《一元一次方程》教学设计

合集下载

一元一次方程单元整体教学设计

一元一次方程单元整体教学设计

一元一次方程单元整体教学设计
一元一次方程单元整体教学设计
1.教学内容分析
学科:数学,年级:七年级上册,章节:第3章,课时:10课时。

本章主要研究一元一次方程的概念、等式的基本性质、一元一次方程的解法及应用。

重点在于理解等式的基本性质,掌握解一元一次方程的一般步骤,列方程解决实际问题的基本思路。

难点在于解一元一次方程,并利用一元一次方程解决简单的实际问题。

2.单元整体目标分析
1) 知识与技能:理解等式、方程的概念,理解等式的性质,掌握利用等式的两条性质的新思维解简单的一元一次方程,并能列方程解应用题。

2) 过程与方法:通过教师演示、学生讨论、交流总结出
等式的两条性质,使学生进一步理解等式、方程的意义,掌握等式的两条性质在解一元一次方程中的具体应用。

3) 情感态度价值观:本章从师生的共同研究活动中,让
学生理解等式的两条性质体现了数学的对称美,从而让学生理解感受到生活中的对称美,增强学生对生活的热爱。

3.各教学内容的教学形式安排
教学内容:等式,方程的概念和性质,解一元一次方程(一),(二)。

任务设计:理解概念,学会应用等式性质进行等式、方程的演示讲解;掌握解一元一次方程的方法,并能应用它解方程。

教学环境:多媒体教室。

注:文章中没有明显的格式错误和有问题的段落,因此不需要进行删除和改写。

一元一次方程教学设计(共3篇)

一元一次方程教学设计(共3篇)

一元一次方程教学设计(共3篇)第1篇:一元一次方程教学设计删繁就简三秋树领异标新二月花————“一元一次方程应用”教学实录及反思临沂高都中学王兴玲列方程解应用题,是整个初中阶段数学教学的重点。

因此,在教学中让学生掌握好它的原理、方法及实质则显得十分重要。

在本节课教学过程中始终贯穿一条主线,即为什么要列方程、怎样列方程、怎样简捷地列方程等来阐明列方程的优越性、实质性及规律性。

具体设计如下:一、引言——故事的开端(为什么要列方程)问题1:临沂高都中学组织学生参观小埠东橡胶坝和沂河大桥(多媒体展示小埠东橡胶坝的图片、沂河大桥的美图等)师:在途中,我们遇到了一些有趣的数学问题希望同学们一起解决。

在参观小埠东橡胶坝时,朋朋感叹道:“这座橡胶坝真是宏伟壮观,不知道刚才参观的沂河大桥有多长”?小波马上说:“我知道,小埠东橡胶坝长1135米,是沂河大桥的2倍还多55米。

”朋朋想:那么沂河大桥有多长呢?同学们能帮朋朋解决这个问题吗?问题1、小埠东橡胶坝长1135米,是沂河大桥的2倍还多55米,那么沂河大桥有多长?生1:沂河大桥长为(米)(师板演)师:除了列算式外,还有别的方法吗?生2:可以列方程师:如果用列方程的方法来解,设哪个未知数为x?生2:设沂河大桥的长为x米。

师:根据怎样的相当关系来列方程?方程的解是多少?生2:根据小埠东橡胶坝长1135米,是沂河大桥的2倍还多55米,列方程1135=2x+55,解得:x=540(教师板演)师:以上两种方法,大家比较、体会一下,我们为什么有时要用列方程的方法来解决实际问题呢?列方程有什么优越性?生3:列方程就是直来直往。

师:非常棒,列方程是顺向思考,而算数方法是逆向思考,较繁琐,且有时易出错,所以才需要学习:一元一次应用题(教师板书课题)师:有的同学习惯了算数方法,不愿意列方程,但有的实际问题数量关系比较复杂,用算数方法不易解决,如下面问题……(设计意图:根据新课程的理念,本节课创造性的使用教材,以学生熟悉的背景引入,具有较强的感染力和吸引力教学内容并不陌生,关键是要学生清楚问什么要用列方程来解决问题,列方程比直接算数列式有何优越性,小学中的算术可以吗?问什么要换个角度研究呢?)二、故事的发展——怎样列方程师:参观完大桥后,在途中我们遇到一位老大爷正在吃力地拉着一辆装满大米和面粉的手推车上坡,几位同学立即上前帮助。

