运放_原理_选择方法

合集下载

运放的原理

运放的原理

运放的工作原理解析与特性分析
运放(Operational Amplifier,简称Op-Amp)是一种重要的电子器件,常用于模拟电路和信号处理中。

其原理基于差分放大器和反馈机制,以下是运放的基本工作原理:
1.差分放大器:
运放的核心是差分放大器,由两个输入端和一个输出端组成。

两个输入端分别为非反相输入端(+)和反相输入端(-)。

当差分输入信号作用于运放时,输出端会放大并输出差分信号的放大倍数。

2.高增益:
运放具有非常高的开环增益,通常可以达到几十至几百万倍,这意味着即使输入信号非常微弱,运放也能够将其放大到较大的幅度。

3.反馈机制:
运放的输出信号可以通过反馈电路回馈到输入端,实现反馈控制。

负反馈是最常用的反馈方式,其中输出信号与输入信号之间的差异被反馈回运放的反相输入端。

通过适当选择反馈电路的元件值,可以调节运放的增益、频率响应、稳定性和线性性能。

4.输入阻抗和输出阻抗:
运放具有高输入阻抗和低输出阻抗的特性,使其能够与其他电路或设备进行有效的连接和信号传递。

5.基本运算功能:
运放还提供了多种基本运算功能,如加法、减法、乘法、积分和微分等,这些功能可以通过适当的电路连接和反馈实现。

总的来说,运放的工作原理是通过差分放大器和反馈机制,将输入信号放大并以精确控制的方式输出,以满足各种电路和信号处理的需求。

运算放大器工作原理与选择(附常用运放型号)

运算放大器工作原理与选择(附常用运放型号)

运算放大器工作原理与选择(附常用运放型号)1.模拟运放的分类及特点模拟运算放大器从诞生至今,已有40多年的历史了。

最早的工艺是采用硅NPN工艺,后来改进为硅NPN-PNP工艺(后面称为标准硅工艺)。

在结型场效应管技术成熟后,又进一步的加入了结型场效应管工艺。

当MOS管技术成熟后,特别是CMOS技术成熟后,模拟运算放大器有了质的飞跃,一方面解决了低功耗的问题,另一方面通过混合模拟与数字电路技术,解决了直流小信号直接处理的难题。

经过多年的发展,模拟运算放大器技术已经很成熟,性能曰臻完善,品种极多。

这使得初学者选用时不知如何是好。

为了便于初学者选用,本文对集成模拟运算放大器采用工艺分类法和功能/性能分类分类法等两种分类方法,便于读者理解,可能与通常的分类方法有所不同。

1.1.根据制造工艺分类根据制造工艺,目前在使用中的集成模拟运算放大器可以分为标准硅工艺运算放大器、在标准硅工艺中加入了结型场效应管工艺的运算放大器、在标准硅工艺中加入了MOS工艺的运算放大器。

按照工艺分类,是为了便于初学者了解加工工艺对集成模拟运算放大器性能的影响,快速掌握运放的特点。

标准硅工艺的集成模拟运算放大器的特点是开环输入阻抗低,输入噪声低、增益稍低、成本低,精度不太高,功耗较高。

这是由于标准硅工艺的集成模拟运算放大器内部全部采用NPN-PNP管,它们是电流型器件,输入阻抗低,输入噪声低、增益低、功耗高的特点,即使输入级采用多种技术改进,在兼顾起啊挺能的前提下仍然无法摆脱输入阻抗低的问题,典型开环输入阻抗在1M欧姆数量级。

为了顾及频率特性,中间增益级不能过多,使得总增益偏小,一般在80~110dB之间。

标准硅工艺可以结合激光修正技术,使集成模拟运算放大器的精度大大提高,温度漂移指标目前可以达到0.15ppm。

通过变更标准硅工艺,可以设计出通用运放和高速运放。

典型代表是LM324。

在标准硅工艺中加入了结型场效应管工艺的运算放大器主要是将标准硅工艺的集成模拟运算放大器的输入级改进为结型场效应管,大大提高运放的开环输入阻抗,顺带提高通用运放的转换速度,其它与标准硅工艺的集成模拟运算放大器类似。

