. (D) 3. [ D ]【分析】 先找出无定义点,确定其是否为对应垂直渐近线;再考虑水平或斜渐近线。
【详解】 因为01lim[ln(1)]x x e x→++=∞,所以0x =为垂直渐近线;又 1lim [ln(1)]0x x e x→-∞++=,所以y=0为水平渐近线;进一步,21ln(1)ln(1)lim lim[]lim x x x x x y e e x x x x →+∞→+∞→+∞++=+==lim11xx x e e →+∞=+, 1l i m [1]l i m [l n (1)]x x x y xe x x→+∞→+∞-⋅=++-=lim[ln(1)]x x e x →+∞+-=lim[ln (1)]lim ln(1)0x x x x x e e x e --→+∞→+∞+-=+=,于是有斜渐近线:y = x . 故应选(D).(3) 如图,连续函数y =f (x )在区间[−3,−2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[−2,0],[0,2]的图形分别是直径为2的上、下半圆周,设0()().xF x f t dt =⎰则下列结论正确的是(A) 3(3)(2)4F F =--. (B) 5(3)(2)4F F =.(C) )2(43)3(F F =-. (D))2(45)3(--=-F F .[ C ]【分析】 本题考查定积分的几何意义,应注意f (x )在不同区间段上的符号,从而搞清楚相应积分与面积的关系。
中山大学历年考试试题总结

4.(20分)设 的线性变换在标准基下的矩阵A= .
(1).ቤተ መጻሕፍቲ ባይዱA的特征值和特征向量.(2).求 的一组标准正交基,使在此基下的矩阵为对角矩阵.
5.(20分)设 为n维欧氏空间V中一个单位向量,定义V的线性变换如下:
证明:
(1).为第二类的正交变换(称为镜面反射).
3.(16分)设 在[0,1]连续, 求 。
4.(16分)求极限 。
5.(16分)(1)证明级数 在 一致收敛;
(2)令 , ,证明 在 一致连续。
2009.1.11数据库(871)
2008.1.20数据库(879)
(2).V的正交变换是镜面反射的充要条件为1是的特征值,且对应的特征子空间的维数为n-1.
2009.1.15数学分析(650)
2008.1.20数学分析(636)
2007.1.21数学分析(752)
2006.1.15数学分析
2003年数学分析试题
1.(16分)求 在 上的极值;求方程 有两个正实根的条件。2.(16分)计算 ,S为V: 的表面外侧。
中山大学历年考研真题
2009.11.1线性代数(651)
2009.1.11 高等代数(870)
2008.1.20线性代数(651)
2008.1.20高等代数(851)
2007.1.21高等代数(441)
2006.1.25高等代数
2004年高等代数试题(70分)
1.(10分)计算下列n阶行列式:
2.(10分)设 是数域P上线性空间V中一线性无关向量组,讨论向量组 的线性相关性。
2007考研数学一试题及答案解析

2007年数学一一、选择题:(本题共10小题,每小题4分,共40分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1) 当0x +→等价的无穷小量是(A) 1- (B)(C) 1. (D) 1- [ B ]【分析】 利用已知无穷小量的等价代换公式,尽量将四个选项先转化为其等价无穷小量,再进行比较分析找出正确答案.【详解】 当0x +→时,有1(1)~-=--1~;2111~.22x -= 利用排除法知应选(B). (2) 曲线1ln(1)x y e x=++,渐近线的条数为 (A) 0. (B) 1. (C) 2. (D) 3. [ D ]【分析】 先找出无定义点,确定其是否为对应垂直渐近线;再考虑水平或斜渐近线。
【详解】 因为01lim[ln(1)]xx e x→++=∞,所以0x =为垂直渐近线;又 1lim[ln(1)]0xx e x→-∞++=,所以y=0为水平渐近线;进一步,21ln(1)ln(1)lim lim []lim x x x x x y e e x x x x →+∞→+∞→+∞++=+==lim 11xx x e e→+∞=+, 1lim[1]lim[ln(1)]x x x y x e x x→+∞→+∞-⋅=++-=lim[ln(1)]xx e x →+∞+-=lim[ln (1)]lim ln(1)0x x xx x e e x e --→+∞→+∞+-=+=,于是有斜渐近线:y = x . 故应选(D).(3) 如图,连续函数y =f (x )在区间[−3,−2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[−2,0],[0,2]的图形分别是直径为2的上、下半圆周,设0()().xF x f t dt =⎰则下列结论正确的是(A) 3(3)(2)4F F =--. (B) 5(3)(2)4F F =. (C) )2(43)3(F F =-. (D) )2(45)3(--=-F F . [ C ]【分析】 本题考查定积分的几何意义,应注意f (x )在不同区间段上的符号,从而搞清楚相应积分与面积的关系。
2007年考研数学试题详解及评分参考

f (x, y)dy =
G
G dy = y2 - y1 < 0 ,是正确选项;
ò ò 对选项(C),有 f (x, y)ds = ds = l > 0 ,(其中 l 为的弧长),应排除;
G
G
ò ò 对选项(D),有
G
f
¢
x
(
x,
y)dx
+
f
¢
y
(
x,
y)dy
=
0dx + 0dy = 0 ,应排除.
