一元一次方程(教学大赛)
一元一次方程应用名师公开课获奖课件百校联赛一等奖课件

答:卖这两件衣服总旳亏损了8元。
销售问题
1.填空: (1)某商品原来每件旳零售价是50元,现每
行程问题
例1.A、B两地相距230千米,甲队从A地出发两小 时后,乙队从B地出发与甲相向而行,乙队出发20 小时后相遇,已知乙旳速度比甲旳速度每小时快1 千米,求甲、乙旳速度各是多少?
分析:设:甲速为x千米/时,则乙速为(x+1)千米/时
230KM
AC
D
B
甲2小时所走 旳旅程 2x
甲20小时所走 乙20小时所走
25 60
×48 B
乙走 X
小时所走旳旅程
72x
C
相等关系:
甲走旳旅程=乙走旳旅程
课练二、(只列方程不解)
行程问题
甲、乙两位同学练习赛跑,甲每秒跑7米,乙每秒跑6.5 米.(1)假如甲让乙先跑5米,几秒钟后甲能够追上 乙? (2)假如甲让乙先跑1秒,几秒钟后甲能够追上 乙?
解:(1)设x秒后甲能够追上乙,根据题意,得
解:设这种凉鞋每双旳成本是x元. 列方程 0.8×(1+0.4)x=15 解,得 x=128 答:这种凉鞋每双旳成本是128元.
销售问题
练习:1、某商场把进价为1980元旳商
品按标价旳八折出售,仍获利10%,
则该商品旳标价为
元;
利润 = 售价-进价
解:设该商品旳标价为x元.打利润x 折率旳=售利进价润价=原价×1x0
110-5x=6x,
11x=110
X=10
22-x=12
答:应安排10名工人生产螺钉,12名工人生产螺母。
七年级《一元一次方程》教学设计(通用6篇)

七年级《一元一次方程》教学设计七年级《一元一次方程》教学设计(通用6篇)作为一名教师,时常需要用到教学设计,教学设计是对学业业绩问题的解决措施进行策划的过程。
教学设计应该怎么写才好呢?以下是小编整理的七年级《一元一次方程》教学设计,欢迎大家分享。
七年级《一元一次方程》教学设计篇1一、教学目标1、通过处理实际问题,让学生体验从算术方法到代数方法是一种进步;2、初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念;3、培养学生获取信息,分析问题,处理问题的能力。
二、教学难点、知识重点1、重点:建立一元一次方程的概念。
2、难点:理解用方程来描述和刻画事物间的相等关系。
三、教学方法讲练结合、注重师生互动。
四、教学准备课件五、教学过程(师生活动)(一)情境引入教师提出教科收第79页的问题,并用多媒体直观演示。
问题1:从视频中你能获得哪些信息?(必要时可以提示学生从时间、路程、速度、四地的排列顺序等方面去考虑。
)教师可以在学生回答的基础上做回顾小结问题2:你会用算术方法求出王家庄到翠湖的距离吗·(当学生列出不同算式时,应让他们说明每个式子的含义)教师可以在学生回答的基础上做回顾小结:1、问题涉及的三个基本物理量及其关系;2、从知的信息中可以求出汽车的速度;3、从路程的角度可以列出不同的算式:问题3:能否用方程的知识来解决这个问题呢?(二)学习新知1、教师引导学生设未知数,并用含未知数的字母表示有关的数量.如果设王家庄到翠湖的路程为x千米,那么王家庄距青山千米.2、教师引导学生寻找相等关系,列出方程.问题1:题目中的“汽车匀速行驶”是什么意思?问题2:汽车在王家庄至青山这段路上行驶的速度该怎样表示?你能表示其他各段路程的车速吗?问题3:根据车速相等,你能列出方程吗?教师根据学生的回答情况进行分析,如:依据“王家庄至青山路段的车速=王家庄至秀水路段的车速”可列方程:依据“王家庄至青山路段的车速=青山至秀水路段的车速”可列方程:3、给出方程的概念,介绍等式、等式的左边、等式的右边等概念.4、归纳列方程解决实际问题的两个步骤:(1)用字母表示问题中的未知数(通常用x,y,z等字母);(2)根据问题中的相等关系,列出方程.(三)举一反三讨论交流1、比较列算式和列方程两种方法的特点.建议用小组讨论的方式进行,可以把学生分成两部分分别归纳两种方法的优缺点,也可以每个小组同时讨论两种方法的优缺点,然后向全班汇报.列算式:只用已知数,表示计算程序,依据是间题中的数量关系;列方程:可用未知数,表示相等关系,依据是问题中的等量关系。
用一元一次方程解决问题市公开课一等奖省优质课获奖课件

x=40
y=75
所以两件衣服进价为40+75=115元,而两件衣服售价是 60+60=120元,进价小于售价,所以两件衣服总盈利5 元.