浙教版数学七年级上册5.1《一元一次方程》教学设计1

浙教版数学七年级上册5.1《一元一次方程》教学设计1

浙教版数学七年级上册5.1《一元一次方程》教学设计1一. 教材分析《一元一次方程》是浙教版数学七年级上册第五章第一节的内容。

本节课主要让学生掌握一元一次方程的定义、解法以及应用。

教材通过生活实例引入方程的概念,使学生感受到方程在实际生活中的重要性。

通过探究、合作的学习方式,让学生掌握一元一次方程的解法,培养学生解决问题的能力。

二. 学情分析七年级的学生已经掌握了整数、分数、有理数等基础知识,具备了一定的逻辑思维能力。

但学生在解决实际问题时,还往往不能很好地将数学知识与实际问题相结合。

因此,在教学过程中,教师要关注学生的认知水平,引导学生正确地列出方程,并运用方程解决问题。

三. 教学目标1.理解一元一次方程的概念,掌握一元一次方程的解法。

2.能够运用一元一次方程解决实际问题。

3.培养学生的合作交流能力,提高学生解决问题的能力。

四. 教学重难点1.重难点:一元一次方程的定义、解法及应用。

2.重点:让学生通过实际问题,感受方程的重要性,掌握一元一次方程的解法。

3.难点:如何引导学生将实际问题转化为方程,并运用方程解决问题。

五. 教学方法1.采用情境教学法,以生活实例引入方程的概念,激发学生的学习兴趣。

2.采用合作探究法,让学生在小组内讨论、交流,共同解决问题。

3.采用实践教学法,让学生通过动手操作,加深对一元一次方程的理解。

六. 教学准备1.准备相关的生活实例,用于引入方程的概念。

2.准备一些练习题,用于巩固所学知识。

3.准备课件,用于辅助教学。

七. 教学过程1.导入(5分钟)教师通过呈现一个生活实例,引导学生发现实际问题中存在的等量关系,从而引入方程的概念。

2.呈现(10分钟)教师讲解一元一次方程的定义,让学生明确一元一次方程的形式。

并通过示例,演示一元一次方程的解法。

3.操练(10分钟)学生分组讨论,尝试解决一些简单的一元一次方程问题。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)教师出示一些练习题,让学生独立完成,检验学生对一元一次方程的掌握程度。

初中七年级上册数学《解一元一次方程》教案优质范文五篇

初中七年级上册数学《解一元一次方程》教案优质范文五篇

初中七年级上册数学《解一元一次方程》教案优质范文五篇星星从不嫉妒太阳的灿烂辉煌,它在自己的岗位上尽力发光。

今天小编为大家带来的是初中七年级上册数学《解一元一次方程》教案优质范文,希望可以帮助到大家。

初中七年级上册数学《解一元一次方程》教案优质范文一教材分析:《解一元一次方程(一)合并同类项与移项》是义务教育教科书七年级数学上册第三章第二节的内容。

在此之前,学生已学会了有理数运算,掌握了单项式、多项式的有关概念及同类项、合并同类项,和等式性质,进一步将所学知识运用到解方程中。

这为过渡到本节的学习起着铺垫作用。

合并同类项与移项是解方程的基础,解方程它的移项根据是等式性质1、系数化为1它的根据是等式性质2,解方程是今后进一步学习不可缺少的知识。

因而,解方程是初中数学中必须要掌握的重点内容。

设计思路:《数学课程标准》中明确指出:学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。

基于以上理念,结合本节课内容及学生情况,教学设计中采用了探究发现法和多媒体辅助教学法,在学生已有的知识储备基础上,利用课件,鼓励和引导学生采用自主探索与合作交流相结合的方式进行学习,让学生始终处于积极探索的过程中,通过学生动手练习,动脑思考,完成教学任务。