G
郝海龙:考研数学复习大全·配套光盘·2007 年数学试题详解及评分参考
2007 年全国硕士研究生入学统一考试
数学试题详解及评分参考
数 学(一)
一、选择题 ( 1 ~ 10 小题,每小题 4 分,共 40 分。)
(1) 当 x ® 0+ 时,与 (A) 1- e x
【答】 应选 (B) .
x 等价的无穷小量是
1- x
1- x 1- x
x+x:
x ,1- cos
x
:
1 2
(
x )2
=
1 2
x
.
故选 (B) .
(2)
曲线 y
=
1 x
+ ln(1+ ex ) 渐近线的条数为
(A) 0
(B) 1
(C) 2
(D) 3
【答】 应选 (D) .
【解】
因 lim y x®+¥
=
lim [1 x x®+¥
+ ln(1+ ex )] = +¥ , lim x®-¥
y
=
lim [1 x x®-¥
2007全国硕士研究生入学考试数学真题详解——线性代数部分

2007-2010年全国硕士研究生入学考试数学真题详解——线性代数部分一、2007年:1、(2007年数学一、二、三、四) 设向量组321,,ααα线性无关,则下列向量组线性相关的是(A) 133221,,αααααα---. (B) 133221,,αααααα+++.(C) 1332212,2,2αααααα---. (D) 1332212,2,2αααααα+++. [ ] 【答案】A【详解】用定义进行判定:令0)()()(133322211=-+-+-ααααααx x x ,得 0)()()(332221131=+-++-+-αααx x x x x x .因321,,ααα线性无关,所以 1312230,0,0.x x x x x x -=⎧⎪-+=⎨⎪-+=⎩ 又 011011101=---, 故上述齐次线性方程组有非零解, 即133221,,αααααα---线性相关. 类似可得(B), (C), (D)中的向量组都是线性无关的.2、(2007年数学一、二、三、四) 设矩阵⎪⎪⎪⎭⎫ ⎝⎛------=211121112A , ⎪⎪⎪⎭⎫ ⎝⎛=000010001B , 则A 与B(A) 合同, 且相似. (B) 合同, 但不相似 .(C) 不合同, 但相似. (D) 既不合同, 又不相似. [ ] 【答案】B【详解】 由0||=-A E λ 得A 的特征值为0, 3, 3, 而B 的特征值为0, 1, 1,从而A 与B 不相似.又r (A )=r (B )=2, 且A 、B 有相同的正惯性指数, 因此A 与B 合同. 故选(B) .3、(2007年数学一、二、三、四) 设矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=0000100001000010A , 则3A 的秩为 . 【答案】1【详解】 依矩阵乘法直接计算得 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=00000000000010003A , 故r (3A )=1.4、(2007年数学一、二、三、四)设线性方程组⎪⎩⎪⎨⎧=++=++=++04,02,03221321321xa x x ax x x x x x ①与方程12321-=++a x x x ②有公共解,求a 的值及所有公共解.【分析】 两个方程有公共解就是①与②联立起来的非齐次线性方程组有解. 【详解】 将①与②联立得非齐次线性方程组:⎪⎪⎩⎪⎪⎨⎧-=++=++=++=++.12,04,02,03213221321321a x x x x a x x ax x x x x x ③ 若此非齐次线性方程组有解, 则①与②有公共解, 且③的解即为所求全部公共解. 对③的增广矩阵A 作初等行变换得:→⎪⎪⎪⎪⎪⎭⎫⎝⎛-=112104102101112a a a A ⎪⎪⎪⎪⎪⎭⎫⎝⎛-----11000)1)(2(0001100111a a a a a .