(完整版)一元一次方程归纳总结
一元一次方程 基础知识整理

一元一次方程1.定义:方程与一元一次方程含有未知数的叫方程,方程必须具备两个条件:第一是等式,第二是含有未知数。
方程中只含有一个未知数,且未知数的次数都是1的整式方程叫做一元一次方程。
2.方程的解与解方程使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!解方程就是求出使方程中左右两边均相等的未知数的值,是过程。
3.等式的性质(1):等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;(2):等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.解方程的过程就是把方程逐步化为x=a(常数)的形式,等式的性质是重要的转化依据。
4.解方程(1)合并同类项与移项:合并时牢记:同类项的系数相加,字母连同指数不变,系数为负数时要注意符号。
(2)移项(移项要变号):移项就是把等式一边的某项变号后移到另一边。
一般把方程转化为含有未知数的在方程的左边,常数在方程的右边。
注意与加法交换律不一样。
移项是把某些项从方程的一边移到另一边,移动要变号,而加法交换律只是加数之间交换位置,改变的只是顺序不改变符号。
(3)去括号与去分母:去括号法则与整式去括号法则相同:括号外的因数是整数时,去括号后原括号内各项的符号与原来的符号相同。
括号外的因数是负数时,去括号内后,原括号内各项的符号与原来的符号相反。
去分数:先把分式化成整式再计算。
应注意各项都要乘以各分母的最小公倍数,不要漏乘分母的项,如果分子是一个多项式,去分母时要将分子作为一个整体加上括号。
当分母是小数时,要先利用分母的基本性质把小数转化成整数,然后再去分母。
(4)一元一次方程解法的一般步骤:化简方程----------分数基本性质去分母----------同乘(不漏乘)最简公分母去括号----------注意符号变化移项----------变号合并同类项--------合并后注意符号系数化为1---------未知数细数是几就除以几5.列方程(1)读题分析法:…………多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法: …………多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.6.列方程解决实际问题一般步骤:审设列解验答(1)配套问题等量关系:加工或者生产的总量相等或成比例。
一元一次方程知识点总结

一元一次方程知识点总结方程是数学中的重要概念,它描述了一个等式中未知数与已知数之间的关系。
在代数学中,一元一次方程是最简单的方程形式,它包含一个未知数及其系数和常数项。
学好一元一次方程,对于进一步学习代数以及解决实际问题都具有重要意义。
本文将总结一元一次方程的基本概念、解法和应用。
一、基本概念一元一次方程的一般形式为ax + b = 0,其中a和b分别为已知系数和常数项,x为未知数。
方程中的x是未知数,我们要找到一个解使得方程成立。
当x满足方程时,称x为方程的解。
一元一次方程的重要性在于它描述了直线上的点,这条直线称为解空间。
解空间是一个自变量和因变量之间的关系集合。
二、解法方法1. 移项法:通过移项将方程化简为x = c的形式,其中c为常数。
移项法是最常用也是最简单的解法方法。
通过逐步迭代将常数项和未知数项移到等式两侧,直到x的系数为1,就得到方程的解。
例如:2x + 3 = 7,可以先将3移到等式的右边,得到2x = 7 - 3,再将2移到等式的右边,得到x = (7 - 3) / 2,最终解得x = 2。
2. 因式分解法:如果方程可以进行因式分解,我们可以很快地求解方程。
例如:2x + 4 = 0,可以将方程两边都除以2,得到x + 2 = 0,然后通过因式分解得到(x + 2) = 0,进一步解得x = -2。
3. 消元法:当方程中存在多个未知数时,可以通过消元法将未知数相互抵消,留下只含一个未知数的方程。
例如:3x + 2y = 8,2x - 5y = -7,可以先将其中一条方程乘以适当的常数,使得两个方程中未知数的系数相等或相差一个整数倍,然后将两个方程相加或相减,得到只含一个未知数的方程,进而解得未知数。
三、应用一元一次方程在实际问题中有广泛应用。
举例如下:1. 速度问题:速度等于路程除以时间。
通过设定未知数的含义,可以建立一元一次方程求解速度。
例如:小明骑自行车以每小时10公里的速度向前行x小时后,骑行的总路程为100公里。
一元一次方程笔记整理