第7页
请再试一试:
商店这两件进价不一样衣服都卖60元,其中 一件赔本25%,这次交易中要保本,则另一 件需盈利百分之几 ?
分析: 设赔本25%那件衣服进价为y元,它 利润是-0.25y元,则y+(–0.25y)=60 得
y=80 交易要保本售价和进价均为120元,盈利那件 衣服进价为120-80=40,设盈利那件衣服利润 率为x,则:40+40x=60,x=50%.
第8页
列一元一次方程解应用题普通步骤:
①审 ②设 ③列 ④解 ⑤验 ⑥答
第9页
经过本节课学习你有哪些 收获?你还有哪些疑惑?
第10页
1、一个书包进价20元,标价100元,售 价60元,利润是多少元? 2、商品标价200元,九折出售,卖价是 多少元? 3、一只笔降价30%是7元,这只笔原来 标价是多少元?
第2页
商品销售问题里有哪些量?等量关系有哪些?
进价、利润、利润率、标价 、售价
售价=进价+利润 利润=进价×利润率 售价=进价(1+利润率) 售价=标价×(折数/10)
第3页
探究:
某商店在某一时间以每 件60元价格卖出两件衣服, 其中一件盈利25﹪,另一 件亏损25﹪,卖这两件衣 服总是盈利还是亏损,或 是不盈不亏?
想一想:
1.盈利率、亏损率指是什么? 2.这一问题情境中有哪些已知
量?哪些未知量?怎样设未 知
数?相等关系是什么?
3.怎样判断是盈是亏?
¥60
¥60
解得 x=48
一元一次方程的应用教案一等奖

一元一次方程的应用教案一等奖1、一元一次方程的应用教案一等奖教学目标:1、使学生会列一元一次方程解有关应用题。
2、培养学生分析解决实际问题的能力。
复习引入:1、在小学里我们学过有关工程问题的应用题,这类应用题中一般有工作总量、工作时间、工作效率这三个量。
这三个量的关系是:(1)__________ (2)_________ (3)_________人们常规定工程问题中的工作总量为______。
2、由以上公式可知:一件工作,甲用a小时完成,则甲的工作量可看成________,工作时间是________,工作效率是_______。
若这件工作甲用6小时完成,则甲的工作效率是_______。
讲授新课:1、例题讲解:一件工作,甲单独做20小时完成,乙单独做12小时完成。
问:甲乙合做,需几小时完成这件工作?(1)首先由一名至两名学生阅读题目。
(2)引导Ⅰ:这道题目的`已知条件是什么?Ⅰ:这道题目要求什么问题?Ⅰ:这道题目的相等关系是什么?(3)由一学生口头设出求知数,并列出方程,师生共同解答;同时教师在黑板上写出解题过程,形成板书。
2、练习:有一个蓄水池,装有甲、乙、丙三个进水管,单独开甲管,6分钟可注满空水池;单独开乙管,12分钟可注满空水池;单独开丙管,18分钟可注满空水池,如果甲、乙、丙三管齐开,需几分钟可注满空水池?此题的处理方法:Ⅰ:先由一名学生阅读题目;Ⅰ:然后由两名学生板演;2、一元一次方程的应用教案一等奖教学目标:一、知识与技能:1、熟练运用列方程解应用题的一般步骤列方程;2、让学生学会列一元一次方程解决与行程有关的实际问题。
二、过程与方法:1、借助“线段图”分析行程问题中的数量关系,从而将实际问题转化为数学问题,体会转化等数学思想方法;2、通过列方程解决实际问题,培养学生发现问题、提出问题的能力。
激发学生的求知欲。
三情感态度与价值观:1、在列一元一次方程解决与行程有关的实际问题过程中,让学生感知生活中的实际问题与数学的关系。
5.1 第1课时 一元一次方程 精品教案(大赛一等奖作品)

5.1 认识一元一次方程第1课时一元一次方程【学习目标】1、知道什么是方程,会判断一个数学式子是算式还是方程;2、能根据简单的实际问题列一元一次方程,并了解其步骤;3、会判断方程的解。
【学习重点】一元一次方程的含义。
【学习难点】根据简单的实际问题列一元一次方程。
课前自主学习(查阅教材和相关资料,完成下列内容)考点一.方程的概念1、含有的等式叫方程。
考点二.一元一次方程的概念1.只含有个未知数,未知数的次数都是次的方程,叫做一元一次方程。