运放的基本原理(一)

运放的基本原理(一)

运放的基本原理(一)运放的基本介绍1.运放的定义2.运放的分类3.运放的主要特点1. 运放的定义运算放大器(Operational Amplifier),简称运放,是一种专门用于放大和处理电信号的电路元件。

它主要由差分放大器、电压放大器和输出级组成。

2. 运放的分类运放可以根据输入输出方式、工作状态和封装形式进行分类。

2.1 输入输出方式•单端输入单端输出:输入信号只与一个输入端相连,输出信号从一个输出端取出。

•双端输入单端输出:输入信号分别与两个输入端相连,输出信号从一个输出端取出。

•差分输入单端输出:输入信号分别与两个输入端相连,输出信号从一个输出端取出。

•差分输入差分输出:输入信号分别与两个输入端相连,输出信号由两个输出端取出。

2.2 工作状态•直流耦合运放:直流耦合运放可以放大直流信号和低频交流信号。

•交流耦合运放:交流耦合运放只放大交流信号。

2.3 封装形式•DIP封装:运放的引脚排列成一行,适合手工插拔。

•SOP封装:运放的引脚排列成两行,适合机器自动焊接。

3. 运放的主要特点3.1 超高增益运放具有超高的增益,通常可达到几万倍甚至百万倍,使得微弱的输入信号能够得到放大,提高信号质量。

3.2 宽带频率响应运放具有宽带频率响应,能够放大高频信号,使得输入信号的各个频率成分能够得到放大。

3.3 大输入阻抗和小输出阻抗运放具有大的输入阻抗,可以减小外部电路对运放输入信号的影响。

同时,运放具有小的输出阻抗,可以驱动负载电阻,输出较大功率的信号。

3.4 可调节增益运放的放大倍数可以通过反馈电阻的调节进行控制,从而实现对输出信号的精确调节。

3.5 低失真和高稳定性运放具有低失真和高稳定性的特点,可以保证输入信号的准确放大,减少误差。

综上所述,运放作为一种重要的电路元件,具有超高增益、宽带频率响应、大输入阻抗和小输出阻抗、可调节增益、低失真和高稳定性的特点,被广泛应用于各种电子设备中。

4. 运放的基本原理运放的基本原理是基于差分放大器的工作原理。

运放 参数

运放 参数

运放参数1. 什么是运放运放(Operational Amplifier),又称作放大器,是一种专门用于放大信号的电子元件。

它是现代电子技术中最重要的基本元器件之一,被广泛应用于模拟电路中。

运放具有高增益、宽带宽、低输入阻抗和高输入阻抗等特点。

2. 运放的工作原理运放的工作原理基于反馈机制。

它由一个差分输入级和一个差动输出级组成。

通过调整反馈电阻的值,可以使运放处于线性放大区域,从而实现对输入信号的放大。

运放具有两个输入端和一个输出端。

其中,非反相输入端(+)和反相输入端(-)之间的输入差值称为差分模式输入电压,反相输入端与地之间的电压称为共模输入电压。

3. 运放的主要参数运放具有许多重要的参数,下面将介绍其中一些常见的参数:(1)增益(Gain)增益是指运放对输入信号放大的程度。

运放的增益通常用一个倍数表示,如20倍、100倍等。

增益可以是正增益或负增益,也可以是可调节的。

增益决定了输出信号与输入信号之间的比例关系。

(2)带宽(Bandwidth)带宽是指运放能够放大的频率范围。

运放的带宽定义为增益下降3dB(-3dB)的频率。

带宽越宽,运放在高频信号放大方面的性能就越好。

(3)输入偏置电压(Input Offset Voltage)输入偏置电压是指运放的输入端之间的电压差,当没有输入信号时,输出电压也不为零。

输入偏置电压的存在会引起输出误差。

(4)输入偏置电流(Input Bias Current)输入偏置电流是指运放输入端的电流偏置,通常以纳安安(nA)为单位。

它会引起输入电压漂移。

(5)输入失调电流(Input Offset Current)输入失调电流指运放输入端的电流不对称性,也以纳安安(nA)为单位。

它和输入偏置电流一样,会引起输入电压漂移。

(6)共模抑制比(Common Mode Rejection Ratio)共模抑制比是指运放对共模信号(即输入信号中相同部分)的抑制能力。

它通常以分贝(dB)为单位表示。

运放的原理与使用

运放的原理与使用

运放的原理与使用运放,即运算放大器,是一种广泛应用于电子电路中的集成电路元件。

它的主要功能是将输入信号放大到合理的幅度,以便用于各种运算。

运放的原理和使用可以通过以下几个方面进行详细说明。

一、运放的基本电路结构运放的基本电路结构由差动输入级、单端放大级和输出级组成。

差动输入级用于接收输入信号,并将信号转换为电流。

单端放大级将电流信号转换为电压信号,并放大到合适的幅度。

输出级通过负反馈机制将输出信号与输入信号进行比较,以保持输出信号与输入信号的一致性。

二、运放的放大特性运放具有很高的放大增益和带宽产品,可以将输入信号放大到较大的幅度。

同时,运放的输入阻抗很高,输出阻抗很低,可以减小信号的失真和干扰。

三、运放的运算功能运放可以实现各种运算功能,包括放大、求和、积分、微分等。

通过调整运放的反馈电阻和电容,可以得到不同的运算结果。

四、运放的使用在实际应用中,运放可以作为放大器、比较器、滤波器等电路中的关键元件。

下面分别介绍一些常见的运放应用。

1.放大器运放可以作为电压放大器进行电压信号的放大。

通过选择合适的反馈电阻和电容,可以得到不同的放大倍数和频率响应。

2.比较器运放可以作为比较器进行信号的比较。

通过设置阈值电压,当输入信号超过或低于阈值时,输出高电平或低电平。

3.积分器运放可以通过设置负反馈电容实现积分功能。

当输入信号通过运放时,反馈电容会对信号进行积分,从而得到输出信号。

4.微分器运放可以通过设置负反馈电阻和电容实现微分功能。

当输入信号通过运放时,反馈电容和电阻会对信号进行微分,从而得到输出信号。

5.滤波器运放可以结合电容和电阻构成低通、高通、带通滤波器等。

通过调整电容和电阻的数值,可以实现对不同频率信号的滤波功能。

总之,运放作为一种重要的电子元件,在电路设计中有着广泛的应用。

它的原理和使用方法可以根据具体的应用需求进行调整和优化。

通过合理的选择和配置,可以实现不同的信号处理和运算功能。

运放的原理与应用

运放的原理与应用

运放的原理与应用运算放大器(Operational Amplifier,简称Op Amp)是一种重要的电子器件,它具有高增益、高输入阻抗、低输出阻抗、宽频带等优点,被广泛应用于各种电子电路中。

