数据分析师笔试题
数据分析经理招聘笔试题及解答

招聘数据分析经理笔试题及解答(答案在后面)一、单项选择题(本大题有10小题,每小题2分,共20分)1、数据分析经理在进行数据分析时,以下哪个工具最常用于数据清洗和预处理?A、Python的Pandas库B、ExcelC、R语言的dplyr包D、SQL2、在进行客户细分分析时,以下哪个指标通常用于衡量客户之间的相似度?A、客户价值(Customer Value)B、客户生命周期价值(Customer Lifetime Value)C、客户忠诚度(Customer Loyalty)D、相似度系数(Similarity Coefficient)3、题干:在进行数据分析时,以下哪种数据类型最适合用于描述用户年龄?A. 字符串B. 整数C. 浮点数D. 日期时间4、题干:在数据分析中,以下哪种统计方法可以用来评估两个分类变量之间的关联性?A. 均值比较B. 卡方检验C. 相关系数D. 标准差5、假设你正在分析一个电子商务网站的日访问量数据。
为了评估网站流量的稳定性,你会使用以下哪种统计量?A. 平均数B. 中位数C. 方差D. 最大值6、在处理缺失数据时,以下哪种方法通常不适合用于填补数值型变量的缺失值?A. 使用均值填充B. 使用中位数填充C. 使用随机值填充D. 使用预测模型估计值填充7、以下哪种统计方法是用来衡量一组数据集中趋势的指标?A、方差B、标准差C、中位数D、众数8、在进行数据分析时,以下哪个步骤通常不是数据分析流程的一部分?A、数据清洗B、数据探索C、模型预测D、数据展示9、以下哪种分析方法最适合用于识别客户消费行为模式?A. 时间序列分析B. 聚类分析C. 主成分分析D. 相关性分析二、多项选择题(本大题有10小题,每小题4分,共40分)1、以下哪些工具或软件常用于数据分析和处理?()A、PythonB、RC、SQLD、TableauE、Excel2、以下哪些方法是数据分析中常用的数据预处理步骤?()A、数据清洗B、数据集成C、数据变换D、数据归一化E、数据抽样3、以下哪些工具或软件常用于数据分析和处理?()B. PythonC. R语言D. TableauE. SQL4、以下哪些数据清洗步骤是数据分析过程中必不可少的?()A. 数据缺失处理B. 异常值处理C. 数据标准化D. 数据脱敏E. 数据重复处理5、关于数据分析师的职责,以下哪些选项是正确的?()A、收集并整理相关数据B、进行数据清洗和预处理C、设计数据模型和算法D、撰写数据分析报告E、直接参与业务决策6、以下哪些是常用的数据分析方法?()A、描述性统计分析B、假设检验C、时间序列分析D、聚类分析7、以下哪些是数据分析经理在数据分析过程中需要具备的关键技能?A. 熟悉数据挖掘和统计分析方法B. 能够编写SQL查询语句进行数据提取C. 精通Python或R等数据分析编程语言D. 具备良好的沟通和报告撰写能力E. 拥有丰富的行业经验8、以下哪些工具或平台通常用于数据分析经理的日常工作中?A. TableauB. Power BIC. ExcelD. HadoopE. Salesforce9、关于数据分析经理需要掌握的数据分析技能,以下哪些是必须的?()A、SQL数据库操作B、Python编程C、数据可视化D、机器学习算法E、统计学知识三、判断题(本大题有10小题,每小题2分,共20分)1、数据分析经理的主要职责是进行数据的收集、整理和分析,但不需要具备编程能力。
数据分析笔试题目及答案解析

数据分析笔试题目及答案解析数据分析笔试题目及答案解析——第1题——1. 从含有N个元素的总体中抽取n个元素作为样本,使得总体中的每一个元素都有相同的机会(概率)被抽中,这样的抽样方式称为?A. 简单随机抽样B. 分层抽样C. 系统抽样D. 整群抽样答案:A——第2题——2. 一组数据,均值中位数众数,则这组数据A. 左偏B. 右偏C. 钟形D. 对称答案:B「题目解析」分布形状由众数决定,均值大于众数的化,说明峰值在左边,尾巴在右边,所以右偏。