于是1° 当a =1时,有)()(A r A r ==2<3,方程组③有解, 即①与②有公共解, 其全部公共解即为③的通解,此时⎪⎪⎪⎪⎪⎭⎫⎝⎛→0000000000100101A , 此时方程组③为齐次线性方程组,其基础解系为: ⎪⎪⎪⎭⎫⎝⎛-101,所以①与②的全部公共解为⎪⎪⎪⎭⎫ ⎝⎛-101k ,k 为任意常数.2° 当a =2时,有)()(A r A r ==3,方程组③有唯一解, 此时⎪⎪⎪⎪⎪⎭⎫⎝⎛-→0000110010100001A ,故方程组③的解为:011⎛⎫ ⎪⎪ ⎪-⎝⎭, 即①与②有唯一公共解: 为123011x x x x ⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭.5、(2007年数学一、二、三、四)设3阶对称矩阵A的特征值,2,2,1321-===λλλ T)1,1,1(1-=α是A的属于1λ的一个特征向量,记E A A B +-=354其中E 为3阶单位矩阵.(I) 验证1α是矩阵B的特征向量,并求B 的全部特征值与特征向量.(II) 求矩阵B.【分析】 根据特征值的性质可立即得B 的特征值, 然后由B 也是对称矩阵可求出其另外两个线性无关的特征向量.【详解】 (I) 由11αα=A 得 1112ααα==A A , 进一步 113αα=A , 115αα=A , 故 1351)4(ααE A A B +-=113154ααα+-=A A1114ααα+-=12α-=,从而1α是矩阵B的属于特征值−2的特征向量.因E A A B +-=354, 及A的3个特征值,2,2,1321-===λλλ 得 B 的3个特征值为1,1,2321==-=μμμ.设32,αα为B 的属于132==μμ的两个线性无关的特征向量, 又A为对称矩阵,得B 也是对称矩阵, 因此1α与32,αα正交, 即0,03121==ααααT T 所以32,αα可取为下列齐次线性方程组两个线性无关的解:0)1,1,1(321=⎪⎪⎪⎭⎫ ⎝⎛-x x x ,其基础解系为: ⎪⎪⎪⎭⎫ ⎝⎛011,⎪⎪⎪⎭⎫ ⎝⎛-101 , 故可取2α=⎪⎪⎪⎭⎫ ⎝⎛011, 3α=⎪⎪⎪⎭⎫ ⎝⎛-101.即B 的全部特征值的特征向量为: ⎪⎪⎪⎭⎫⎝⎛-1111k , ⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛10101132k k , 其中01≠k ,是不为零的任意常数, 32,k k 是不同时为零的任意常数.(II) 令),,(321ααα=P =⎪⎪⎪⎭⎫ ⎝⎛--101011111, 则 ⎪⎪⎪⎭⎫⎝⎛-=-1121BP P ,得 1112-⎪⎪⎪⎭⎫ ⎝⎛-=P P B =⎪⎪⎪⎭⎫ ⎝⎛--101011111⎪⎪⎪⎭⎫⎝⎛-112⎪⎪⎪⎭⎫ ⎝⎛--21112111131=⎪⎪⎪⎭⎫ ⎝⎛---102012112⎪⎪⎪⎭⎫ ⎝⎛--21112111131⎪⎪⎪⎭⎫ ⎝⎛--=011101110.二、2008年:1、(2008年数学一、二、三、四)设A 为n 阶非零矩阵,E 为n 阶单位矩阵.若30A =,则[ ]则下列结论正确的是:(A) E A -不可逆,则E A +不可逆. (B) E A -不可逆,则E A +可逆.(C) E A -可逆,则E A +可逆. (D) E A -可逆,则E A +不可逆. 【答案】应选(C).【详解】23()()E A E A A E A E -++=-=,23()()E A E A A E A E +-+=+=. 故E A -,E A +均可逆.故应选(C).2、(2008年数学一)设A 为3阶实对称矩阵,如果二次曲面方程()1x x yz A y z ⎛⎫⎪= ⎪ ⎪⎝⎭在正交变换下的标准方程的图形如图,则A 的正特征值个数为[ ](A) 0. (B) 1. (C) 2. (D) 3. 【答案】 应选(B).【详解】此二次曲面为旋转双叶双曲面,此曲面的标准方程为222221x y z a c +-=.故A 的正特征值个数为1.故应选(B).3、(2008年数学二、三、四)设1221A ⎛⎫=⎪⎝⎭,则在实数域上,与A 合同矩阵为[ ] (A) 2112-⎛⎫⎪-⎝⎭ . (B)2112-⎛⎫ ⎪-⎝⎭. (C) 2112⎛⎫ ⎪⎝⎭. (D) 1221-⎛⎫ ⎪-⎝⎭. 【答案】 应选(D). 【详解】2212(1)423(1)(3)021E A λλλλλλλλ---==--=--=+-=--则121,3λλ=-=,记1221D -⎛⎫=⎪-⎝⎭,则2212(1)423(1)(3)021E D λλλλλλλλ--==--=--=+-=-则121,3λλ=-=,正负惯性指数相同.故选D.4、(2008年数学一) 设A 为2阶矩阵,12,αα为线性无关的2维列向量,10A α=,2122A ααα=+.