考点三.列方程遇到实际问题时,要先设字母表示 ,然后根据问题中的 ,最后写出含有未知数的 ,就能列出方程.归纳:列方程解实际问题的步骤:第一步: ,第二步: ,第三步: .考点四.解方程及方程的解的含义解方程就是求出使方程中等号左右两边的的值,这个值就是方程的 . 【重要思想】1.类比思想:算式与方程的对比2.转化思想:把实际问题转化为数学问题,特别是方程问题.学练提升问题1:判断下列数学式子X+1, 0.5x-x, 2x-3=7, 3x+2=2x-5 , 2x2+3x-8=0,x+2y=7.是方程有 ,是一元一次方程有【规律总结】【同步测控】1.自己编造两个方程: , .2.自己编造两个一元一次方程: , .问题2.根据问题列方程:1.用一根长24cm的铁丝未成一个正方形,正方形的变长是多少?2.一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间他到规定的检修时间2450小时?【规律总结】【同步测控】根据下列问题,设未知数,列出方程1.环形跑道一周长400m,沿跑道跑多少周,可以跑3000m?2.甲种铅笔每只0.3元,乙种铅笔铅笔每只0.6元,用9元钱买了两种铅笔共20支,两种铅笔各买了多少支?【规律总结】【同步测控】1.一个梯形的下底比上底多2cm,高是5cm,面积是40cm2,求上底.2.x的2倍于10的和等于18;3.比b的一半小7的数等于a与b的和;4.把1400元奖学金按照两种奖项将给22名学生,其中一等奖每人200元,二等奖每人50元,获得一等奖的学生多少人?问题三、判断方程的根1.判断下列各数X=1,x=2,x=-1,x=0.5.那个是方程2x+3=5x-3的解?2.当x= 时,方程3x-5=1 两边相等?1、了解等式的两条基本性质,并会用数学式子表示;2、能利用等式的基本性质解简单的方程; 【学习重点】理解等式的两条基本性质。
全国初中数学青年教师优秀课一等奖《一元一次方程》教学设计

《一元一次方程》教学设计一、内容与内容解析继第四章《代数式》之后,第五章《一元一次方程》内容仍属于《义务教育课程标准(2022年版)》中的“数与代数”领域.从数学学科本身看,方程是代数学的核心内容,正是对于它的研究推动了整个代数的发展.从代数关于方程的分类看,一元一次方程是最基本的代数方程,对它的理解和掌握对于后续内容(其他的方程以及不等式、函数等)的学习具有重要的基础,这是因为这些后续内容的学习和一元一次方程的学习有很强的关联性和可类比性.本章内容是对一元一次方程作更系统、更深入的讨论,所涉及的实际问题要比以前学习的问题更复杂些,更强调模型化思想的渗透,对方程的解法更注重算理.一元一次方程的概念和解法贯穿全章,是本章的教学重点.本节课学习内容主要包括:(1)一元一次方程的概念;(2)一元一次方程的解(根)的概念;(3)判断一个数是否是一元一次方程的解;(4)尝试检验法求一元一次方程的解.由此可见,一元一次方程作为章节起始课,承载着单元知识引领作用.基于教学内容特殊的地位和作用,本节课的教学重点确定为:1. 一元一次方程的概念;2. 尝试、检验法解一元一次方程的思想和方法.二、目标与目标解析1. 进一步认识方程,感悟从算式到方程是数学的进步.2. 经历“把实际问题抽象成数学问题”的过程,体会方程是刻画现实世界的一种有效模型,会根据简单数量关系列一元一次方程.3. 通过观察、分类、归纳,经历一元一次方程概念的形成过程,理解一元一次方程的概念.4. 根据解的概念能判断一个数是否为一元一次方程的解.5.体验用尝试、检验解一元一次方程的思想和方法,并能解决简单的实际问题.三、教学问题诊断分析:从课程标准看,学生已经对方程有初步的认识,会用方程表示简单情景中的数量关系,会解简单的方程,具备了一定的基础,为进一步学习方程奠定了基础.列方程建立在分析问题的数量关系上,关键是找出合适的等量关系,并将其用数学的符号语言正确表达,即建立问题的方程模型,因为有些问题中数量关系比较隐蔽,对七年级学生来说分析有点困难,对每一个问题都要作具体分析,而不是简单的套用某一方法就可以完成,所以列方程要求较高.尝试、检验法作为解方程的一种方法,在教学可能会受到原有解方程知识干扰;在尝试、检验时如何确定未知数的较小取值范围,如何逼近方程的解,对于七年级学生来说是比较难处理的.