鲁教版-数学-初一上册-《解一元一次方程(一)》教案

合集下载

《一元一次方程》的优秀教案(9篇)精选全文完整版

《一元一次方程》的优秀教案(9篇)精选全文完整版

可编辑修改精选全文完整版《一元一次方程》的优秀教案《一元一次方程》的优秀教案(精选9篇)《一元一次方程》的优秀教案篇1知识技能会通过“移项”变形求解“ax+b=cx+d”类型的一元一次方程。

数学思考1.经历探索具体问题中的数量关系过程,体会一元一次方程是刻画实际问题的有效数学模型。

进一步发展符号意识。

2.通过一元一次方程的学习,体会方程模型思想和化归思想。

解决问题能在具体情境中从数学角度和方法解决问题,发展应用意识。

经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性。

情感态度经历观察、实验计算、交流等活动,激发求知欲,体验探究发现的快乐。

教学重点建立方程解决实际问题,会通过移项解“ax+b=cx+d”类型的一元一次方程。

教学难点分析实际问题中的相等关系,列出方程。

教学过程活动一知识回顾解下列方程:1.3x+1=42.x-2=33.2x+0.5x=-104.3x-7x=2提问:解这些方程时,方程的解一般化成什么形式?这些题你采用了那些变形或运算?教师:前面我们学习了简单的一元一次方程的解法,下面请大家解下列方程。

出示问题(幻灯片)。

学生:独立完成,板演2、4题,板演同学讲解所用到的变形或运算,共同讲评。

教师提问:(略)教师追问:变形的依据是什么?学生独立思考、回答交流。

本次活动中教师关注:(1)学生能否准确理解运用等式性质和合并同列项求解方程。

(2)学生对解一元一次方程的变形方向(化成x=a的形式)的理解。

通过这个环节,引导学生回顾利用等式性质和合并同类项对方程进行变形,再现等式两边同时加上(或减去)同一个数、两边同时乘以(除以,不为0)同一个数、合并同类项等运算,为继续学习做好铺垫。

活动二问题探究问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?教师:出示问题(投影片)提问:在这个问题中,你知道了什么?根据现有经验你打算怎么做?(学生尝试提问)学生:读题,审题,独立思考,讨论交流。

七年级上册数学教案《一元一次方程》

七年级上册数学教案《一元一次方程》

七年级上册数学教案《一元一次方程》教学目标1、了解方程及一元一次方程,方程的解等概念;会找等量关系,列出方程。

2、在实际问题中探讨概念、数量关系,列出方程的方法,训练运用知识解决实际问题的能力。

3、通过列方程的过程,感受方程作为刻画现实世界的数学模型的意义;体会由算式到方程是数学的一大进步,从而体会方程的思想。

教学重点归纳出一元一次方程的概念教学难点根据具体问题中的数量关系,列出一元一次方程。

教学过程一、创设情境,解决问题一辆客车和一辆卡车同时从A地出发沿同一公路同方向行驶,客车的行驶速度是70km/h,卡车的行驶速度是60km/h,客车比卡车早1h经过B地。

A,B 两地间的路程是多少?方法一:算术法以总路程为单位“1”行驶1km的路程,客车所用时间:1/70h。

行驶1km的路程,卡车所用时间:1/60h。

行驶[1÷(1/60 - 1/70)]km的路程,客车比卡车少用1h。

方法二:列方程解:设A,B两地相距x km。

因为客车比卡车早1h经过B地,所以x/70比x/60小1。

x/60 - x/70 = 170x/4200 - 60x/4200 = 42070x - 60x = 1010x = 10x = 1小结:用算术方法解题时,列出的算式表示用算术方法解题的计算过程,其中只含有已知数;而方程是根据问题中的等量关系列出的等式,其中既含有已知数,又含有用字母表示的未知数。