偏态是看尾巴在哪边。
——第3题——3. 对一个特定情形的估计来说,置信水平越低,所对应的置信区间?A. 越小B. 越大C. 不变D. 无法判断答案:A「题目解析」根据公式,Z减小,置信区间减小。
——第4题——4.关于logistic回归算法,以下说法不正确的是?A. logistic回归是当前业界比较常用的算法,用于估计某种事物的可能性B. logistic回归的目标变量可以是离散变量也可以是连续变量C. logistic回归的结果并非数学定义中的概率值D. logistic回归的自变量可以是离散变量也可以是连续变量答案:B「题目解析」逻辑回归是二分类的分类模型,故目标变量是离散变量,B错;logisitc回归的结果为“可能性”,并非数学定义中的概率值,不可以直接当做概率值来用,C对。
——第5题——5.下列关于正态分布,不正确的是?A. 正态分布具有集中性和对称性B. 期望是正态分布的位置参数,描述正态分布的集中趋势位置C. 正态分布是期望为0,标准差为1的分布D. 正态分布的期望、中位数、众数相同答案:C「题目解析」N(0,1)是标准正态分布。
——第6题——6. 以下关于关系的叙述中,正确的是?A. 表中某一列的数据类型可以同时是字符串,也可以是数字B. 关系是一个由行与列组成的、能够表达数据及数据之间联系的二维表C. 表中某一列的值可以取空值null,所谓空值是指安全可靠或零D. 表中必须有一列作为主关键字,用来惟一标识一行E. 以上答案都不对答案:B「题目解析」B. 关系是一张二维表,表的每一行对应一个元组,每一列对应一个域,由于域可以相同,所以必须对每列起一个名字,来加以区分,这个名字称为属性。
数据分析笔试题及答案

数据分析笔试题及答案一、选择题(每题2分,共10分)1. 数据分析中,以下哪个指标不是描述性统计指标?A. 平均数B. 中位数C. 标准差D. 相关系数答案:D2. 在进行数据清洗时,以下哪项操作不是必要的?A. 处理缺失值B. 去除异常值C. 转换数据类型D. 增加数据量答案:D3. 以下哪个工具不是数据分析常用的软件?A. ExcelB. RC. PythonD. Photoshop答案:D4. 假设检验中,P值小于显著性水平α,我们通常认为:A. 拒绝原假设B. 接受原假设C. 无法判断D. 结果不可靠答案:A5. 以下哪个不是时间序列分析的特点?A. 趋势性B. 季节性C. 随机性D. 稳定性答案:D二、简答题(每题5分,共15分)1. 请简述数据可视化的重要性。
答案:数据可视化是数据分析中的重要环节,它能够帮助分析者直观地理解数据的分布、趋势和模式。
通过图表、图形等形式,可以更清晰地展示数据之间的关系,便于发现数据中的规律和异常点,从而为决策提供支持。
2. 描述数据挖掘中的“关联规则”是什么,并给出一个例子。
答案:关联规则是数据挖掘中用来发现变量之间有趣关系的一种方法,特别是变量之间的频繁模式、关联、相关性。
例如,在超市购物篮分析中,关联规则可能揭示“购买了牛奶的顾客中有80%也购买了面包”。
3. 解释什么是“数据的维度”以及它在数据分析中的作用。
答案:数据的维度指的是数据集中可以独立变化的属性或特征。
在数据分析中,维度可以帮助我们从不同角度观察和理解数据,进行多维度的分析和比较,从而获得更全面的数据洞察。
三、计算题(每题10分,共20分)1. 给定一组数据:2, 3, 4, 5, 6, 7, 8, 9, 10,请计算这组数据的平均数和标准差。