本班学生基础、能力中等.因此本节课的难点为:1. 经历“把实际问题抽象成数学问题”的过程,体会方程是刻画现实世界的一种有效模型,会根据简单数量关系列一元一次方程.2. 体验用尝试、检验解一元一次方程的思想和方法.四、教学支持条件分析:为了有效实现教学目标,根据问题诊断分析和学习行为分析,采取以下教学支持条件:策略1:在列方程环节中,通过5个问题串,本题中未知量是什么?怎么来表示这个未知量?根据那句话来列方程?这句话的意思是什么?你能列出方程吗?来分散列方程教学难点.策略2:在归纳一元一次方程概念环节中,由学生自己制定标准把得到6个方程进行分类,通过对比二元方程、二次方程,归纳得到一元一次方程概念,凸显了一元一次方程的的特征,也为后续的方程学习指明了方法.策略3:在“尝试、检验解一元一次方程”环节中,通过估计几年后教师年龄是女儿的2倍,来确定未知数的取值范围,让学生经历尝试、检验过程,体验尝试作为问题解决的一种有效策略.五、教学过程与目标检测设计:(一)师生对话引入新课1. 请两位同学做自我介绍,追问生1年龄,追问生2出生年份,求其年龄.2. 先猜测老师年龄,然后根据师生一段对话求出老师年龄.小明:我今年14岁,老师您几岁?老师:我年龄与你年龄的平均数再加11就是我的年龄.【设计意图】1.轻松的自我我介绍,可以缓和紧张的课堂气氛,通过自我介绍引出学生年龄问题,进而转到猜测老师的年龄. 2.在猜测老师年龄时通过太大、太小、接近了,来确定年龄的范围,为后续尝试、检验法做铺垫. 3.在计算老师年龄时一般会出现三种情况:凑的方法(尝试、检验法)、算术的方法、方程的方法.通过比较让学生感悟在数量关系相对复杂的情况下,相比列算式,列方程显得更直接、更自然,体现了方程的价值,从而引出课题“方程”.(二)合作讨论探究新知1. 根据下列问题中的条件,分别列出方程.(1)如图,天平左边放着3个乒乓球,右边放5.4克的砝码和1个乒乓球,天平恰好平衡,求1个乒乓球的质量.设1个乒乓球的质量为x克,那么可以列方程: .通过5个问题串来降低列方程难度.本题中未知量是什么?怎么来表示这个未知量?根据那句话来列方程?这句话的意思是什么?你能列出方程吗?(2)一株小树苗,开始时高为40厘米,栽种后每周长高约5厘米,大约几周后树苗长高到1米?设y周后树苗长高到1m,那么可以列方程: .(3)小杰买了单价分别为2元和1.2元的贺卡若干张,花了10.8元,问这两种贺卡各买了多少张?设单价2元的贺卡m 张,单价1.2元的贺卡n 张那么可以列方程: .用不同的字母来表示未知量,让学生明白未知量可用任何字母表示,但同一题中的字母表示相同的含义.(4)把一个面积为1125平方米的一块操场分割成如图所示的正方形和长方形两个部分,求正方形边长.设正方形边长为x 米,那么可以列方程: .(5)小明用温差法测量某山峰的高度,在同一时刻测得山脚温度为7.8℃,山顶温度为-2.1℃.已知该地区山峰的高度每增加100m ,气温大约降低0.6℃,问这个山峰的高度大约是多少米?设这个山峰的高度大约是y 米,那么可以列方程: .【设计意图】1.经历“把实际问题抽象成数学问题”的过程,体会方程是刻画现实世界的一种有效模型. 2.一元一次方程是最基本的代数方程,其“特征”只有在方程背景下比较才能凸显出来,故相比教科书增添了二元方程和二次方程.2. 自己制定一个分类依据,把这六个方程分分类.(1)x x +=4.53 (2)100540=+y (3)8.102.12=+n m(4)1125202=+x x (5)1.2006.08.7-=-x (6)x x =++11214 生:按未知数的个数分,一元、二元;按未知数的次数分,一次、二次. 方程(1)、(2)、(5)、(6)同时具有一元、一次两个特征,我们把形如这样的方程叫做一元一次方程,引出今天的课题.再观察这四个方程两边的代数式,得到一元一次方程的第三个特征(两边都是整式).【设计意图】由学生自己制定标准把得到6个方程进行分类,通过观察、合作讨论、归纳得到一元一次方程概念,凸显了一元一次方程的的特征(一元、一次),也为后续的方程学习指明了方法.3. 