则A 的非零特征值为___________.【答案】应填1.【详解】根据题设条件,得1212121202(,)(,)(0,2)(,)01A A A αααααααα⎛⎫==+= ⎪⎝⎭.记12(,)P αα=,因12,αα线性无关,故12(,)P αα=是可逆矩阵.因此0201AP P ⎛⎫= ⎪⎝⎭,从而10201P AP -⎛⎫= ⎪⎝⎭.记0201B ⎛⎫= ⎪⎝⎭,则A 与B 相似,从而有相同的特征值. 因为2||(1)01E B λλλλλ--==--,0λ=,1λ=.故A 的非零特征值为1.5、(2008年数学二)设3阶矩阵A 的特征值为2,3,λ.若行列式|2|48A =-,则λ=___________. 【答案】应填1-.【详解】由482-=A ,依据方阵行列式的性质,则有48223-==A A ,即6-=A .又A 等于其特征值的乘积,即632321-=⨯⨯=⨯⨯=λλλλA ,得1-=λ. 6、(2008年数学三)设3阶方阵A 的特征值为1,2,2,E 为单位矩阵,则=--E A 14 .【答案】应填3.【详解】由方阵特征值的性质,E AA f -=-14)(,则14)(1-=-λλf ,故方阵EA --14的特征值分别为1,1,3,又由方阵行列式等于其特征值的乘积,则有341=--E A .7、(2008年数学四)设3阶方阵A 的特征值互不相同,若行列式0=A ,则A 的秩为 . 【答案】应填2.【详解】由题可知,方阵A 的特征值含有0,而其余两个非零,故A 的秩为2.8、(2008年数学一)设,αβ为3维列向量,矩阵TTA ααββ=+,其中,TTαβ分别是,αβ得转置.证明: (I ) 秩()2r A ≤;(II )若,αβ线性相关,则秩()2r A <.【详解】(I )【证法1】()()()()()()2TTTTr A r r r r r ααββααββαβ=+≤+≤+≤. 【证法2】因为TTA ααββ=+,A 为33⨯矩阵,所以()3r A ≤. 因为,αβ为3维列向量,所以存在向量0ξ≠,使得0,0T T αξβξ==于是 0T T A ξααξββξ=+= 所以0Ax =有非零解,从而()2r A ≤.【证法3】因为TTA ααββ=+,所以A 为33⨯矩阵.又因为()00T TTT A αααββαββ⎛⎫⎪=+= ⎪ ⎪⎝⎭, 所以|||0|00TT a A αββ==故 ()2r A ≤.(II )【证法】由,αβ线性相关,不妨设k αβ=.于是()2()()(1)()12TT T r A r r k rααβββββ=+=+≤≤<. 9、(2008年数学一、二、三、四) 设n 元线性方程组Ax b =,其中2222212121212a a a a a A a a a a ⎛⎫ ⎪⎪⎪=⎪ ⎪⎪ ⎪ ⎪⎝⎭,12n x x x x ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,b 100⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭.(I )证明行列式||(1)n A n a =+;(II )当a 为何值时,该方程组有惟一解,并求1x . (III )当a 为何值时,该方程组有无穷多解,并求其通解.【详解】(I )【证法1】数学归纳法.记2222212121||212n na a a a aD A a a a a ==以下用数学归纳法证明(1)nn D n a =+.当1n =时,12D a =,结论成立. 当2n =时,2222132a D a a a==,结论成立. 假设结论对小于n 的情况成立.将n D 按第一行展开得n n n a a a aD aD a a a a 2212211021212212--=-2122n n aD a D --=-1222(1)n n ana a n a --=-- (1)n n a =+故 (1)nA n a =+.【注】本题(1)也可用递推法.由2122n n n D aD a D --==-得,2211221()()n n n n n n n D aD a D aD a D a D a ------=-==-=.于是(1)n n D n a =+(I )【证法2】消元法.