其基本程序设计为:复习回顾、设问题导入探索规律、形成解法例题讲解、熟练运算巩固练习、内化升华回顾反思、进行小结达标测试、反馈情况作业布置、反馈情况。

教学目标:1、知识与技能:(1)通过分析实际问题中的数量关系,建立方程解决实际问题,进一步认识方程模型的重要性;(2)、掌握移项方法,学会解“a·+b=c·+d”的一元一次方程,理解解方程的目标,体会解法中蕴涵的化归思想。

2、过程与方法:通过解形如“a·+b=c·+d”形式的方程,体验数学的建模思想。

3、情感、态度与价值观:通过合作探究,培养学生积极思考、勇于探索的精神。

教学重点:建立方程解决实际问题,会解“a·+b=c·+d”类型的一元一次方程。

全国初中数学青年教师优秀课一等奖《一元一次方程》教学设计

全国初中数学青年教师优秀课一等奖《一元一次方程》教学设计

《一元一次方程》教学设计一、内容与内容解析继第四章《代数式》之后,第五章《一元一次方程》内容仍属于《义务教育课程标准(2022年版)》中的“数与代数”领域.从数学学科本身看,方程是代数学的核心内容,正是对于它的研究推动了整个代数的发展.从代数关于方程的分类看,一元一次方程是最基本的代数方程,对它的理解和掌握对于后续内容(其他的方程以及不等式、函数等)的学习具有重要的基础,这是因为这些后续内容的学习和一元一次方程的学习有很强的关联性和可类比性.本章内容是对一元一次方程作更系统、更深入的讨论,所涉及的实际问题要比以前学习的问题更复杂些,更强调模型化思想的渗透,对方程的解法更注重算理.一元一次方程的概念和解法贯穿全章,是本章的教学重点.本节课学习内容主要包括:(1)一元一次方程的概念;(2)一元一次方程的解(根)的概念;(3)判断一个数是否是一元一次方程的解;(4)尝试检验法求一元一次方程的解.由此可见,一元一次方程作为章节起始课,承载着单元知识引领作用.基于教学内容特殊的地位和作用,本节课的教学重点确定为:1. 一元一次方程的概念;2. 尝试、检验法解一元一次方程的思想和方法.二、目标与目标解析1. 进一步认识方程,感悟从算式到方程是数学的进步.2. 经历“把实际问题抽象成数学问题”的过程,体会方程是刻画现实世界的一种有效模型,会根据简单数量关系列一元一次方程.3. 通过观察、分类、归纳,经历一元一次方程概念的形成过程,理解一元一次方程的概念.4. 根据解的概念能判断一个数是否为一元一次方程的解.5.体验用尝试、检验解一元一次方程的思想和方法,并能解决简单的实际问题.三、教学问题诊断分析:从课程标准看,学生已经对方程有初步的认识,会用方程表示简单情景中的数量关系,会解简单的方程,具备了一定的基础,为进一步学习方程奠定了基础.列方程建立在分析问题的数量关系上,关键是找出合适的等量关系,并将其用数学的符号语言正确表达,即建立问题的方程模型,因为有些问题中数量关系比较隐蔽,对七年级学生来说分析有点困难,对每一个问题都要作具体分析,而不是简单的套用某一方法就可以完成,所以列方程要求较高.尝试、检验法作为解方程的一种方法,在教学可能会受到原有解方程知识干扰;在尝试、检验时如何确定未知数的较小取值范围,如何逼近方程的解,对于七年级学生来说是比较难处理的.本班学生基础、能力中等.因此本节课的难点为:1. 经历“把实际问题抽象成数学问题”的过程,体会方程是刻画现实世界的一种有效模型,会根据简单数量关系列一元一次方程.2. 体验用尝试、检验解一元一次方程的思想和方法.四、教学支持条件分析:为了有效实现教学目标,根据问题诊断分析和学习行为分析,采取以下教学支持条件:策略1:在列方程环节中,通过5个问题串,本题中未知量是什么?怎么来表示这个未知量?根据那句话来列方程?这句话的意思是什么?