二、比较方法,明确定义1、用算术方法和方程解决这个问题,各有什么特点?用算术方法解题时,列出的算式表示用算术方法解题的计算过程,其中只含有已知数;而方程是根据问题中的相等关系列出的等式,其中既含有已知数,又含有用字母表示的未知数。

2、对于上面的问题,你还能列出其他方程吗?解:设卡车的时间为t h。

客车的路程 = 卡车的路程70 × (t+1)= 60 × t三、学以致用,巩固练习根据下列问题,设未知数并列出方程。

3.3.1解一元一次方程-去分母(教案)

3.3.1解一元一次方程-去分母(教案)
3.重点难点解析:在讲授过程中,我会特别强调通分和等式性质这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解如何处理不同分母及避免计算错误。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与解一元一次方程去分母相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示如何去分母解一个实际中的一元一次方程。
五、教学反思
在本次“3.3.1解一元一次方程-去分母”的教学过程中,我发现了一些值得注意的地方。首先,学生们在理解去分母的基本概念方面表现得相当不错,能够跟随我的讲解掌握方程去分母的方法。然而,实际操作中,他们在处理具体问题时还是遇到了一些困难。
在讲授过程中,我尽量用简单明了的语言解释概念,通过实际案例让学生感受去分母的应用。但我也注意到,部分学生在通分这一步骤上还是感到困惑,容易在这一环节出现错误。因此,我考虑在今后的教学中,可以增加一些关于通分的专项练习,帮助学生巩固这一知识点。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解一元一次方程去分母的基本概念。去分母是解一元一次方程的重要步骤,它可以帮助我们简化问题,便于求解。它是方程求解过程中的关键环节,广泛应用于各个领域。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何将一个含分母的一元一次方程通过去分母转化为不含分母的方程,并求解。
-组织小组讨论和互评,让学生在互动中交流心得,共同突破难点;
-对常见错误进行归纳总结,提醒学生注意避免类似错误。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“3.3.1解一元一次方程-去分母”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要平均分配或比较不同单位数量的问题?”(如:将一块巧克力平均分给几个人)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索解一元一次方程去分母的奥秘。

初中七年级上册数学《解一元一次方程》教案优质优秀10篇

初中七年级上册数学《解一元一次方程》教案优质优秀10篇

初中七年级上册数学《解一元一次方程》教案优质优秀10篇初中七年级上册数学《解一元一次方程》教案优质篇一一、学生起点分析学生的知识技能基础:学生在小学已经学习过算术四则运算,而初中的有理数运算是以小学算术四则运算为基础的,不同的是有理数运算多了一个符号问题。

符号法则是有理数运算法则的重要组成部分,也是学生学习本章知识和今后学习其他与计算有关的内容时容易出错的知识点之一。

学生活动经验基础:在前面相关知识的学习过程中,学生已经经历了一些数学活动,感受到了数的范围的扩大,能借助生活经验对一些简单的实际问题进行有理数的运算,如计算比赛的得分,计算温差等等。

同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定数学交流的能力。

学生学习中的困难预设:学生学习数学是一种认识过程,要遵循一般的认识规律,而七年级的学生,对异号两数相加从未接触过,与小学加法比较,思维强度增大,需要通过绝对值大小的比较来确定和的符号和加法转化为减法两个过程,要求学生在课堂上短时间内完成这个认识过程确有一定的难度,在教学时应从实例出发,充分利用教材中的正负抵消的思想,用数形结合的观点加以解释,让学生感知法则的由来,以突破这一难点。

二、教学任务分析对于有理数的运算,首先在于运算的意义的理解,即首先要回答为什么要进行运算。

为此,必须让学生通过具体的问题情境,认识到运算的作用,加深学生对运算本身意义的理解,同时也让学生体会到运算的应用,从而培养学生一定的应用意识和能力。

教科书基于学生学习了相反数和绝对值基础之上,提出了本课时的具体学习任务:探索有理数的加法运算法则,进行有理数的加法运算。

本课时的教学重点是有理数加法法则的探索过程,利用有理数的加法法则进行计算,教学难点是异号两数相加的法则。

教学方法是“引导分类归纳”。

本课时的教学目标如下:1.经历探索有理数加法法则的过程,理解有理数的加法法则;2.能熟练进行整数加法运算;3.培养学生的数学交流和归纳猜想的能力;4.渗透分类、探索、归纳等思想方法,使学生了解研究数学的一些基本方法。