记2222212121||212na a a a aA a a a a =22122213121212212na a a ar ar a a a a -322222130124123321212naa a r ar a aa a a a -=n n na a a n r ar nn a n n a n 121301240113111----+(1)n n a =+.(II )【详解】当0a ≠时,方程组系数行列式0n D ≠,故方程组有惟一解.由克莱姆法则,将n D 得第一列换成b ,得行列式为22211222211121021212121212122n n nn a aa a a aa aD na a a a a a a a a ---===所以,11(1)n n D ax D n a-==+. (III )【详解】 当0a =时,方程组为12101101001000n n x x x x -⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 此时方程组系数矩阵得秩和增广矩阵得秩均为1n -,所以方程组有无穷多组解,其通解为()()010100TTx k =+,其中k 为任意常数.10、(2008年数学二、三、四)设A 为3阶矩阵,12,αα为A 的分别属于特征值1,1-的特征向量,向量3α满足321A ααα=+,(I)证明123,,ααα线性无关; (II)令123(,,)P ααα=,求1P AP -.【详解】(I)【证明】设有一组数123,,k k k ,使得 122330k k k ααα++=. 用A 左乘上式,得112233()()()0k A k A k A ααα++=. 因为 11A αα=-, 22A αα=,321A ααα=+, 所以 1123233()0k k k k ααα-+++=, 即113220k k αα-=.由于12,αα是属于不同特征值得特征向量,所以线性无关,因此130k k ==,从而有20k =.故 123,,ααα线性无关.(II )由题意,100011001AP P -⎛⎫⎪= ⎪ ⎪⎝⎭.而由(I )知,123,,ααα线性无关,从而123(,,)P ααα=可逆.故1100011001P AP --⎛⎫⎪= ⎪ ⎪⎝⎭.三、2009年:1、(2009年数学一)设123,,ααα是3维向量空间3R 的一组基,则由基12311,,23ααα到基 122331,,αααααα+++的过渡矩阵为()A 101220033⎛⎫⎪⎪ ⎪⎝⎭. ()B 120023103⎛⎫⎪⎪ ⎪⎝⎭.()C 111246111246111246⎛⎫- ⎪ ⎪ ⎪- ⎪ ⎪ ⎪- ⎪⎝⎭.()D 111222111444111666⎛⎫-⎪ ⎪ ⎪- ⎪ ⎪ ⎪- ⎪⎝⎭. 【答案】A【解析】因为()()1212,,,,,,n n A ηηηααα=,则A 称为基12,,,n ααα到12,,,nηηη的过渡矩阵。
2007年考研数学一真题及分析

2007年数学一试题分析、详解和评注分析解答所用参考书:1.黄先开、曹显兵教授主编的《2007考研数学经典讲义(理工类)》,简称经典讲义(人大社出版). 2.黄先开、曹显兵教授主编的《2007考研数学历年真题题型解析》,简称真题(人大社出版). 3.黄先开、曹显兵教授在2006强化辅导班上的讲稿.一、选择题:(本题共10小题,每小题4分,共40分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (1)当0x +→(A)1-(B) ln(C)1.(D) 1cos -. 【 】【答案】 应选(B). 【分析】 利用已知无穷小量的等价代换公式,尽量将四个选项先转化为其等价无穷小量,再进行比较分析找出正确答案.【详解】当0x +→时,有1(1)~-=--1~;2111cos~.22x -= 利用排除法知应选(B).【评注】本题直接找出ln但由于另三个的等价无穷小很容易得到,因此通过排除法可得到答案。
事实上,2ln(1)ln(1ln(1)ln(1)lim lim lim tx x t x t t t+++→→→+--+--==22200212(1)111lim lim 1.1(1)(1)t t tt t t tt t t ++→→+-+++-==+-(2)曲线1ln(1)xy e x=++,渐近线的条数为(A) 0. (B) 1. (C) 2. (D) 3. 【 】 【答案】 应选(D).【分析】 先找出无定义点,确定其是否为对应垂直渐近线;再考虑水平或斜渐近线。