你能列出方程吗?来分散列方程教学难点.策略2:在归纳一元一次方程概念环节中,由学生自己制定标准把得到6个方程进行分类,通过对比二元方程、二次方程,归纳得到一元一次方程概念,凸显了一元一次方程的的特征,也为后续的方程学习指明了方法.策略3:在“尝试、检验解一元一次方程”环节中,通过估计几年后教师年龄是女儿的2倍,来确定未知数的取值范围,让学生经历尝试、检验过程,体验尝试作为问题解决的一种有效策略.五、教学过程与目标检测设计:(一)师生对话引入新课1. 请两位同学做自我介绍,追问生1年龄,追问生2出生年份,求其年龄.2. 先猜测老师年龄,然后根据师生一段对话求出老师年龄.小明:我今年14岁,老师您几岁?老师:我年龄与你年龄的平均数再加11就是我的年龄.【设计意图】1.轻松的自我我介绍,可以缓和紧张的课堂气氛,通过自我介绍引出学生年龄问题,进而转到猜测老师的年龄. 2.在猜测老师年龄时通过太大、太小、接近了,来确定年龄的范围,为后续尝试、检验法做铺垫. 3.在计算老师年龄时一般会出现三种情况:凑的方法(尝试、检验法)、算术的方法、方程的方法.通过比较让学生感悟在数量关系相对复杂的情况下,相比列算式,列方程显得更直接、更自然,体现了方程的价值,从而引出课题“方程”.(二)合作讨论探究新知1. 根据下列问题中的条件,分别列出方程.(1)如图,天平左边放着3个乒乓球,右边放5.4克的砝码和1个乒乓球,天平恰好平衡,求1个乒乓球的质量.设1个乒乓球的质量为x克,那么可以列方程: .通过5个问题串来降低列方程难度.本题中未知量是什么?怎么来表示这个未知量?根据那句话来列方程?这句话的意思是什么?你能列出方程吗?(2)一株小树苗,开始时高为40厘米,栽种后每周长高约5厘米,大约几周后树苗长高到1米?设y周后树苗长高到1m,那么可以列方程: .(3)小杰买了单价分别为2元和1.2元的贺卡若干张,花了10.8元,问这两种贺卡各买了多少张?设单价2元的贺卡m 张,单价1.2元的贺卡n 张那么可以列方程: .用不同的字母来表示未知量,让学生明白未知量可用任何字母表示,但同一题中的字母表示相同的含义.(4)把一个面积为1125平方米的一块操场分割成如图所示的正方形和长方形两个部分,求正方形边长.设正方形边长为x 米,那么可以列方程: .(5)小明用温差法测量某山峰的高度,在同一时刻测得山脚温度为7.8℃,山顶温度为-2.1℃.已知该地区山峰的高度每增加100m ,气温大约降低0.6℃,问这个山峰的高度大约是多少米?设这个山峰的高度大约是y 米,那么可以列方程: .【设计意图】1.经历“把实际问题抽象成数学问题”的过程,体会方程是刻画现实世界的一种有效模型. 2.一元一次方程是最基本的代数方程,其“特征”只有在方程背景下比较才能凸显出来,故相比教科书增添了二元方程和二次方程.2. 自己制定一个分类依据,把这六个方程分分类.(1)x x +=4.53 (2)100540=+y (3)8.102.12=+n m(4)1125202=+x x (5)1.2006.08.7-=-x (6)x x =++11214 生:按未知数的个数分,一元、二元;按未知数的次数分,一次、二次. 方程(1)、(2)、(5)、(6)同时具有一元、一次两个特征,我们把形如这样的方程叫做一元一次方程,引出今天的课题.再观察这四个方程两边的代数式,得到一元一次方程的第三个特征(两边都是整式).【设计意图】由学生自己制定标准把得到6个方程进行分类,通过观察、合作讨论、归纳得到一元一次方程概念,凸显了一元一次方程的的特征(一元、一次),也为后续的方程学习指明了方法.3. 下列各式中,哪些是方程? 哪些是一元一次方程?