答案:平均数 = (2+3+4+5+6+7+8+9+10) / 9 = 5.5标准差 = sqrt(((2-5.5)^2 + (3-5.5)^2 + ... + (10-5.5)^2) / 9) ≈ 2.87232. 如果一家公司在过去5年的年销售额分别为100万、150万、200万、250万和300万,请计算该公司年销售额的复合年增长率(CAGR)。
大数据分析师招聘笔试题与参考答案

招聘大数据分析师笔试题与参考答案(答案在后面)一、单项选择题(本大题有10小题,每小题2分,共20分)1、大数据分析师在进行数据分析时,以下哪个工具通常用于数据清洗和预处理?A、SQLB、TableauC、PythonD、Hadoop2、在大数据分析中,以下哪个算法通常用于聚类分析?A、决策树B、K-meansC、支持向量机D、神经网络3、在数据分析中,当我们需要从数据集中随机选取一部分样本进行分析时,这通常被称为:A. 数据清洗B. 数据采样C. 数据建模D. 数据可视化4、假设你正在使用Python的pandas库来处理一个DataFrame对象df,其中包含一列名为’Age’。
如果想要筛选出年龄大于等于18且小于60的所有记录,以下哪段代码是正确的?A. df[(df['Age'] > 18) and (df['Age'] < 60)]B. df[df['Age'] >= 18 & df['Age'] < 60]C. df[(df['Age'] >= 18) & (df['Age'] < 60)]D. df[df['Age'].between(18, 60)]5、题干:在数据挖掘中,以下哪个算法通常用于分类任务?A. K-means聚类B. Apriori算法C. 决策树D. KNN算法6、题干:以下哪个指标通常用于衡量数据集的分布均匀性?A. 偏度B. 方差C. 标准差D. 熵7、在数据分析中,当我们提到数据的“离群值”(Outliers)时,它指的是什么?A. 数据集中的最大值和最小值B. 与大多数数据有显著差异的数据点C. 丢失或缺失的数据D. 不符合预期模式的数据8、在大数据项目实施过程中,哪一项活动通常不属于数据分析师的核心职责?A. 清洗和预处理原始数据B. 设计数据库结构C. 应用统计模型进行预测D. 解释模型输出以指导业务决策9、以下哪项不是大数据分析中常用的数据存储技术?A. Hadoop HDFSB. NoSQL数据库C. 关系型数据库D. 关键字存储 10、在数据分析中,以下哪个术语通常用来描述数据集的规模大小?A. 数据量B. 数据质量C. 数据维度D. 数据粒度二、多项选择题(本大题有10小题,每小题4分,共40分)1、下列哪些技能对于大数据分析师来说至关重要?A. 数据挖掘技术B. SQL数据库查询语言C. 数据可视化工具使用(如Tableau)D. 熟悉数据隐私保护法E. 了解硬件工程原理2、在处理大数据时,以下哪些方法可以用来减少计算资源的消耗?A. 数据压缩B. 数据采样C. 增加冗余字段D. 使用分布式计算框架E. 提高数据的维度3、以下哪些工具或技术是大数据分析中常用的数据处理和分析工具?()A. HadoopB. PythonC. SQLD. R语言E. Excel4、在大数据分析中,以下哪些是常用的数据可视化工具?()A. TableauB. Power BIC. MatplotlibD. D3.jsE. Google Charts5、在处理大数据时,以下哪些技术可以用来解决数据存储和计算中的挑战?A. Hadoop MapReduceB. SQL数据库C. NoSQL数据库D. SparkE. Excel6、下列哪些是数据预处理步骤的一部分?A. 数据清洗B. 数据集成C. 数据转换D. 数据挖掘E. 数据可视化7、以下哪些技术或工具是大数据分析师在数据预处理阶段常用的?()A. ETL工具(如Apache Nifi、Talend)B. 