数学《一元一次方程》教学设计(优秀3篇)

数学《一元一次方程》教学设计(优秀3篇)

数学《一元一次方程》教学设计(优秀3篇)随着时光的流逝,新的一个学期又开始了,为了更好的完成新学期的教育教学工作,使以后的工作有目的、有计划、有组织的顺利的进行,这次帅气的小编为您整理了数学《一元一次方程》教学设计(优秀3篇),希望大家可以喜欢并分享出去。

教学目标:篇一知识与技能:理解有关概念:方程,一元一次方程,方程的解,体会用方程来表示数量关系的优越性。

过程与方法:能将实际问题抽象为数学问题,并会找相等关系来列方程。

情感与态度:增强应用数学的意识,激发学习数学的热情。

教学重点:从实际问题中寻找相等关系。

教学难点:从实际问题中寻找相等关系。

学习路线:篇二1、阅读课本。

2、完成以下学习任务:(1)章前图中的汽车匀速行驶途经王家庄、青山、秀水三地,时间如表所示,翠湖在青山、秀水两地之间,距青山50千米,距秀水70千米。

求王家庄到翠湖的路程?①列算式用算术方法解决这个实际问题:____________________②用方程来解决这个实际问题:先画示意图:再找相等关系来列方程:(小组交流,讨论多种方法)(2)方程的概念:___________________________判断以下式子哪些是方程?是的画3+1=4; ;(3)根据下列问题列方程:①用一根长24cm的铁丝围成一个正方形,设正方形的边长是x cm,则可列方程:________②一台计算机已使用1700小时,预计每月再使用150小时,经过x 月这台计算机的使用时间达到规定的检修时间2450小时,则可列方程:____________________③某校女生占全体学生数的52℅,比男生多80人,设这个学校有x 名学生,则可列方程:___________________④课本的三道练习题:(完成后小组批改)(4)一元一次方程的概念:___________________________注意:是整式方程。

(5)什么叫做解方程:____________________________(6)什么叫做方程的解?__________________________(7)括号里的数( =3,=4,=-4)是方程的解有____________归纳:设未知数列方程实际问题一元一次方程分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。

七年级数学上册《去分母解一元一次方程》教案、教学设计

七年级数学上册《去分母解一元一次方程》教案、教学设计
5.课后反思:要求学生撰写一篇课后反思,内容包括对本节课知识点的理解、学习过程中的困惑、解决问题的策略和收获等,旨在帮助学生自我监控学习过程,提高自我认知。
作业布置要求:
1.学生需按时完成作业,保持字迹工整,解题步骤清晰。
2.家长应协助监督,确保学生独立完成作业,养成良好的学习习惯。
3.教师将根据作业完成情况,及时给予反馈,帮助学生查漏补缺,提高学习效果。
-关注学生在学习过程中的情感态度和价值观的变化,鼓励学生自我反思,培养学生的自我评价能力。
4.教学过程:
-导入:通过实际问题导入,激发学生的学习兴趣,引导学生思考如何解决含有分数的方程。
-新课:讲解一元一次方程的概念,引导学生发现并掌握去分母解方程的方法。
-练习:设计不同层次的练习题,让学生在实践中巩固所学知识,逐步提高解题能力。
针对这些情况,本章节教学设计将注重以下几点:
1.从学生的实际出发,通过具体实例引导学生理解一元一次方程的概念,降低学习难度。
2.注重启发式教学,激发学生的思维,引导学生逐步掌握去分母解方程的方法。
3.创设问题情境,培养学生将实际问题转化为数学问题的能力,提高学生的应用意识。
4.加强师生互动,关注学生的情感需求,鼓励学生积极参与课堂活动,培养学生的自主学习能力和合作精神。
(二)教学设想
1.教学方法:
-采用情景教学法,通过生活实例引出一元一次方程,让学生在具体情境中感知方程的意义。
-运用问题驱动法,设计一系列问题,引导学生逐步深入思考,自主探索解方程的方法。
-实施分层教学,针对不同学生的学习能力,提供不同难度的练习题,使每个学生都能在原有基础上得到提高。
2.教学策略:
七年级数学上册《去分母解一元一次方程》教案、教学设计