(1)05=x (2) x 31+ (3) y y +=42(4)m m -=+123 (5) x x-=43 (6) 321x y -= 【设计意图】通过追问(2)、(3)、(5)、(6)不是一元一次方程的缘由,加深对一元一次方程特征的理解,借此巩固一元一次方程概念.4.写出一个一元一次方程.(三)温故知新 再探新知1. 在小学方程学习中,我们还学习了什么?解方程就是求出能使方程左右两边相等的未知数的值,我们把这个值叫做方程的解.2. 判断下列x 的值是不是方程9234-=-x x 的解.(1)2=x (2) 3-=x【设计意图】方程“验根”是对“方程的解”的概念直接应用,由教学经验可知,学生会把未知数的同时代入到方程两边,得到错误的式子“922324-⨯=-⨯”.第(1)小题讲解中,要让学生充分理解“左边=右边”这一判断标准,并归纳总结判断一个未知数的值是不是方程的解步骤及表述格式.第(2)小题由学生参照格式完成,强化验根的程序.3. 写出一个一元一次方程,使它们的解是x= - 2.【设计意图】让学生从正反两个方面深入理解一元一次方程解的概念.(四)尝试检验 体验方法对于一些较简单的方程,先确定未知数的一个较小的取值范围,再逐一将这些可取的值代入方程进行尝试检验,能使方程两边相等的未知数的值就是方程的解.这种解方程的方法叫尝试检验法.它是解决问题的一种有效的方法.1. 今年乐老师36岁、女儿9岁,几年后乐老师的年龄是女儿的2倍?今年老师的年龄是女儿的4倍,你们估估看几年后老师的年龄是女儿的2倍?10年?20年?跨度太大,15年?从而可以确定应在什么之间?如果设x年后乐老师的年龄是女儿的2倍.可列方程?方程的解因该是那几个整数中的一个?【设计意图】让学生经历尝试、检验过程,如何确定未知数的较小取值范围,如何逼近方程的解.由老师的年龄问题自然的引到丢番图的年龄问题,借此介绍代数、方程的发展历程.2. 求出丢番图的年龄.上帝给予的童年占六分之一,又过了十二分之一,两颊长胡,再过七分之一,点燃起结婚的蜡烛.五年之后天赐贵子,可怜迟到的宁馨儿,享年仅及其父之半,便进入冰冷的墓.悲伤只有用数论的研究去弥补,又过了四年,他也走完了人生的旅途.因为年龄为整数,且必为6、12、7、2的公倍数,最小公倍数为84,根据实际情况,年龄不可能达到168及以上,把84代入方程尝试、检验.【设计意图】这是一道悠久历史的名题,也是数学与文学结合的佳作,诗中并没有明确说出丢番图的寿命数字,但已隐含于诗中,利用方程可以求出其年龄,这当中蕴含着浓浓的数学文化.根据生平历程和年龄得到的方程相对较繁,利用整数解,感悟“尝试、检验”作为问题解决的一种有效策略.(五)回顾总结提升认识1. 一元一次方程是方程大家庭中最简单的一类,你觉得他简单在哪里?2. 比一元一次方程稍稍复杂的方程可能是什么方程?它复杂在哪?如果它的“次”“元”继续增加,又可能产生什么方程?3. 如果“元”“次”同时增加,还可能产生什么新的方程?你能写一个吗?【设计意图】从方程到一元一次方程得到概念,从一元一次方程到方程加以提升.4. 我们发现,从左到右,方程越来越复杂.同学们,我们不妨换个方向,如果从右往左看,感觉又会怎样呢?这是我们以后解方程思考的方向,当然解方程不可能象今天一样都去尝试,究竟如何解方程?这是我们下节课要学习的内容.【设计意图】渗透解方程的基本思想方法,为后续的方程学习起到引领作用.(六)分层联系巩固必做:完成作业本《5.1一元一次方程》.选做:用自己的年龄编一道问题,并列出方程.查阅方程史实,了解方程发展历程.【设计意图】分层作业,使“人人都能获得良好的数学教育,不同的人在数学上得到不同的发展”.《一元一次方程》的点评方程是数学的核心内容,是刻画世界数量关系的有效数学模型。