数据清洗和转换工具(如Pandas、OpenRefine)C. 数据库管理系统(如MySQL、Oracle)D. 数据可视化工具(如Tableau、Power BI)8、以下哪些方法可以帮助大数据分析师提高数据挖掘的准确性和效率?()A. 特征选择和工程B. 使用先进的机器学习算法C. 数据降维D. 交叉验证9、以下哪些工具或技术是大数据分析师在工作中常用的?()A. HadoopB. SparkC. SQLD. PythonE. Tableau 10、以下关于数据清洗的说法,正确的是?()A. 数据清洗是数据分析的重要步骤之一。
金融数据分析师招聘笔试题及解答(某大型国企)

招聘金融数据分析师笔试题及解答(某大型国企)(答案在后面)一、单项选择题(本大题有10小题,每小题2分,共20分)1、金融数据分析师在分析金融市场数据时,以下哪项不是常用的数据分析方法?A、时间序列分析B、回归分析C、主成分分析D、概率论与数理统计2、以下哪个指标通常用于衡量金融市场的波动性?A、市盈率(PE)B、股息率C、波动率(Volatility)D、市值3、下列哪种统计方法可以用来检验两个样本均值之间是否存在显著性差异?A、卡方检验B、t检验C、方差分析(ANOVA)D、回归分析4、在金融数据分析中,如果需要衡量资产回报率的波动程度,应该使用以下哪种统计量?A、均值B、中位数C、标准差D、众数5、以下哪项不是金融数据分析师常用的数据分析工具?A、PythonB、ExcelC、SPSSD、MySQL6、在金融数据分析师的工作中,以下哪项不是数据清洗的常见步骤?A、缺失值处理B、异常值处理C、数据标准化D、数据降维7、某金融公司需要对其客户进行信用风险评估,以下哪种方法最适用于处理这类问题?()A、主成分分析(PCA)B、聚类分析(Cluster Analysis)C、决策树(Decision Tree)D、支持向量机(SVM)8、在金融数据预处理过程中,以下哪种情况可能会导致分析结果出现偏差?()A、数据缺失值填充B、异常值处理C、数据标准化D、数据清洗9、在金融数据分析中,当我们需要对一组数据进行标准化处理(即转换为均值为0,标准差为1的数据集)时,以下哪个公式正确表达了这一过程?)A.(Z=X−μσB.(Z=X−μ))C.(Z=XσD.(Z=X+μ)二、多项选择题(本大题有10小题,每小题4分,共40分)1、以下哪些工具或软件常用于金融数据分析师的工作中?()A. ExcelB. PythonC. R语言D. SQLE. Tableau2、以下哪些指标或模型是金融数据分析师在分析市场风险时可能会使用的?()A. 市场风险价值(VaR)B. 风险调整后收益(RAROC)C. 基于历史模拟的方法D. 风险中性定价模型E. 信用评分模型3、以下哪些指标通常被用于衡量金融市场的流动性?()A、交易量B、买卖价差C、持仓时间D、市场宽度E、流动比4、在数据分析中,以下哪些方法可以用于处理缺失数据?()A、删除含有缺失值的记录B、使用均值、中位数或众数填充缺失值C、使用回归分析预测缺失值D、使用决策树进行缺失值预测E、使用插值法填充缺失值5、下列哪些方法可以用来检测时间序列数据中的季节性成分?A、自相关函数(ACF)B、偏自相关函数(PACF)C、傅里叶变换(Fourier Transform)D、差分法(Differencing)6、在构建预测模型时,以下哪种技术可以用来解决多重共线性问题?A、岭回归(Ridge Regression)B、LASSO回归C、主成分分析(PCA)D、增加样本量7、以下哪些指标可以用来衡量金融市场流动性?()A、交易量B、买卖价差C、资金周转率D、市场深度E、交易速度8、以下哪些方法可以用于金融风险评估?()A、历史数据分析B、情景分析C、敏感性分析D、压力测试E、贝叶斯网络9、下列哪些统计方法可以用来检测时间序列数据中的季节性波动?A. 移动平均法B. 自回归模型C. 季节性分解(如X-11方法)D. 多元线性回归E. 傅里叶分析三、判断题(本大题有10小题,每小题2分,共20分)1、金融数据分析师在分析市场趋势时,应优先考虑宏观经济数据,而非企业微观层面的财务数据。