【详解】 因为01lim[ln(1)]xx e x→++=∞,所以0x =为垂直渐近线;又 1lim [ln(1)]0xx e x→-∞++=,所以y=0为水平渐近线;进一步,21ln(1)ln(1)limlim []limxxx x x y e e xxxx→+∞→+∞→+∞++=+==lim11x xx ee→+∞=+,1l i m [1]l i m [l n (1)]xx x y x e x x→+∞→+∞-⋅=++-=lim [ln(1)]xx e x →+∞+-=lim [ln (1)]lim ln(1)0xxxx x e e x e --→+∞→+∞+-=+=,于是有斜渐近线:y = x . 故应选(D).【评注】 一般来说,有水平渐近线(即lim x y c →∞=)就不再考虑斜渐近线,但当lim x y →∞不存在时,就要分别讨论x →-∞和x →+∞两种情况,即左右两侧的渐近线。
2007年考研试题及答案A
一、填空题(30分):1. (6分)由晶闸管构成的三相半波可控整流电路,当输入交流电压为t u ωsin 3112=,纯阻性负载且其值为10R =Ω,当控制角45α=时,输出平均电压为 ,输出的功率因数是 。
2.(6分)由晶闸管构成的单相桥式全控整流电路,当输入交流电压为t u ωsin 1412=,负载为反电动势且直流侧串联平波电抗器,已知60V, L=2E R =∞=Ω,,当控制角30α=时,输出平均电压为 ,输出平均电流为 。
3.(3分)缓冲电路( Snubber Circuit ) 的作用是 。
4.(3分)在交流供电系统中,当基波电流为140A I =,各次谐波电流分别为35792A, 1A, 0.5A, 0.2A I I I I ====, 则电流谐波总畸变THD 为 。
5.(3分)在逆变电路中,对于同一桥臂的开关管要采取“先断后通”的方法,也就是死区时间的设定,其目的是 。
6.(6分)单相桥式电压型逆变电路,180导通角,d 560V U =,则输出电压的基波有效值是 ,当只考虑10次以内的谐波电压时,输出电压的有效值是 。
7.(3分)在SPWM (Sinusoidal Pulse Width Modulation )控制的三相逆变电路中,设定的开关管的开关频率是20KHz ,逆变电路输出交流电压的频率为400Hz ,那么SPWM 控制电路中载波频率和调制波频率应分别设置为 和 。
二、简答题(60分):1. (7分)IGBT 在过流及短路过程中,系统如何检测并实施保护的?2. (7分)为什么晶闸管的触发信号通常不使用直流信号? 3. (7分)试说明有关晶闸管和电力晶体管的关断过程?4. (7分)请叙述电力二极管的反向恢复过程,在高频开关电路中,应选择什么型号的二极管?5. (8分)利用晶闸管SCR 构成的简易照明延时开关电路如图1所示,HL 是灯泡,SB 是开关,试分析此电路的工作原理。
2007数学一真题答案解析
硕士研究生入学考试数学一试题及答案解析一、选择题:(本题共10小题,每小题4分,共40分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1) 当0x +→(A) 1- (B) ln(C) 1. (D) 1- [ B ]【分析】 利用已知无穷小量的等价代换公式,尽量将四个选项先转化为其等价无穷小量,再进行比较分析找出正确答案.【详解】 当0x +→时,有1(1)~-=--1~;2111~.22x -= 利用排除法知应选(B). (2) 曲线1ln(1)x y e x=++,渐近线的条数为 (A) 0. (B) 1. (C) 2. (D) 3. [ D ] 【分析】 先找出无定义点,确定其是否为对应垂直渐近线;再考虑水平或斜渐近线。