运算放大器的基本原理是在其反馈回路中产生一个放大倍数非常高(理论上为无穷大)的放大器,从而实现对输入信号的放大,同时保持输出与输入之差为零,称为虚短。

运放的应用非常广泛,如比较器、振荡器、积分器、微分器等。

运放主要由一个差分输入级和一个输出级组成。

差分输入级由一个差动放大器和一个差分对组成。

差动放大器的作用是输入两个信号,通过差分放大将其放大,并将放大后引出的差模信号进一步放大并输出。

差分对是差动放大器的核心部件,由两个晶体管和相应的偏置电路组成。

当两个输入端的电压相等时,差分对将产生一个零输出电压。

输出级通常由一个晶体管、负反馈网络和输出电阻组成。

晶体管的作用是将输入信号放大,在输出电压达到一定阈值时将其输出。

负反馈网络的作用是将输出信号与输入信号进行比较,并通过反馈调节输入信号的放大倍数。

输出电阻用于提供输出电流。

运放的应用非常广泛,下面简要介绍几种常见的应用:2.加法器(Adder):运放可以将多个输入信号相加,并在输出端给出它们的和。

加法器常用于模拟计算、数值处理等应用。

3.积分器(Integrator):运放的负反馈网络中加入电容器,可以将输入信号进行积分。

积分器常用于滤波、频率响应测量等应用。

4.微分器(Differentiator):运放的负反馈网络中加入电容器,可以将输入信号进行微分。

微分器常用于信号处理、频率响应测量等应用。

5.振荡器(Oscillator):通过将运放的输出信号反馈到其非反相输入端,可以产生稳定的振荡信号。

振荡器常用于时钟信号、正弦信号发生器等应用。

6.电压跟随器(Voltage Follower):运放的非反相输入端与输出端相连,可以实现输入信号的缓冲放大。

电压跟随器常用于信号放大、阻抗匹配等应用。

运放的使用及滤波器设计

运放的使用及滤波器设计

运放的使用及滤波器设计运算放大器(Operational Amplifier,简称Op-Amp)是一种非常常见的电子元器件,常用于放大电压信号和作为各种信号处理电路的基础建设模块。

在本文中,我们将介绍运放的使用和滤波器设计。

一、运放的基本原理及使用1.运放的基本原理2.运放的引脚及使用方法一个典型的运放有八个引脚,包括非反相输入端(+)、反相输入端(-)、输出端、电源正极、电源负极等。