大数据分析师招聘笔试题及解答(某大型集团公司)2025年

2025年招聘大数据分析师笔试题及解答(某大型集团公司)(答案在后面)一、单项选择题(本大题有10小题,每小题2分,共20分)1、在大数据处理中,Hadoop生态系统中负责分布式存储的核心组件是?A. HiveB. HBaseC. HDFSD. Spark2、以下哪种数据结构在大数据处理中常用于表示稀疏矩阵?A. 二叉树B. 链表C. 压缩稀疏行(CSR)D. 堆3、某大型集团公司计划在三个月内完成一项大数据分析项目,项目需要处理的数据量预计为100TB。
以下哪个选项是评估项目进度和资源分配最合适的指标?A、每天处理的数据量(GB)B、每周完成的数据分析报告数量C、项目完成所需的总工作量(人时)D、数据处理的准确率4、在数据挖掘过程中,以下哪项技术通常用于发现数据中的关联规则?A、决策树B、K-means聚类C、关联规则挖掘D、时间序列分析5、在大数据分析中,以下哪种数据可视化工具常用于生成交互式图表和仪表板,支持大量数据的实时分析?A)ExcelB)SQL ServerC)TableauD)Python6、在大数据分析中,对于缺失值处理,以下哪种方法属于填充策略?A)删除包含缺失值的行或列B)使用均值、中位数或众数填充C)对缺失值进行插值D)忽略缺失值的存在7、以下哪种算法最适合用来预测连续值?A、决策树B、逻辑回归C、线性回归D、K均值聚类8、在处理大数据集时,以下哪个步骤不是数据预处理的一部分?A、缺失值填充B、异常值检测C、特征选择D、模型训练9、某大型集团公司计划通过大数据分析来预测未来的销售趋势。
以下关于时间序列分析的描述中,哪项是错误的?A、时间序列分析是用于分析随时间变化的数据的方法。
B、时间序列分析通常考虑季节性、趋势和周期性因素。
C、时间序列分析不需要考虑数据的平稳性。
D、时间序列分析可以通过自回归模型(AR)和移动平均模型(MA)来建模。
10、在分析用户行为数据时,以下哪种统计方法可以用来评估两个变量之间的相关性?A、方差分析(ANOVA)B、卡方检验C、相关系数D、聚类分析二、多项选择题(本大题有10小题,每小题4分,共40分)1、以下哪些工具和技术通常用于大数据分析?()A、HadoopB、SparkC、SQLD、PythonE、RF、Tableau2、以下关于数据仓库和数据湖的描述,正确的是?()A、数据仓库是面向主题的、集成的、稳定的、时变的数据库集合。
数据分析师常见的7道笔试题目及答案

数据分析师常见的7道笔试题目及答案数据分析师常见的7道笔试题目及答案导读:探索性数据分析侧重于在数据之中发现新的特征,而验证性数据分析则侧重于已有假设的证实或证伪。
以下是由小编J.L为您整理推荐的实用的应聘笔试题目和经验,欢迎参考阅读。
1、海量日志数据,提取出某日访问百度次数最多的那个IP。
首先是这一天,并且是访问百度的日志中的IP取出来,逐个写入到一个大文件中。
注意到IP是32位的,最多有个2^32个IP。
同样可以采用映射的方法,比如模1000,把整个大文件映射为1000个小文件,再找出每个小文中出现频率最大的IP(可以采用hash_map进行频率统计,然后再找出频率最大的几个)及相应的频率。
然后再在这1000个最大的IP中,找出那个频率最大的IP,即为所求。
或者如下阐述:算法思想:分而治之+Hash1.IP地址最多有2^32=4G种取值情况,所以不能完全加载到内存中处理;2.可以考虑采用“分而治之”的思想,按照IP地址的Hash(IP)24值,把海量IP日志分别存储到1024个小文件中。