【详解】 因为01lim[ln(1)]xx e x→++=∞,所以0x =为垂直渐近线;又 1lim [ln(1)]0xx e x→-∞++=,所以y=0为水平渐近线;进一步,21ln(1)ln(1)lim lim[]lim x x x x x y e e x x x x →+∞→+∞→+∞++=+==lim 11xx x e e→+∞=+, 1lim [1]lim [ln(1)]xx x y x e x x→+∞→+∞-⋅=++-=lim[ln(1)]xx e x →+∞+-=lim [ln (1)]lim ln(1)0x xxx x e e x e --→+∞→+∞+-=+=,于是有斜渐近线:y = x . 故应选(D).(3) 如图,连续函数y =f (x )在区间[−3,−2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[−2,0],[0,2]的图形分别是直径为2的上、下半圆周,设0()().xF x f t dt =⎰则下列结论正确的是(A) 3(3)(2)4F F =--. (B) 5(3)(2)4F F =. (C) )2(43)3(F F =-. (D) )2(45)3(--=-F F . [ C ]【分析】 本题考查定积分的几何意义,应注意f (x )在不同区间段上的符号,从而搞清楚相应积分与面积的关系。
2007数学考研真题(一)
2007年硕士研究生入学考试数学一试题及答案解析一、选择题:(本题共10小题,每小题4分,共40分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1) 当0x +→(A) 1- (B) ln(C) 1. (D) 1- [ B ]【分析】 利用已知无穷小量的等价代换公式,尽量将四个选项先转化为其等价无穷小量,再进行比较分析找出正确答案.【详解】 当0x +→时,有1(1)~-=--1~;2111~.22x -= 利用排除法知应选(B). (2) 曲线1ln(1)x y e x=++,渐近线的条数为 (A) 0. (B) 1. (C) 2. (D) 3. [ D ] 【分析】 先找出无定义点,确定其是否为对应垂直渐近线;再考虑水平或斜渐近线。
【详解】 因为01lim[ln(1)]xx e x→++=∞,所以0x =为垂直渐近线;又 1lim [ln(1)]0xx e x→-∞++=,所以y=0为水平渐近线;进一步,21ln(1)ln(1)lim lim[]lim x x x x x y e e x x x x→+∞→+∞→+∞++=+==lim11xx x e e →+∞=+, 1lim [1]lim [ln(1)]x x x y x e x x→+∞→+∞-⋅=++-=lim[ln(1)]xx e x →+∞+-=lim [ln (1)]lim ln(1)0x xxx x e e x e --→+∞→+∞+-=+=,于是有斜渐近线:y = x . 故应选(D).(3) 如图,连续函数y =f (x )在区间[−3,−2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[−2,0],[0,2]的图形分别是直径为2的上、下半圆周,设0()().xF x f t dt =⎰则下列结论正确的是(A) 3(3)(2)4F F =--. (B) 5(3)(2)4F F =. (C) )2(43)3(F F =-. (D) )2(45)3(--=-F F . [ C ]【分析】 本题考查定积分的几何意义,应注意f (x )在不同区间段上的符号,从而搞清楚相应积分与面积的关系。
2007年考研数学一真题及问题详解
2007年考研数学一真题一、选择题(110小题,每小题4分,共40分。
下列每题给出的四个选项中,只有一个选项是符合题目要求的。
)(1)当时,与等价的无穷小量是(A) (B)(C) (D)【答案】B。
【解析】当时几个不同阶的无穷小量的代数和,其阶数由其中阶数最低的项来决定。
综上所述,本题正确答案是B。
【考点】高等数学—函数、极限、连续—无穷小量的性质及无穷小量的比较(2)曲线渐近线的条数为(A)0 (B)1(C)2 (D)3【答案】D。
【解析】由于∞,则是曲线的垂直渐近线;又∞∞∞∞∞所以是曲线的水平渐近线;斜渐近线:由于∞一侧有水平渐近线,则斜渐近线只可能出现在∞一侧。
∞∞∞∞∞∞∞∞∞则曲线有斜渐近线,故该曲线有三条渐近线。
综上所述,本题正确答案是D。
【考点】高等数学—一元函数微分学—函数图形的凹凸性、拐点及渐近线(3)如图,连续函数在区间上的图形分别是直径为1的上、下半圆周,在区间上的图形分别是直径为2的下、上半圆周,设,则下列结论正确的是(A)(B)(C)(D)【答案】C。
【解析】【方法一】四个选项中出现的在四个点上的函数值可根据定积分的几何意义确定则【方法二】由定积分几何意义知,排除(B)又由的图形可知的奇函数,则为偶函数,从而显然排除(A)和(D),故选(C)。
综上所述,本题正确答案是C。