一元一次方程教案最新7篇

一元一次方程教案最新7篇

一元一次方程教案最新7篇元一次方程教学设计篇一一、教材分析1、教材地位和作用本节课是义务教育课程标准实验教科书数学六年级上册第五章《一元一次方程》中第一节课的内容。

是小学与初中知识的衔接点,学生在小学已经初步接触过方程,了解了什么是方程,什么是方程的解,并学会了用逆运算法解一些简单的方程。

并在前一章刚学过整式的概念及其运算的基础上,本节课将带领学生继续学习方程、一元一次方程等内容。

要求教师帮助学生在现实情境中,通过对多种实际问题的分析,感受方程作为刻画现实世界的模型的意义,建立方程归纳得出一元一次方程的概念并用尝试检验法来求解,同时也为学生进一步学习一元一次方程的解法和应用起到铺垫作用。

2、教学目标综上分析及教学大纲要求,本课时教学目标制定如下:⒈.通过对多种实际问题的分析,感受方程作为刻画现实世界的有效模型的意义⒈.会根据简单数量关系列方程,通过观察、归纳一元一次方程的概念⒈.体会解决问题的一种重要的思想方法----尝试检验法⒈.回顾理解等式的两个性质,并初步学会利用等式的两个性质解一元一次方程3、教学重点和难点重点:一元一次方程的概念和用尝试检验法求方程的解难点:利用等式的两个性质解一元一次方程二、教法与学法分析:教法方法与手段:本节课利用多媒体教学平台,在概念教学设计中,注意遵循人们认识事物的规律,从具体到抽象,从特殊到一般,由浅入深。

从学生熟悉的实际问题开始,将实际问题“数学化”建立方程模型。

采用教师引导,学生自主探索、观察、归纳的教学方式。

利用多媒体和天平演示等教学设备辅助教学,充分调动学生的积极性。

学法指导:根据本节课的内容特点及学生的心理特征,在学法上,极力倡导了新课程的自主探究、合作交流的学习方法。

通过对学生原有知识水平的分析,创设情境,使数学回到生活,鼓励学生思考,探索情境中的所包含的数量关系,学生在经历“建立方程模型”这一数学化的过程后,理解学习方程和一元一次方程的意义,培养学生抽象概括等能力。

2023最新-《一元一次方程与实际问题》教学设计【优秀3篇】

2023最新-《一元一次方程与实际问题》教学设计【优秀3篇】

《一元一次方程与实际问题》教学设计【优秀3篇】在教学工作者实际的教学活动中,通常会被要求编写教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。

我们该怎么去写教学设计呢?问渠那得清如许,为有源头活水来,以下是漂亮的编辑帮大家整理的《一元一次方程与实际问题》教学设计【优秀3篇】,欢迎借鉴,希望大家能够喜欢。

实际问题与一元一次方程教学设计篇一【教学目标】1、进一步掌握列一元一次方程解应用题的方法步骤.2、通过分析工作量中的相等关系,进一步经历运用方程解决实际问题的过程,体会方程模型的作用.3、培养学生自主探究和合作交流的意识和能力,体会数学的应用价值.【教学重点】会运用一元一次方程解决工程问题。

【教学难点】分析工作量中的相等关系,进一步经历运用方程解决实际问题的过程,体会方程模型的作用.【教学过程】一、复习导入1、一件工作,甲单独做20小时完成,乙单独做12小时完成。

那么两人合作多少小时完成?思考:(1)两人合作32小时完成对吗?为什么?(2)甲每小时完成全部工作的;乙每小时完成全部工作的;甲x小时完成全部工作的;乙x小时完成全部工作的。

2、整理一块地,由一个人做要80小时完成。

那么4个人做需要多少小时完成?分析:一个人做1小时完成的工作量是;一个人做x小时完成的工作量是;4个人做x小时完成的工作量是。

3、一项工作,12个人4个小时才能完成。

若这项工作由8个人来做,要多少小时才能完成呢?(1)人均效率(一个人做一小时的工作量)是。

(2)这项工作由8人来做,x小时完成的工作量是。

总结:一个工作由m个人n小时完成,那么人均效率是。

二、合作探究例1整理一批图书,由一个人做要40小时完成。

现在计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作。

假设这些人的工作效率相同,具体应先安排多少人工作分析:这里可以把工作总量看作1请填空:人均效率(一个人做1小时完成的工作量)为,由x人先做4小时,完成的工作量为,再增加2人和前一部分人一起做8小时,完成的工作量为,这项工作分两段完成任务,两段完成任务的工作量之和为。