一元一次方程笔记整理
【实用版】
目录
一、一元一次方程的定义
二、一元一次方程的解法
三、一元一次方程的应用
正文
一、一元一次方程的定义
一元一次方程是指只含有一个未知数,并且未知数的次数是 1 的方程。
其中,未知数通常用 x 表示,系数和常数项为已知数。
例如,3x+2=5 就是一个一元一次方程。
二、一元一次方程的解法
解一元一次方程的一般步骤如下:
1.移项:将含有未知数的项移到等式一边,常数项移到等式另一边。
2.合并同类项:将同一未知数的系数相加,使未知数的系数为 1。
3.化系数为 1:将等式两边同时除以未知数的系数,得到未知数的解。
以方程 3x+2=5 为例:
1.移项:3x+2-2=5-2,化简得 3x=3。
2.合并同类项:3x=3,未知数的系数已为 1。
3.化系数为 1:x=3/3,得到解 x=1。
三、一元一次方程的应用
一元一次方程在实际生活中有着广泛的应用,例如购物、行程安排、工程计算等。
掌握一元一次方程的解法,有助于更好地解决实际问题。
例如,小明想买一部手机,价格为 3000 元,他已经存了 2000 元,每月可以存 500 元。
设存 x 个月后,他可以买到手机,则可以列出方程500x=3000-2000,解得 x=6。
所以小明需要存 6 个月才能买到手机。
总之,一元一次方程是数学中的基本知识,对于学习和生活都有着重要意义。
一元一次方程(知识点完整版)

第三章:一元一次方程本章板块⎪⎪⎪⎩⎪⎪⎪⎨⎧程实际问题与一元一次方方程的解解方程等式的基本性质定义一元一次方程.5.4.3.2.1 知识梳理【知识点一:方程的定义】方程:含有未知数的等式就叫做方程.注意未知数的理解,n m x ,,等,都可以作为未知数。
题型:判断给出的代数式、等式是否为方程 方法:定义法例1、判定下列式子中,哪些是方程?(1)4=+y x (2)2>x (3)642=+(4)92=x (5)211=x【知识点二:一元一次方程的定义】一元一次方程:①只含有一个未知数(元);②并且未知数的次数都是1(次); ③这样的整式方程叫做一元一次方程。
题型一:判断给出的代数式、等式是否为一元一次方程 方法:定义法例2、判定下列哪些是一元一次方程?0)(22=+-x x x ,712=+x π,0=x ,1=+y x ,31=+xx ,x x 3+,3=a题型二:形如一元一次方程,求参数的值方法:2x 的系数为0;x 的次数等于1;x 的系数不能为0. 例3、如果()051=+-mx m 是关于x 的一元一次方程,求m 的值例4、若方程()05122=+--ax x a 是关于x 的一元一次方程,求a 的值【知识点三:等式的基本性质】等式的性质1:等式两边都加上(或减去)同个数(或式子),结果仍相等.即:若a=b ,则a ±c=b ±c等式的性质2:等式两边同时乘以同一个数,或除以同一个不为0的数,结果仍相等.即:若b a =,则bc ac =;若b a =,0≠c 且cb c a = 例5、运用等式性质进行的变形,不正确的是( )A 、如果a=b,那么a —c=b-cB 、如果a=b,那么a+c=b+cC 、如果a=b ,那么cbc a = D 、如果a=b,那么ac=bc 【知识点四:解方程】方程的一般式是:()00≠=+a b ax 题型一:不含参数,求一元一次方程的解例7、解方程284=-练习1、()()()35123452+--=-+-x x x x练习2、14.01.05.06.01.02.0=+--x x 练习3、x =+⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+221413223题型二:解方程的题中,有相同的含x 的代数式方法:利用整体思想解方程,将相同的代数式用另一个字母来表示,从而先将方程化简,并求值。
一次方程与方程组知识点总结归纳