七年级上册数学教案设计3.3第2课时利用去分母解一元一次方程1(附模拟试卷含答案)

七年级上册数学教案设计3.3第2课时利用去分母解一元一次方程1(附模拟试卷含答案)

第2课时 利用去分母解一元一次方程1.掌握含有以常数为分母的一元一次方程的解法;(重点)2.加深学生对一元一次方程概念的理解,并总结出解一元一次方程的步骤.(难点)一、情境导入1.等式的基本性质2是怎样叙述的呢? 2.求下列几组数的最小公倍数: (1)2,3; (2)2,4,5.3.通过上几节课的探讨,总结一下解一元一次方程的一般步骤是什么?4.如果未知数的系数是分数时,怎样来解这种类型的方程呢?那么这一节课我们来共同解决这样的问题.二、合作探究探究点一:用去分母解一元一次方程 【类型一】 用去分母解方程(1)x -x -25=2x -53-3;(2)x -32-x +13=16.解析:(1)先方程两边同时乘以分母的最小公倍数15去分母,方程变为15x -3(x -2)=5(2x -5)-45,再去括号,移项、合并同类项、化系数为1解方程.(2)先方程两边同时乘以分母的最小公倍数6去分母,方程变为3(x -3)-2(x +1)=6,再去括号,移项、合并同类项、化系数为1解方程.解:(1)x -x -25=2x -53-3, 去分母得15x -3(x -2)=5(2x -5)-45,去括号得15x -3x +6=10x -25-45, 移项得15x -3x -10x =-25-45-6, 合并同类项得2x =-76, 把x 的系数化为1得x =-38. (2)x -32-x +13=16去分母得3(x -3)-2(x +1)=6, 去括号得3x -9-2x -2=6, 移项得3x -2x =1+9+2, 合并同类项得x =12.方法总结:解方程应注意以下两点:①去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.②去括号,移项时要注意符号的变化.【类型二】 两个方程解相同,求字母的值已知方程1-2x6+x +13=1-2x -14与关于x 的方程x +6x -a 3=a6-3x 的解相同,求a 的值.解析:求出第一个方程的解,把求出的x 的值代入第二个方程,求出所得关于a 的方程的解即可. 解:1-2x 6+x +13=1-2x -142(1-2x)+4(x +1)=12-3(2x -1) 2-4x +4x +4=12-6x +3 6x =9, x =32. 把x =32代入x +6x -a 3=a 6-3x ,得32+9-a 3=a 6-92, 9+18-2a =a -27, -3a =-54, a =18.方法总结:此类问题的思路是根据某数是方程的解,则可把已知解代入方程的未知数中,使未知数转化为已知数,从而建立起未知系数的方程求解.探究点二:应用方程思想求值(1)当k 取何值时,代数式k +13的值比3k +12的值小1?(2)当k 取何值时,代数式k +13与3k +12的值互为相反数?