一元一次方程教学设计与教学反思[共5篇][修改版]

一元一次方程教学设计与教学反思[共5篇][修改版]

第一篇:一元一次方程教学设计与教学反思人教版七年级数学上册第三章《一元一次方程》教学设计呈贡区第一中学邹秀存一、教学分析(一)教学内容分析1.方程是代数学的核心,是刻画现实世界的一个有效的数学模型,而一元一次方程是最简单的代数方程,也是所有代数方程的基础。

2. 用一元一次方程解决实际问题是初中阶段应用数学知识解决实际问题的开端,也是增强学生学数学、用数学的重要题材;教材渗透的符号化、模型化思想及类比、化归、归纳等数学思想方法,都是学生今后学习和工作中必备的数学修养和素质。

3. 通过本节课,使学生了解一元一次方程及其相关概念,认识到从算术到方程是数学的进步,并体会方程的意义,同时在“观察分析-抽象表示-符号变换-解释体验”的过程中,感受数学的科学价值和人文价值;体会从实际问题到方程中蕴含的模型化思想,提高分析问题和解决问题的能力。

“从算术到方程”是本章第一节内容,是从算术模型到方程模型的首次尝试跨越,对后续学习有着重要的意义。

(二)教学对象分析该内容属于2012年审定人教版义务教育教科书七年级上册第三章的内容。

1.学生在小学阶段已对简单方程有所认识,也会用方程表示简单情境中的数量关系,但多数学生说不出方程的本质。

2.学生已会用算术模型和方程模型解决简单的实际问题,但学生说不出算术算式与代数方程的区别与联系,感受不到方程是更简便、更有力的数学工具,从算术方法到代数方程是数学的进步。

3.学生尽管已会模仿解决一些简单的实际问题,但学生缺乏多角度思考的习惯,也没有交流、合作、质疑的意识,不会用数学方式去思考。

大部分学生思维比较活跃,敢想也敢说。

二、教学目标(一)通过处理实际问题,让学生体验从算术方法到代数方法是一种进步;(二)初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念;(三)培养学生获取信息,分析问题,处理问题的能力。