下列各式中,哪些是方程? 哪些是一元一次方程?(1)05=x (2) x 31+ (3) y y +=42(4)m m -=+123 (5) x x-=43 (6) 321x y -= 【设计意图】通过追问(2)、(3)、(5)、(6)不是一元一次方程的缘由,加深对一元一次方程特征的理解,借此巩固一元一次方程概念.4.写出一个一元一次方程.(三)温故知新 再探新知1. 在小学方程学习中,我们还学习了什么?解方程就是求出能使方程左右两边相等的未知数的值,我们把这个值叫做方程的解.2. 判断下列x 的值是不是方程9234-=-x x 的解.(1)2=x (2) 3-=x【设计意图】方程“验根”是对“方程的解”的概念直接应用,由教学经验可知,学生会把未知数的同时代入到方程两边,得到错误的式子“922324-⨯=-⨯”.第(1)小题讲解中,要让学生充分理解“左边=右边”这一判断标准,并归纳总结判断一个未知数的值是不是方程的解步骤及表述格式.第(2)小题由学生参照格式完成,强化验根的程序.3. 写出一个一元一次方程,使它们的解是x= - 2.【设计意图】让学生从正反两个方面深入理解一元一次方程解的概念.(四)尝试检验 体验方法对于一些较简单的方程,先确定未知数的一个较小的取值范围,再逐一将这些可取的值代入方程进行尝试检验,能使方程两边相等的未知数的值就是方程的解.这种解方程的方法叫尝试检验法.它是解决问题的一种有效的方法.1. 今年乐老师36岁、女儿9岁,几年后乐老师的年龄是女儿的2倍?今年老师的年龄是女儿的4倍,你们估估看几年后老师的年龄是女儿的2倍?10年?20年?跨度太大,15年?从而可以确定应在什么之间?如果设x年后乐老师的年龄是女儿的2倍.可列方程?方程的解因该是那几个整数中的一个?【设计意图】让学生经历尝试、检验过程,如何确定未知数的较小取值范围,如何逼近方程的解.由老师的年龄问题自然的引到丢番图的年龄问题,借此介绍代数、方程的发展历程.2. 求出丢番图的年龄.上帝给予的童年占六分之一,又过了十二分之一,两颊长胡,再过七分之一,点燃起结婚的蜡烛.五年之后天赐贵子,可怜迟到的宁馨儿,享年仅及其父之半,便进入冰冷的墓.悲伤只有用数论的研究去弥补,又过了四年,他也走完了人生的旅途.因为年龄为整数,且必为6、12、7、2的公倍数,最小公倍数为84,根据实际情况,年龄不可能达到168及以上,把84代入方程尝试、检验.【设计意图】这是一道悠久历史的名题,也是数学与文学结合的佳作,诗中并没有明确说出丢番图的寿命数字,但已隐含于诗中,利用方程可以求出其年龄,这当中蕴含着浓浓的数学文化.根据生平历程和年龄得到的方程相对较繁,利用整数解,感悟“尝试、检验”作为问题解决的一种有效策略.(五)回顾总结提升认识1. 一元一次方程是方程大家庭中最简单的一类,你觉得他简单在哪里?2. 比一元一次方程稍稍复杂的方程可能是什么方程?它复杂在哪?如果它的“次”“元”继续增加,又可能产生什么方程?3. 如果“元”“次”同时增加,还可能产生什么新的方程?你能写一个吗?【设计意图】从方程到一元一次方程得到概念,从一元一次方程到方程加以提升.4. 我们发现,从左到右,方程越来越复杂.同学们,我们不妨换个方向,如果从右往左看,感觉又会怎样呢?这是我们以后解方程思考的方向,当然解方程不可能象今天一样都去尝试,究竟如何解方程?这是我们下节课要学习的内容.【设计意图】渗透解方程的基本思想方法,为后续的方程学习起到引领作用.(六)分层联系巩固必做:完成作业本《5.1一元一次方程》.选做:用自己的年龄编一道问题,并列出方程.查阅方程史实,了解方程发展历程.【设计意图】分层作业,使“人人都能获得良好的数学教育,不同的人在数学上得到不同的发展”.《一元一次方程》的点评方程是数学的核心内容,是刻画世界数量关系的有效数学模型。
《一元一次方程》的优秀教案(精选9篇)

《一元一次方程》的优秀教案《一元一次方程》的优秀教案(精选9篇)《一元一次方程》的优秀教案篇1知识技能会通过“移项”变形求解“ax+b=cx+d”类型的一元一次方程。