根据需要,我们可以将信号输入到非反相输入端或反相输入端,然后通过输出端输出放大后的信号。

通常,我们需要给运放提供两个电源电压,一个是正极供电,一个是负极供电。

正常工作时,两个电源电压的差值应该在一定范围内,如±5V。

3.运放的使用运放常用于放大电压信号或作为信号处理电路的关键组件。

它可以用于音频放大器、滤波器、信号源和控制系统等各种应用。

滤波器是一种能够选择性地通过或抑制特定频率组成的信号的电路。

根据其特性,滤波器可以分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器。

1.低通滤波器低通滤波器(Low-Pass Filter)可以通过低频信号而阻止高频信号。

在低通滤波器中,希望通过的信号频率被称为截止频率。

常见的低通滤波器电路有RC低通滤波器和RLC低通滤波器等。

2.高通滤波器高通滤波器(High-Pass Filter)可以通过高频信号而阻止低频信号。

在高通滤波器中,希望通过的信号频率被称为截止频率。

常见的高通滤波器电路有RC高通滤波器和RLC高通滤波器等。

3.带通滤波器带通滤波器(Band-Pass Filter)可以通过一段特定频率范围的信号而阻止其他频率的信号。

在带通滤波器中,希望通过的信号频率范围被称为通带。

常见的带通滤波器电路有LC带通滤波器和RLC带通滤波器等。

4.带阻滤波器带阻滤波器(Band-Stop Filter)可以通过除一段特定频率范围的信号而传输其他频率的信号。

在带阻滤波器中,希望阻止的信号频率范围被称为阻带。

运放工作原理

运放工作原理

运放工作原理运放(Operational Amplifier)是一种重要的电子器件,广泛应用于模拟电路和信号处理领域。

它具有高增益、高输入阻抗、低输出阻抗等特点,能够对输入信号进行放大、滤波、积分、微分等处理,因此在电子技术中起着非常重要的作用。

首先,我们来了解一下运放的工作原理。

运放是一种差分放大器,它由多个晶体管和电阻器组成。

在运放的内部结构中,有一个差分输入级和一个共模放大级。

差分输入级能够将输入信号进行放大,并将放大后的信号送入共模放大级进行进一步放大,最终输出放大后的信号。

同时,运放还具有负反馈回路,能够稳定放大倍数和输出电压,提高电路的稳定性和线性度。

运放的工作原理可以用简单的数学模型来描述。

假设运放的输入端电压分别为V+和V-,放大倍数为A,则输出电压可以表示为Vo=A(V+-V-)。

其中,V+和V-分别代表运放的正负输入端电压,Vo代表输出端电压。

通过控制V+和V-的电压,可以实现对输出信号的精确控制和调节。

在实际应用中,运放通常需要外部反馈电路的配合才能发挥其作用。

常见的反馈电路有电压反馈和电流反馈两种。

电压反馈是将部分输出电压通过反馈电阻连接到运放的负输入端,从而控制输出电压;电流反馈则是将部分输出电流通过反馈电阻连接到运放的负输入端,从而控制输出电流。

这些反馈电路能够有效地调节运放的增益和频率特性,使其更好地适应各种应用场合。

除了基本的放大功能,运放还可以通过外部电路实现一些特殊的功能。

比如,将运放与电容器和电阻器组成的电路相结合,可以实现积分和微分运算,用于信号的滤波和微分处理。

此外,运放还可以与其他器件组成比较器、振荡器等特殊电路,用于实现各种功能。