这样,每个小文件最多包含4MB个IP地址;3.对于每一个小文件,可以构建一个IP为key,出现次数为value 的Hash map,同时记录当前出现次数最多的那个IP地址;4.可以得到1024个小文件中的出现次数最多的IP,再依据常规的排序算法得到总体上出现次数最多的IP;2、搜索引擎会通过日志文件把用户每次检索使用的所有检索串都记录下来,每个查询串的长度为1-255字节。
假设目前有一千万个记录(这些查询串的重复度比较高,虽然总数是1千万,但如果除去重复后,不超过3百万个。
一个查询串的重复度越高,说明查询它的用户越多,也就是越热门。
),请你统计最热门的10个查询串,要求使用的内存不能超过1G。
典型的T op K算法,还是在这篇文章里头有所阐述,文中,给出的最终算法是:第一步、先对这批海量数据预处理,在O(N)的时间内用Hash表完成统计(之前写成了排序,特此订正。
大数据分析师招聘笔试题及解答(某大型央企)

招聘大数据分析师笔试题及解答(某大型央企)(答案在后面)一、单项选择题(本大题有10小题,每小题2分,共20分)1、以下哪项不是大数据分析中的常见数据类型?A、结构化数据B、半结构化数据C、非结构化数据D、文本数据2、在数据预处理阶段,以下哪种方法不是用于处理缺失值的常见技术?A、均值填充B、中位数填充C、众数填充D、时间序列插值3、以下哪种算法最适合用于处理大规模数据集的分类问题?A、线性回归B、决策树C、K-均值聚类D、支持向量机(SVM)4、在进行数据分析时,发现数据集中存在大量缺失值,最合适的处理方法是?A、直接删除包含缺失值的数据行B、使用一个全局常数值来填充缺失值C、利用预测模型估计并填充缺失值D、根据业务逻辑使用相关统计量(如平均数、中位数)进行填充5、以下哪种数据类型最适合表示用户年龄?A. 整数(int)B. 字符串(str)C. 浮点数(float)D. 日期时间(datetime)6、在处理大数据时,以下哪种技术可以有效提高数据处理的效率?A. 数据分区(Partitioning)B. 数据去重(De-duplication)C. 数据索引(Indexing)D. 数据压缩(Compression)7、在数据预处理阶段,对于数据集中缺失值的处理,以下哪种方法不合适?A、直接删除含有缺失值的数据行B、使用均值、中位数或者众数填充缺失值C、利用算法预测缺失值D、在没有充分依据的情况下,假设缺失值为零8、在进行大数据分析时,以下哪个工具最适合用来进行实时数据流处理?A、Hadoop MapReduceB、Apache Spark StreamingC、SQL ServerD、Tableau9、在Hadoop生态系统中,下列哪个组件负责处理大规模数据集的分布式存储和计算?A. HDFS(Hadoop Distributed File System)B. MapReduceC. YARN(Yet Another Resource Negotiator)D. Hive二、多项选择题(本大题有10小题,每小题4分,共40分)1、在进行大数据分析时,以下哪些是常用的数据预处理步骤?(多选)A. 数据清洗B. 特征选择C. 模型评估D. 数据转换E. 异常值检测2、下列关于Hadoop生态系统组件的说法正确的是?(多选)A. HDFS是一个分布式文件系统,支持大规模数据存储。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对象任
意选择
k 个对
数据分析师笔试试题
【编者注】以下试题是来自阿里巴巴2011年招募实习生的一次笔试题,从笔试题的几个 要求可见数据分析职业要求。
一、异常值是指什么?请列举1种识别连续型变量异常值的方法?