数学思考1.经历探索具体问题中的数量关系过程,体会一元一次方程是刻画实际问题的有效数学模型。
进一步发展符号意识。
2.通过一元一次方程的学习,体会方程模型思想和化归思想。
解决问题能在具体情境中从数学角度和方法解决问题,发展应用意识。
经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性。
情感态度经历观察、实验计算、交流等活动,激发求知欲,体验探究发现的快乐。
教学重点建立方程解决实际问题,会通过移项解“ax+b=cx+d”类型的一元一次方程。
教学难点分析实际问题中的相等关系,列出方程。
教学过程活动一知识回顾解下列方程:1.3x+1=42.x-2=33.2x+0.5x=-104.3x-7x=2提问:解这些方程时,方程的解一般化成什么形式?这些题你采用了那些变形或运算?教师:前面我们学习了简单的一元一次方程的解法,下面请大家解下列方程。
出示问题(幻灯片)。
学生:独立完成,板演2、4题,板演同学讲解所用到的变形或运算,共同讲评。
教师提问:(略)教师追问:变形的依据是什么?学生独立思考、回答交流。
本次活动中教师关注:(1)学生能否准确理解运用等式性质和合并同列项求解方程。
(2)学生对解一元一次方程的变形方向(化成x=a的形式)的理解。
通过这个环节,引导学生回顾利用等式性质和合并同类项对方程进行变形,再现等式两边同时加上(或减去)同一个数、两边同时乘以(除以,不为0)同一个数、合并同类项等运算,为继续学习做好铺垫。
活动二问题探究问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?教师:出示问题(投影片)提问:在这个问题中,你知道了什么?根据现有经验你打算怎么做?(学生尝试提问)学生:读题,审题,独立思考,讨论交流。
实际问题与一元一次方程球赛积分问题公开课一等奖优质课大赛微课获奖课件

球赛积分表问题
第1页
球赛积分表问题
赛季全国男篮甲A联赛常规赛最后积分榜
队名 迈进
东方 光明 蓝天 雄鹰 远大 卫星 钢铁
比赛场次 14 14 14 14 14 14 14 14
胜场 10 10 9 9 7 7 4 0
负场 4 4 5 5 7 7 10 14
积分 24 24 23 23 21 21 18 14
问题4:若卫星队数据因 某种原因而丢失,你能填 出相关数据吗?
第4页
球赛积分表问题
赛季全国男篮甲A联赛常规赛最后积分榜
队名 迈进
东方 光明 蓝天 雄鹰 远大 卫星 钢铁
比赛场次 胜场 负场 积分
14
10 4 24
14
10 4 24
14
9
5 23
14
9
5 23
14
7
7 21
14
7
7 21
14
4 10 18
队名 迈进
东方 光明 蓝天 雄鹰 远大 卫星 钢铁
比赛场次 14 14 14 14 14 14 14 14
胜场 10 10 9 9 7 7 4 0
负场 4 4 5 5 7 7 10 14
积分 24 24 23 23 21 21 18 14
问题2:用你所求出胜一 场得分、负一场得分去检 查其它几种队,能否适合 其它队?
东方
14
10 4 24
光明
14
9
5 23
蓝天
14
9
5 23
雄鹰
14
7
7 21
远大 卫星 钢铁
14
7
7 21
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、理解一元一次方程并会识别一元一次方程。 2、了解方程的解和解方程,会验证方程的解。 3、学会运用一元一次方程解决简单的实际问题。
〔过程与方法〕
知道怎样列方程解决实际问题,感受方程作为刻画现实世 界有效模型的意义。
〔情感、态度与价值观〕
在解决实际问题中,体会数学的应用价值,激发学习数学 的欲望,提高分析问题和解决问题的能力。 重点:一元一次方程和方程的解的概念 难点:怎样列方程解决实际问题。
解:设x月后这台计算机的使用时间达到 2450 小时。
等量关系:已用的时间+还可用时间=2450
1700 + 150x
=
2450
(4) 某校女生占全体学生的52%, 比男生 多80人,这个学校有多 少学生?