总的来说,运放是一种非常重要的电子器件,它的工作原理基于差分放大器和负反馈原理。

通过外部电路的配合,可以实现各种功能,包括放大、滤波、积分、微分、比较等。

在实际应用中,我们需要根据具体的需求选择合适的运放型号,并结合合适的外部电路,才能发挥其最大的作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

运算放大器1.模拟运放的分类及特点经过多年的发展,模拟运算放大器技术已经很成熟,性能曰臻完善,品种极多。

这使得初学者选用时不知如何是好。

为了便于初学者选用,本文对集成模拟运算放大器采用工艺分类法和功能/性能分类分类法等两种分类方法,便于读者理解,可能与通常的分类方法有所不同。

1.1.根据制造工艺分类根据制造工艺,目前在使用中的集成模拟运算放大器可以分为标准硅工艺运算放大器、在标准硅工艺中加入了结型场效应管工艺的运算放大器、在标准硅工艺中加入了MOS工艺的运算放大器。

按照工艺分类,是为了便于初学者了解加工工艺对集成模拟运算放大器性能的影响,快速掌握运放的特点。

标准硅工艺的集成模拟运算放大器的特点是开环输入阻抗低,输入噪声低、增益稍低、成本低,精度不太高,功耗较高。

这是由于标准硅工艺的集成模拟运算放大器内部全部采用NPN-PNP管,它们是电流型器件,输入阻抗低,输入噪声低、增益低、功耗高的特点,即使输入级采用多种技术改进,在兼顾起啊挺能的前提下仍然无法摆脱输入阻抗低的问题,典型开环输入阻抗在1M欧姆数量级。

为了顾及频率特性,中间增益级不能过多,使得总增益偏小,一般在80~110dB 之间。

标准硅工艺可以结合激光修正技术,使集成模拟运算放大器的精度大大提高,温度漂移指标目前可以达到0.15ppm。

通过变更标准硅工艺,可以设计出通用运放和高速运放。

典型代表是LM324。

在标准硅工艺中加入了结型场效应管工艺的运算放大器主要是将标准硅工艺的集成模拟运算放大器的输入级改进为结型场效应管,大大提高运放的开环输入阻抗,顺带提高通用运放的转换速度,其它与标准硅工艺的集成模拟运算放大器类似。

典型开环输入阻抗在1000M欧姆数量级。

典型代表是TL084。

在标准硅工艺中加入了MOS场效应管工艺的运算放大器分为三类,一类是是将标准硅工艺的集成模拟运算放大器的输入级改进为MOS场效应管,比结型场效应管大大提高运放的开环输入阻抗,顺带提高通用运放的转换速度,其它与标准硅工艺的集成模拟运算放大器类似。

典型开环输入阻抗在10^12欧姆数量级。

典型代表是CA3140。

第二类是采用全MOS场效应管工艺的模拟运算放大器,它大大降低了功耗,但是电源电压降低,功耗大大降低,它的典型开环输入阻抗在10^12欧姆数量级。

第三类是采用全MOS场效应管工艺的模拟数字混合运算放大器,采用所谓斩波稳零技术,主要用于改善直流信号的处理精度,输入失调电压可以达到0.01uV,温度漂移指标目前可以达到0.02ppm。

在处理直流信号方面接近理想运放特性。

它的典型开环输入阻抗在10^12欧姆数量级。

典型产品是ICL7650。

1.2.按照功能/性能分类本分类方法参考了《中国集成电路大全》集成运算放大器。

按照功能/性能分类,模拟运算放大器一般可分为通用运放、低功耗运放、精密运放、高输入阻抗运放、高速运放、宽带运放、高压运放,另外还有一些特殊运放,例如程控运放、电流运放、电压跟随器等等。