三、教学重点、难点均是从实际问题中寻找相等关系。

四、教学过程(一)问题解决,体会方程播放2010年南非世界杯宣传曲。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
系数化为1,得t=300
答:如果一个月内通话300分,那么两种计费方式的收费相同。
如果一个月内累计通话时间不足300分,那么选择“方式二”收费少;如果一个月内累计通话时间超过300分,那么选择“方式一”收费少。
鼓励学生参与
激发学生学习
让学生在具体问题中体会方案选择性收费问题
这是教学的关键,一定要让学生理解,培养学生自主探究能力和团队合作精神
1、课件“一元一次方程----合并同类项与移项”
2、多媒体教室
六、教学过程
教学过程
教师活动
学生活动
设计意图及资源准备
展示课件
引入新课
信息社会,人们沟通交流方式多样化,移动电话已很普及,选择经济实惠的收费方式很有现实意义。说出你知道的付费方式?
积极思考、踊跃发言。
加强学生活动,引导学生积极参与活动。
出示问题
数学问题(解方程)
数学问题的解(检验)
实际问题的答案
巩固新知
回归主题,回归现实生活,培养学生解决实际问题的能力
课堂练习,强化新知应用
知识梳理
教学流程图
第一课时
七、教学评价设计
教学评价分为学生学习评价、教师教学评价和课堂教学评价,分别在教学评价中查看
八、教后反思
用方式二不收月租费,根据累计通话时间按0.40元/分收通话费。
不一定,具体由当月累计通话时间决定。
学生计算
师生共同探讨:
设累计通话t分,则用方式一要收费(30+0.3t)元,用方式二要收费0.4t元,如果两种计费方式的收费一样,则
0.4t=30+0.3t
移项得0.4t-0.3t=30
合并同类项,得0.1t=30
三、学习者特征分析
七年级学生无论从生理还是智力等方面来说,都正处于发展的黄金时期,他们对外界事物都有着非常浓厚的兴趣,特别是一些生活中的数学问题是他们最感兴趣的,我们应该充分利用每一个时机,在引导学生分析具体问题的同时,学习更有价值的数学问题。但少数学生分析问题和解决问题的能力较弱,是学习的不利因素。
抓住问题中的相等关系列方程和用合并同类项与移项法解一元一次方程是本节的重点,设方案选择类问题中的相等关系列方程是本节的难点。在这部分内容的教学中,可以通过分组讨论等多种方式理解以下要点:什么情况下两种付费方式一样多,这样就抓住了问题中的相等关系从而列方程。
通过课件演示,激发学生学习生活中的数学。
五、教学环境及资源准备
二、教学目标(知识和技能,过程和方法,情感、态度和价值观)
知识和技能:
1.能够利用列一元一次方程解决实际生活中的问题。
2.进一步熟悉用合并同类项与移项解一元一次方程。
3.通过电话费问题学习会解决方案选择问题。
过程和方法:
1.通过分析、讨论等手段,使学生学会列方程解方案选择类应用题。
2.通过小组讨论,学会分析确定方案选择类问题的结果。
案例名称
七年级数学下《一元一次方程----合并同类项与移项》
科目
数学
教学对象
七年级学生
提供者
黄志刚
Байду номын сангаас课时
1课时
一、教材内容分析
方程是应用广泛的数学工具,它在义务教育阶段的数学课程中占重要地位。本章是一元一次方程,是最简单的方程,解任何一个方程都要化归为一元一次方程来解。本节课是方案选择问题,选择经济实惠的付费方式很有现实意义。
问题在这里得到解决和升华
选一选
练一练
评一评:
课后作业
根据以上解题过程,你能为小平的爸爸作选择了吗?
课堂小结
布置作业
如果小平的爸爸业务活动较多,与外界的联系一定不少,使用时间肯定多于300分,那么他应该选择“方式一”。
如果小平的爸爸业务活动较少,与外界的联系一定较少,使用时间肯定少于300分,那么他应该选择“方式二”。
假如你爸爸也遇到同样的问题,请为你爸爸作个选择。
一个周末,王老师等3名教师带着若干名学生外出考察旅游(旅费统一支付),联系了标价相同的两家旅游公司,经洽谈,甲公司给出的优惠条件是:教师全部付费,学生按七五折付费;乙公司给的优惠条件是:全部师生按八折付费,请你参谋参谋,选择哪家公司较省钱?
实际问题(列方程)
四、教学策略选择与设计
本节教学为一课时。在本节课的教学中,应当引导学生进行观察和思考,通过小组分析和讨论,明确设方案选择类问题中的相等关系,抓住这个相等关系列方程。
教师在课前要利用多媒体技术向学生展示本节课的学习目的和问题,以激发学生的学习兴趣。在学生活动过程中,教师应注意引导学生根据表格形式分析题目中的数量关系,通过设方案选择类问题中的相等关系列方程。
说一说
猜一猜:
算一算
想一想
议一议
展示课件,出示问题
你能从中表中获得哪些信息?
教师及时设疑、鼓励作答、及时点评
使用哪一种计费方式合算?
一个月内在本地通话200分和350分,按两种计费方式各需交费多少元?
对于某个本地通通话时间,会出现两种计费方式的收费一样的情况吗?
怎样选择计费方式更省钱?
学生读题目
用方式一每月收月租费30元,此外根据累计通话时间按0.30元/分加收通话费;
3.通过解方程,熟悉用合并同类项与移项解一元一次方程。
情感、态度和价值观:
1.通过小组的观察、讨论、总结发言,使学生体验学习生活中的数学的乐趣。
2.通过比较分析练习,增强学生对列方程解应用题的兴趣。
学习重点:抓住问题中的相等关系列方程。用合并同类项与移项解一元一次方程。
学习难点:设方案选择类问题中的相等关系列方程。
相关文档
最新文档