解: 设这个学校的学生有x人,女生数为0.52x,男生数
为(1-0.52)x.
等量关系:女生人数—男生人数=80
(1 )t=-2 (2) t=2 (3)t=1
根据方程的解的定义,我们得到t=2 是方程2t+1=7-t的解。
活动:拓广探索 训练提升
练习 根据下列问题,设未知数并列出方程:
(1)用一根长24cm的铁丝围成一个正方形,正方形 的边长是多少?
解:如设正方形的边长为 x cm, 等量关系:边长x4=24
习题 1—3 阅读与思考 习题5—10
0.52x-(1-0.52)x=80.
小结: 设未知数 实际问题 找等量关系 一元一次方程
这节课你学到了什么?
1、什么是方程?什么叫一元一次方程? 2、什么是方程的解?什么是解方程? 3、你怎样知道某个未知数的值是方程的解? 4、怎样列方程?怎样解决实际问题?
课外作业
1、基础作业:P83 2、阅读作业:P84 3、拓展作业:P83
小试身手
2、方程 3x
a 1
3 2 a=_____,3a-3= _____
2 6 是一元一次方程,则
ቤተ መጻሕፍቲ ባይዱ
3、方程(a+6)x2 +3x-8=7是关于x的一元一次方 程,则a= _____ -6 。
教材第80页。
1、什么叫方程的解? 2、什么叫解方程?
讲解概念:
2x-3=5x-15 (x=3,4,5,哪 一个是方程的解呢?)
4x=24.
(2) 用一根长24cm的铁丝围成一个长方形, 使它长是宽的1.5倍,长方形的长、宽各应 是多少?
解: 设长方形的宽为 x cm,那么长为
1.5x cm.
等量关系:(长+宽)x2=24
2(x+1.5x)=24
一显身手:
(3)一台计算机已使用1700小时,预计每月再使用150小时, 经过多少月这台计算机的使用时间达到规定的检修时间2450 小时?
(不是 ) (是 )
(4)0.32m-(3+0.02m)=0.7 ( 是 )
小结:1、它们只含有一个未知数; 2、未知数的次数是1; 3、等式两边都是整式。
小试身手
1.下列各式中,哪些是一元一次方程? (1) 5x=0 (2)1+3x
(3)y² =4+y
2 3x ( 5) x 1
(4)x+y=5 ( 6 )3m+2=1–m
观察上面的方程,它们有什么特点?
只含有一个未知数,未知数的次数是1次
只含有一个未知数(元),未知数的次数都是 1(次),等式两边都是整式,这样的方程叫 做一元一次方程.
概念辨析,巩固延伸
练习1:判断下列方程是不是一元一次方程: (1)2x+3y=0 ( 不是)
(2) x2 –3x+2=0
(3)x+1=2x-5
重点难点
1、什么是方程?
含有未知数的等式叫做方程.
判断下列各式是不是方程? 14 x 3 × 23 4 7× 32 x 1 3 × 4 2 3x √ 56a 8 3 √ 63a 2b √ x 1
归纳概念
4x=24; 2(x+1.5x)=24; 1700+150X= 2450 ; 0.52x-(1-0.52)x=80
的解。 2、求方程的解的过程叫做解方程。
简单地说:方程的解是一个结果,而解方程
是一个变形的过程。
小结检验一个数值是不是方程的解 的步骤:
1.将数值代入方程左边进行计算,
2.将数值代入方程右边进行计算,
3.比较左右两边的值,若左边=右边,则是 方程的解,反之,则不是.
练一练:
请你判断下列给定的t的值中,哪个是 方程2t+1=7-t的解?
把X=3代入方程的左边 2X-3=2×3-3=3 把X=3代入方程的右边 5X-15=5×3-15=0
左边≠右边
X=3不是方程2x-3=5x-15的解
X=4,5时呢?
通过检验,当X=4时方程左边=右边,则 x=4叫做方程2x-3=5x-15的解,求解的 过程叫做解方程
小结:
1、使方程等号两边相等的未知数的值叫方程