一次方程与方程组知识点总结归纳一、一元一次方程。
1. 定义。
- 只含有一个未知数(元),未知数的次数都是1,等号两边都是整式的方程叫做一元一次方程。
- 一般形式:ax + b=0(a≠0),其中a是未知数x的系数,b是常数项。
例如2x + 3 = 0就是一元一次方程。
2. 方程的解。
- 使方程左右两边相等的未知数的值叫做方程的解。
例如x = - (3)/(2)是方程2x+3 = 0的解。
3. 等式的性质。
- 性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
如果a=b,那么a±c = b±c。
- 性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
如果a = b,那么ac=bc;如果a=b(c≠0),那么(a)/(c)=(b)/(c)。
- 利用等式的性质可以求解一元一次方程,例如解方程2x+3 = 0,首先根据等式性质1,两边同时减3得2x=-3,再根据性质2,两边同时除以2得x = - (3)/(2)。
4. 一元一次方程的解法步骤。
- 去分母(若方程中存在分母时):根据等式性质2,在方程两边同时乘以各分母的最小公倍数,将分母去掉。
例如方程(x + 1)/(2)+(x - 1)/(3)=1,分母2和3的最小公倍数是6,方程两边同时乘以6得3(x + 1)+2(x - 1)=6。
- 去括号:根据乘法分配律将括号去掉。
如3(x + 1)+2(x - 1)=6去括号后变为3x+3 + 2x-2 = 6。
- 移项:把含未知数的项移到方程一边,常数项移到另一边,移项要变号。
例如3x+3 + 2x-2 = 6移项后得3x+2x=6 - 3+2。
- 合并同类项:将方程中同类项合并。
如3x+2x=6 - 3+2合并同类项得5x = 5。
- 系数化为1:根据等式性质2,方程两边同时除以未知数的系数。
如5x = 5两边同时除以5得x = 1。
二、二元一次方程(组)1. 二元一次方程。
一元一次方程专题总结5篇

一元一次方程专题总结5篇第一篇:一元一次方程专题总结一元一次方程专题总结本章的内容是等式和它的性质、方程和它的解、一元一次方程的解法及其应用。
其中一元一次方程的解法及其应用是本章的主要内容。
[思想方法总结]1.化归方法所谓化归的思想方法,是指在求解数学问题时,如果对当前的问题感到困惑,可把它先进行变换,使之化繁为简、化难为易、化生疏为熟悉,从而使问题得以解决的思维方法。
如本章解方程的过程,就是把形式比较复杂的方程,逐步化为最简方程ax=b(a≠0),从而求出方程的解x=。
2.分析法和综合法分析法是从未知,看已知,逐步推向己知,即由果索因;综合法是从已知,看未知,逐步推向未知,即由因索果,研究数学问题时,一般总是先分析,在分析的基础上综合。
列方程解应用题就是运用了这种分析和综合的思想方法。
3.方程思想方法方程思想方法是把未知数看成已知数,让代替未知数的字母和已知数一样参加运算。
这种思想方法是数学中常用的重要方法之一,是代数解法的重要标志。
本章列方程解应用题,是方程思想的具体应用。
[学习方法总结]如何检验一个数是否是某个方程的解,是必须掌握的最基本的技能技巧。
检验某个给定的数是否为某方程的解,只要将该数代入方程,看能否使方程左、右两边相等,这种方法是一种重要的数学思想方法和解题方法,今后我们在学习二元一次方程及方程组、一元二次方程、分式方程、无理方程等方程中,都可以用这种方法检验一个数(或一对数)是否是某个方程(或方程组)的解。
利用这种方法还可以检查所求的方程的解是否正确,从而检验自己的运算能力。
[注意事项总结]1.通过本章的学习,可以体会到对于解方程和列方程解应用题,代数解法具有居高临下、省时省力的优点。
所以,今后要从算术解法转到习惯于代数解法。
2.不要死记硬背例题题型和解法,而要努力学会分析问题的本领。
为此要适当做一些与例题不同类的题,通过老师的指导,自己去进行分析并解决它们。
3.要注意检验求得的结果是不是方程的解,方程的解是不是符合应用题题意的解。
一元一次方程归纳总结