解析:根据题意列出方程,然后解方程即可. 解:(1)根据题意可得3k +12-k +13=1,去分母得3(3k +1)-2(k +1)=6,去括号得9k +3-2k -2=6, 移项得9k -2k =6+2-3, 合并得7k =5, 系数化为1得k =57;(2)根据题意可得k +13+3k +12=0,去分母得2(k +1)+3(3k +1)=0,去括号得2k +2+9k +3=0, 移项得2k +9k =-3-2, 合并得11k =-5, 系数化为1得k =-511.方法总结:先按要求列出方程,然后按照去分母,去括号,移项,合并同类项,最后把未知数的系数化为1得到原方程的解.探究点三:列一元一次方程解应用题某单位计划“五一”期间组织职工到东江湖旅游,如果单独租用40座的客车若干辆刚好坐满;如果租用50座的客车则可以少租一辆,并且有40个剩余座位.(1)该单位参加旅游的职工有多少人?(2)如同时租用这两种客车若干辆,问有无可能使每辆车刚好坐满?如有可能,两种车各租多少辆?(此问可只写结果,不写分析过程)解析:(1)先设该单位参加旅游的职工有x 人,利用人数不变,车的辆数相差1,可列出一元一次方程求解;(2)可根据租用两种汽车时,利用假设一种车的数量,进而得出另一种车的数量求出即可.解:(1)设该单位参加旅游的职工有x 人,由题意得方程:x 40-x +4050=1,解得x =360.答:该单位参加旅游的职工有360人;(2)有可能,因为租用4辆40座的客车、4辆50座的客车刚好可以坐360人,正好坐满.方法总结:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程再求解.三、板书设计解含有分母的一元一次方程(1)去分母;(2)去括号;(3)移项,合并同类项;(4)系数化为1.本节课采用的教学方法是讲练结合,通过一个简单的实例让学生明白去分母是解一元一次方程的重要步骤,通过去分母可以把系数是分数的方程转化为系数是整数的方程,进而使方程的计算更加简便.在解方程中去分母时,发现学生还存以下问题:①部分学生不会找各分母的最小公倍数,这点要适当指导;②用各分母的最小公倍数乘以方程两边的项时,漏乘不含分母的项;③当减式中分子是多项式且分母恰好为各分母的最小公倍数时,去分母后,分子没有作为一个整体加上括号,容易弄错符号.2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图,从A地到B地有多条道路,一般地,为了省时人们会走中间的一条直路而不会走其它的路,其理由是( )A.两点确定一条直线B.垂线段最短C.两点之间,线段最短D.两点之间,直线最短2.下列说法中,正确的有()①经过两点有且只有一条直线;②两点之间,直线最短;③同角(或等角)的余角相等;④若AB=BC,则点B是线段AC的中点.A.1个 B.2个 C.3个 D.4个3.如图,直线l是一条河,P,Q是两个村庄。