实际上由于为了满足应用需要,运放种类极多。

本文以上述简单分类法为准。

需要说明的是,随着技术的进步,上述分类的门槛一直在变化。

例如以前的LM108最初是归入精密运放类,现在只能归入通用运放了。

另外,有些运放同时具有低功耗和高输入阻抗,或者与此类似,这样就可能同时归入多个类中。

通用运放实际就是具有最基本功能的最廉价的运放。

这类运放用途广泛,使用量最大。

低功耗运放是在通用运放的基础上大降低了功耗,可以用于对功耗有限制的场所,例如手持设备。

它具有静态功耗低、工作电压可以低到接近电池电压、在低电压下还能保持良好的电气性能。

随着MOS技术的进步,低功耗运放已经不是个别现象。

低功耗运放的静态功耗一般低于1mW。

精密运放是指漂移和噪声非常低、增益和共模抑制比非常高的集成运放,也称作低漂移运放或低噪声运放。

这类运放的温度漂移一般低于1uV/摄氏度。

由于技术进步的原因,早期的部分运放的失调电压比较高,可能达到1mV;现在精密运放的失调电压可以达到0.1mV;采用斩波稳零技术的精密运放的失调电压可以达到0.005mV。

精密运放主要用于对放大处理精度有要求的地方,例如自控仪表等等。

高输入阻抗运放一般是指采用结型场效应管或是MOS管做输入级的集成运放,这包括了全MOS管做的集成运放。

高输入阻抗运放的输入阻抗一般大于109欧姆。

作为高输入阻抗运放的一个附带特性就是转换速度比较高。

高输入阻抗运放用途十分广泛,例如采样保持电路、积分器、对数放大器、测量放大器、带通滤波器等等。

高速运放是指转换速度较高的运放。

一般转换速度在100V/us以上。

高速运放用于高速AD/DA转换器、高速滤波器、高速采样保持、锁相环电路、模拟乘法器、机密比较器、视频电路中。

目前最高转换速度已经可以做到6000V/us。

宽带运放是指-3dB带宽(BW)比通用运放宽得多的集成运放。

很多高速运放都具有较宽的带宽,也可以称作高速宽带运放。

这个分类是相对的,同一个运放在不同使用条件下的分类可能有所不同。

宽带运放主要用于处理输入信号的带宽较宽的电路。

高压运放是为了解决高输出电压或高输出功率的要求而设计的。

在设计中,主要解决电路的耐压、动态范围和功耗的问题。

高压运放的电源电压可以高于±20VDC,输出电压可以高于±20VDC。

当然,高压运放可以用通用运放在输出后面外扩晶体管/MOS管来代替。

2.运放的主要参数本节以《中国集成电路大全》集成运算放大器为主要参考资料,同时参考了其它相关资料。

集成运放的参数较多,其中主要参数分为直流指标和交流指标。

其中主要直流指标有输入失调电压、输入失调电压的温度漂移(简称输入失调电压温漂)、输入偏置电流、输入失调电流、输入偏置电流的温度漂移(简称输入失调电流温漂)、差模开环直流电压增益、共模抑制比、电源电压抑制比、输出峰-峰值电压、最大共模输入电压、最大差模输入电压。

主要交流指标有开环带宽、单位增益带宽、转换速率SR、全功率带宽、建立时间、等效输入噪声电压、差模输入阻抗、共模输入阻抗、输出阻抗。

2.1直流指标输入失调电压VIO:输入失调电压定义为集成运放输出端电压为零时,两个输入端之间所加的补偿电压。

输入失调电压实际上反映了运放内部的电路对称性,对称性越好,输入失调电压越小。

输入失调电压是运放的一个十分重要的指标,特别是精密运放或是用于直流放大时。

输入失调电压与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入失调电压在±1~10mV之间;采用场效应管做输入级的,输入失调电压会更大一些。