一元一次方程只含有一个未知数(即“元”),并且未知数的最高次数为1(即“次”)的整式方程叫做一元一次方程(英文名:linear equation with one unknown)。
一元一次方程的标准形式(即所有一元一次方程经整理都能得到的形式)是ax+b=0(a,b为常数,x为未知数,且a≠0)。
求根公式:x=-b/a。
一、基本信息标准形式一元一次方程的标准形式(即所有一元一次方程经整理都能得到的形式)是ax+b=0(a,b为常数,x为未知数,且a≠0)。
其中a是未知数的系数,b是常数,x是未知数。
未知数一般设为x,y,z。
方程特点(1)该方程为整式方程。
(2)该方程有且只含有一个未知数。
(3)该方程中未知数的最高次数是1。
满足以上三点的方程,就是一元一次方程。
判断方法要判断一个方程是否为一元一次方程,先看它是否为整式方程。
若是,再对它进行整理。
如果能整理为 ax+b=0(a≠0)的形式,则这个方程就为一元一次方程。
里面要有等号,且分母里不含未知数。
变形公式ax=-b(a,b为常数,x为未知数,且a≠0)求根公式通常解法去分母→去括号→移项→合并同类项→系数化为1。
两种类型(1)总量等于各分量之和。
将未知数放在等号左边,常数放在右边。
如:x+2x+3x=6。
(2)等式两边都含未知数。
如:300x+400=400x,40x+20=60x。
方程举例2a=4a-63b=-1x=1都是一元一次方程。
方程起源“方程”一词来源于中国古算术书《九章算术》。
在这本著作中,已经列出了一元一次方程。
法国数学家笛卡尔把未知数和常数通过代数运算所组成的方程称为代数方程。
在19世纪以前,方程一直是代数的核心内容。
主要用途一元一次方程通常可用于做应用题,如工程问题、行程问题、分配问题、盈亏问题、球赛积分表问题、电话(水表、电表)计费问题、数字问题等。
[2]二、补充说明合并同类项(1)依据:乘法分配律(2)把未知数相同且其次数也相同的项合并成一项;常数计算后合并成一项(3)合并时次数不变,只是系数相加减。
一元一次方程所有知识点

一元一次方程所有知识点一、一元一次方程的概念。
1. 定义。
- 只含有一个未知数(元),未知数的次数都是1,等号两边都是整式,这样的方程叫做一元一次方程。
- 例如:2x + 3=5x - 1是一元一次方程,它只含有一个未知数x,x的次数是1,等号两边2x + 3和5x-1都是整式。
- 一般形式:ax + b = 0(a≠0),其中a是未知数x的系数,b是常数项。
2. 方程的解。
- 使方程左右两边相等的未知数的值叫做方程的解。
- 例如:对于方程2x+3 = 7,当x = 2时,左边=2×2 + 3=4 + 3 = 7,右边=7,所以x = 2就是方程2x+3 = 7的解。
二、一元一次方程的解法。
1. 移项。
- 把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫做移项。
- 例如:在方程2x+3 = 5x - 1中,为了求解x,我们将5x移到左边变为-5x,3移到右边变为-3,得到2x-5x=-1 - 3。
- 移项的依据是等式的基本性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
2. 合并同类项。
- 将方程中含有相同字母且相同字母的指数也相同的项合并在一起。
- 例如:在2x-5x=-1 - 3中,2x-5x=-3x,-1-3 = -4,方程变为-3x=-4。
3. 系数化为1。
- 在方程ax = b(a≠0)的形式下,将方程两边同时除以a,得到x=(b)/(a)。
- 例如:对于方程-3x=-4,两边同时除以-3,得到x=(4)/(3)。
三、一元一次方程的应用。
1. 行程问题。
- 基本公式:路程=速度×时间。
- 相遇问题:两者路程之和等于总路程。
例如:甲、乙两人分别从A、B两地同时出发相向而行,甲的速度是v_1,乙的速度是v_2,经过t小时相遇,AB两地间的距离s=(v_1 + v_2)t。
- 追及问题:两者路程之差等于初始距离。
例如:甲、乙两人同向而行,甲的速度是v_1,乙的速度是v_2(v_1>v_2),开始时甲、乙相距s_0,经过t小时甲追上乙,则s_0=(v_1 - v_2)t。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)总量等于各分量之和。
将未知数放在等号左边,常数放在右边。
如:x+2x+3x=6。
(2)等式两边都含未知数。
如:300x+400=400x,40x+20=60x。
等式性质
去括号,得
移项,得
合并同类项,得系数化为
左边=
右边=
左边=右边
五、注意事项
(1)分母是小数时,根据分数的基本性质,把分母转化为整数;
(2)去分母时,方程两边各项都乘各分母的最小公倍数,此时不含分母的项切勿漏乘,分数线相当于括号,去分母后分子各项应加括号;
(3)去括号时,不要漏乘括号内的项,不要弄错符号;
(4)移项时,切记要变号,不要丢项,有时先合并再移项,以免丢项;
(5)系数化为1时,方程两边同乘以系数的倒数或同除以系数,不要弄错符号;
(6)不要生搬硬套解方程的步骤,具体问题具体分析,,找到最佳解法。
(7)分、小数运算时不能嫌麻烦。
(8)不要跳步,一步步仔细算。