七年级数学上册《一元一次方程的应用》教案、教学设计

七年级数学上册《一元一次方程的应用》教案、教学设计
-运用启发式教学法,引导学生主动探究一元一次方程的解法,培养学生的自主学习能力。
-采用合作学习法,让学生在小组内共同讨论、解决问题,培养学生的团队协作能力和沟通能力。
2.教学过程:
(1)导入:通过一个生动的实际问题,引入一元一次方程的应用,激发学生的好奇心。
(2)新知:引导学生从实际问题中抽象出一元一次方程,讲解方程的定义、各部分名称,并举例说明。
1.学生需独立完成作业,遇到问题时可以与同学讨论,但不得抄袭。
2.解题过程要求书写规范,步骤清晰,以便教师批改和指导。
3.作业完成后,请学生认真检查,确保答案的正确性。
4.教师将根据学生的作业完成情况,给予评价和反馈,帮助学生发现和纠正错误。
(3)完成课本第chapter页的习题6,此题为开放性题目,鼓励学生从不同角度思考问题,培养学生的创新思维。
3.思考题:
(1)思考一元一次方程在实际生活中的应用,尝试总结出至少三种常见的一元一次方程应用场景。
(2)与同学分享自己在解决一元一次方程问题时遇到的困难和解决方法,相互学习,共同进步。
作业要求:
(二)讲授新知
1.教学内容:一元一次方程的定义、各部分的名称以及解法。
教学过程:
(1)教师讲解一元一次方ห้องสมุดไป่ตู้的定义,让学生理解未知数、系数、常数项等概念。
(2)通过具体的例子,让学生识别一元一次方程的各部分,并学会如何解一元一次方程。
(3)教师详细讲解解一元一次方程的步骤,如移项、合并同类项、化简等。
(3)探究:设计不同类型的实际问题,让学生分组讨论,尝试列方程、解方程,并检验答案。
(4)总结:引导学生总结一元一次方程的解题步骤,归纳解题方法,形成知识体系。
(5)巩固:布置具有代表性的练习题,让学生独立完成,巩固所学知识。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《求解一元一次方程(一)》教案
教学目标
1、进一步熟悉利用等式的基本性质解一元一次方程的基本技能.
2、在解方程的过程中分析、归纳出移项法则,并能运用这一法则解方程.
3、体会学习移项法则解一元一次方程必要性,使学生在动手、独立思考的过程中,进一步体会方程模型的作用,体会学习数学的实用性.
教学重点
掌握用移项法解一元一次方程.
教学难点
灵活用移项法解一元一次方程.
教学过程
一、复习引入
复习上节课用等式基本性质一解方程的过程,观察、分析、概括出移项法则.
解下列一元一次方程,学生先自主完成,然后以小组形式交流各种解法,要说明这样解的依据.
(1)825=-x ;
解:方程两同时加上2,得28225+=+-x ,
也就是5x =8+2,
方程两边同除以5,得x =2,
此题学生可能会用差+减数=被减数的方法.
(2)x x 825=-.
解:方程两都加上x 82-,得x x x x 8288225-+=-+-,
也就是5x -8x =2,
化简,得-3x =2,
方程两边同除以-3,得x =3
2-. 设问1:在变形过程中,比较画横线的方程与原方程,可以发现什么?
设问2:上述变形过程中,方程中哪些项改变了原来的位置?怎样变的?
设问3:为什么方程两边都要加上2呢?第2小题在解的过程中两边加上x 82-的目的是什么?
归纳:像这样把原方程中的某一项改变______后,从_______一边移到________,这种变形叫做移项.
思考:移项的依据是什么?移项的目的是什么?(等式的基本性质;移项使含有未知数
的项集中于方程的一边,常数项集中于方程的另一边)
二、达标训练
1、把下列方程进行移项变形(未知数的项集中于方程的左边,常数项集中于方程的右边)
(1)534=-x 移项,得______________;
(2)8725+=-x x 移项,得____________;
(3)254203-=+x x 移项,得_______________;
(4)2
53231+=-x x 移项,得______________; 2、下列变形符合移项法则的是( )
A 、523235+--+x x ,得由
B 、5210,2510=-----x x x x 得=由
C 、9147,1497--=--=+x x x x 得由
D 、295,925+==+x x 得由
目的:通过及时的训练落实移项变形,并由学生总结出移项的注意事项并归纳出移项法则.
例1:解方程
(1)162=+x ;
解:移项,得612-=x ,
化简,得52-=x ,
方程两边同时除以2,得25-
=x . (2)7233+=+x x .
解:移项,得3723-=-x x ,
合并同类项,得4=x .
三、合作学习
例2:解方程32
141+-=x x 、 解:移项,得
32141=+x x , 合并同类项,得34
3=x , 方程两边同时除以
43(或同乘以34),得4=x . 学生独立完成例2,学生互评(有哪些方法)
四、小组探究
以小组为单位,每人出一个解方程的题,题型局限于本课时的题型,组内交换解答,组长负责检查,组员负责看解答结果如何.
目的:
1、学生自己出题的过程本身就是对本课时题型的一种掌握.
2、学生互解对方题目的过程,也是一个互相学习、取长补短的过程.
3、合作学习的过程也是让学生学会协作、交流的过程,从而达到巩固所学知识的目的. 课堂小结
1、本节课学习了哪些内容?哪些思想方法?
2、移项的目的是什么?为什么学习了等式的性质还要学习移项法则呢?。

相关文档
最新文档