对于精密运放,输入失调电压一般在1mV以下。

输入失调电压越小,直流放大时中间零点偏移越小,越容易处理。

所以对于精密运放是一个极为重要的指标。

输入失调电压的温度漂移(简称输入失调电压温漂)αVIO:输入失调电压的温度漂移定义为在给定的温度范围内,输入失调电压的变化与温度变化的比值。

这个参数实际是输入失调电压的补充,便于计算在给定的工作范围内,放大电路由于温度变化造成的漂移大小。

一般运放的输入失调电压温漂在±10~20μV/℃之间,精密运放的输入失调电压温漂小于±1μV/℃。

输入偏置电流IIB:输入偏置电流定义为当运放的输出直流电压为零时,其两输入端的偏置电流平均值。

输入偏置电流对进行高阻信号放大、积分电路等对输入阻抗有要求的地方有较大的影响。

输入偏置电流与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入偏置电流在±10nA~1μA之间;采用场效应管做输入级的,输入偏置电流一般低于1nA。

或更大时),输入失调电流对精度的影响可能超过输入失调电压对精度的影响。

输入失调电流越小,直流放大时中间零点偏移越小,越容易处理。

所以对于精密运放是一个极为重要的指标。

Ω输入失调电流IIO:输入失调电流定义为当运放的输出直流电压为零时,其两输入端偏置电流的差值。

输入失调电流同样反映了运放内部的电路对称性,对称性越好,输入失调电流越小。

输入失调电流是运放的一个十分重要的指标,特别是精密运放或是用于直流放大时。

输入失调电流大约是输入偏置电流的百分之一到十分之一。

输入失调电流对于小信号精密放大或是直流放大有重要影响,特别是运放外部采用较大的电阻(例如10k输入失调电流的温度漂移(简称输入失调电流温漂):输入偏置电流的温度漂移定义为在给定的温度范围内,输入失调电流的变化与温度变化的比值。

这个参数实际是输入失调电流的补充,便于计算在给定的工作范围内,放大电路由于温度变化造成的漂移大小。

输入失调电流温漂一般只是在精密运放参数中给出,而且是在用以直流信号处理或是小信号处理时才需要关注。

差模开环直流电压增益:差模开环直流电压增益定义为当运放工作于线性区时,运放输出电压与差模电压输入电压的比值。

由于差模开环直流电压增益很大,大多数运放的差模开环直流电压增益一般在数万倍或更多,用数值直接表示不方便比较,所以一般采用分贝方式记录和比较。

一般运放的差模开环直流电压增益在80~120dB之间。

实际运放的差模开环电压增益是频率的函数,为了便于比较,一般采用差模开环直流电压增益。

共模抑制比:共模抑制比定义为当运放工作于线性区时,运放差模增益与共模增益的比值。

共模抑制比是一个极为重要的指标,它能够抑制差模输入==模干扰信号。

由于共模抑制比很大,大多数运放的共模抑制比一般在数万倍或更多,用数值直接表示不方便比较,所以一般采用分贝方式记录和比较。

一般运放的共模抑制比在80~120dB之间。

电源电压抑制比:电源电压抑制比定义为当运放工作于线性区时,运放输入失调电压随电源电压的变化比值。

电源电压抑制比反映了电源变化对运放输出的影响。

目前电源电压抑制比只能做到80dB左右。

所以用作直流信号处理或是小信号处理模拟放大时,运放的电源需要作认真细致的处理。

当然,共模抑制比高的运放,能够补偿一部分电源电压抑制比,另外在使用双电源供电时,正负电源的电源电压抑制比可能不相同。

负载时,输出峰-峰值电压接近到电源电压的50mV以内,所以称为满幅输出运放,又称为轨到轨(raid-to-raid)运放。

需要注意的是,运放的输出峰-峰值电压与负载有关,负载不同,输出峰-峰值电压也不同;运放的正负输出电压摆幅不一定相同。

对于实际应用,输出峰-Ω输出峰-峰值电压:输出峰-峰值电压定义为,当运放工作于线性区时,在指定的负载下,运放在当前大电源电压供电时,运放能够输出的最大电压幅度。

除低压运放外,一般运放的输出输出峰-峰值电压大于±10V。

一般运放的输出峰-峰值电压不能达到电源电压,这是由于输出级设计造成的,现代部分低压运放的输出级做了特殊处理,使得在10k峰值电压越接近电源电压越好,这样可以简化电源设计。

相关文档
最新文档