【考点】高等数学—一元函数积分学—定积分的概念和基本性质,定积分的应用(4)设函数在处连续,下列命题错误..的是(A)若存在,则(B)若存在,则(C) 若存在,则′存在(D) 若存在,则′存在【答案】D。
【解析】(A):若存在,因为,则,又已知函数在处连续,所以,故,(A)正确;(B):若存在,则,则,故(B)正确。
(C)存在,知,则′则′存在,故(C)正确(D)存在,不能说明存在例如在处连续,存在,但是′不存在,故命题(D)不正确。
综上所述,本题正确答案是D。
【考点】高等数学—一元函数微分学—导数和微分的概念(5)设函数在∞内具有二阶导数,且′′,令,则下列结论正确的是(A)若,则必收敛 (B)若,则必发散(C)若,则必收敛 (D)若,则必发散【答案】D。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【育明教育】中国考研考博专业课辅导第一品牌育明教育官方网站:
12007年中山大学高等数学A 考研真题详解
【育明教育】中国考研考博专业课辅导第一品牌育明教育官方网站:
2备考计划走好每个考研的每一步,让梦想越来越近!考研,即“参加硕士研究生入学考试”之意。
其英文表述是“Take part in the entrance exams forpostgraduate schools ”。
考研首先要符合国家标准,其次按照程序:与学校联系、先期准备、报名、初试、调剂、复试、复试调剂、录取、毕业生就业、其他等方面依次进行。
中国教育在线考研频道为广大准备考研的学子总结了一些必要的考研常识,希望对准备考研的同学有所帮助。
准备阶段(2014年3月之前)
1、搜集考研资料,评估自身实力,选择专业、院校,确定考研目标。
2、到论坛上看大家对各类考研复习资料的评价,购买复习书籍和资料。
3、根据往届考研经验,结合自己情况,制定一个整体复习计划。
4、参加辅导班考研讲座,不一定报班,但会获取有用信息【详情】基础阶段(2014年3月-6月)复习要全面而基础,不求快,只求掌握好基础,不要急着做模拟题。
英语:英语主要是复习单词和长难句的阶段。
单词要复习两至三遍。
数学:对课本进行学习。
每复习完一章都要配合适当练习题。
专业课:通读专业课本阶段。
本着"把薄书读厚"原则,熟悉课本的体系构架。
[详情]
提高阶段(2014年7月-8月)
关注考研大纲,准备最新的辅导书。
英语:重点研习历年真题,做阅读和长难句。
单词仍需复习但不是重点。
数学:进行第二轮复习,开始集中做习题,弄懂每一题。
专业课:开始做专业课的练习、模拟题还有真题。
扩充书本。
政治:开始着手复习,政治书看一遍,理解里面的概念。
[详情]
强化阶段(2014年9月-10月)
前段复习的总结、梳理、查缺补漏。
英语:进一步研究真题,摸清思路加强阅读练习,每周练习一篇作文。
数学:建立数学框架体系,融会贯通。
通过做题,加深概念定理的理解。
专业课:把专业课课本的脉络整理出来记在课本上,要用自己的理解完成。
政治:分章看书分章做题,吃准概念。
熟悉政治的整个知识结构。
[详情]
冲刺阶段(2014年11月-考前一周)
上午数学和政治,下午英语和专业课。
英语:做冲刺模拟题,保证做题的时间和保持感觉,总结作文经验。
【育明教育】中国考研考博专业课辅导第一品牌育明教育官方网站:
3数学:数学查漏补缺。
限制时间做模拟题,保持做题感觉。
专业课:按照之前做的笔记,回忆课本回忆细节。
争取做到心中有本课本。
政治:反复看课本,做模拟题,学习答题技巧,提高准确率。
[详情]临考阶段(考前一周)
要多休息,作息时间按照考试来安排。
要保持身体健康,心情愉悦。
2015政治大纲解析
|
马克思主义原理2015考研政治大纲变化分析
科目名称
变化分析马克思主义原理
马原变动共有17处毛泽东思想和中国特色社会理论体系概论2015考研政治大纲变化分析
科目名称
变化分析毛泽东思想和中国特色
社会理论体系概论
毛中特体现十八大变动最大中国近现代史纲要2015考研政治大纲变化分析
科目名称
变化分析中国近现代史纲要
中国近现代史无变化
法律基础和思想道德修养2015考研政治大纲变化分析
科目名称
变化分析法律基础和思想道德修
养思修新增8个知识点
【育明教育】中国考研考博专业课辅导第一品牌育明教育官方网站:
4形势与政策2015考研政治大纲变化分析
科目名称
变化分析
形势与政策
5
【育明教育】中国考研考博专业课辅导第一品牌育明教育官方网站:。