异常值(Outlier)是指样本中的个别值,其数值明显偏离所属样本的其余观测值。
在数 理统计里一般是指一组观测值中与平均值的偏差超过两倍标准差的测定值。
Grubbs 1 test (是以 Frank E. Grubbs 命名的),又叫 maximum normed residual test f 是一种用于单变呈数据集异常值识别的统计检测,它假走数据集来自正态分布的总 体。
未知总体标准差o ,在五种检验法中,优劣次序为:t 检验法、格拉布斯检验法、峰度检验 法、狄克逊检验法、偏度检验法。
点评:考察的内容是统计学基础功底。
二.什么是聚类分析?聚类算法有哪几种?请选择一种详细描述其计算原理和步骤。
聚类分析(cluster analysis)是一组将研究对象分为相对同质的群组(cluste ⑸的统计分析技 术。
聚类分析也叫分类分析(classification analysis)或数值分类(numerical taxonomy).聚类与分类的不同在于,聚类所要求划分的类是未知的。
聚类分析计算方法主要有:层次的方法(hierarchical method )、划分方法
(partitioning method )、基于密度的方法(density-based method )、基于网格的方 法(grid-based method )、基于模型的方法(model-based method )等。
其中,前 两种算法是利用统计学定义的距离逬行度量。
k-means 算法的工作过程说明如下:首先从n 个匚
类中心;而对于所剩下其它对象,则根据它们与这些聚类中心的相似度(距离),分别将
点评:考察的内容是常用分析方法,做数据分析一走要理解1分析算
法、应用
它们分配给与其最相似的(聚类中心所代表的)聚类;然后再计算每个所获新聚类的聚类中心(该聚类中所有对象的均值);不断重复这一过程直到标准测度函数开始收敛为止。
—般都采用均方差作为标准测度函数.k个聚类具有以下特点:各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开。
其流程如下:
(1)从n个数据又蝮任意选择k个对象作为初始聚类中心;
(2)根据每个聚类又援的均值(中心对象),计算每个对象与这些中心对象的距离;并根据最小距离重新对相应又寸象进行划分;
(3)重新计算每个(有变化)聚类的均值(中心对象);
(4)循环(2 )、(3)直到每个聚类不再发生变化为止(标准测星函数收敛)。
优点:本算法确走的K个划分到达平方误差最小。
当聚类是密集的,且类与类之间区别明显时,效果
较好。
对于处理大数据集,这个算法是相对可伸缩和高效的,计算的复杂度为O(NKt),其中N是数
据对象的数目,t是迭代的次数。
一般来说,K<<N , t<<N。
缺点:1. K是事先给走的,但非常难以选走;2.初始聚类中心的选择对聚类结果有较大
的影响。
景、使用过程、以及优缺点。
三、根据要求写岀SQL
表A结构如下:
MemberJD (用户的ID #字符型)
Logjime (用户访问页面时间,日期型(只有一天的数据))
URL (访问的页面地址,字符型)
要求:提取出每个用户访问的第一个URL (按时间最早),形成一个新表(新表名为B ,
表结构和表A —致)
create table B as select MemberJD, min(Log_time), URL from A group
by MemberJD;
点评:SQL语句,简单的数据获取能力,包括表查询、关联、汇总、函数等。
另外,这个答案其实是不对的,实现有很多方法,就不贴出来了,大家自己去发挥吧。
四、销售数据分析
以下是一家B2C电子商务网站的一周销售数据,该网站主要用户群是办公室女性,销售额
主要集中在5种产品上,如果你是这家公司的分析师,
a)从数据中,你看到了什么问题?你觉得背后的原因是什么?
b)如果你的老板要求你提出一个运营改进计划,你会怎么做?
表如下:一组每天某网站的销售数据
a)从这一周的数据可以看岀,周末的销售额明显偏低。
这其中的原因,可以从两个角度来看:站在消费者的角度,周末可能不用上班,因而也没有购买该产品的欲望;站在产品的角度来看,该产品不能在周末的时候引起消费者足够的注意力。
b)针对该问题背后的两方面原因,我的运营改逬计划也分两方面:一是,针对消费者周末没有购买欲望的心理,进行引导提醒消费者周末就应该准备好该产品;二是,通过该产品的一些类彳以于打折促销等活动来提升该产品在周末的人气^购买力。
点评:数据解读能力,获取数据是基本功,仅仅有数据获取能力是不够的,其次是对蠅的解读能力。
五、用户调研某公司针对A、B、C三类客户,提出了一种统一的改逬计划,用于提升客户的周消费次数,需要你来制走一个事前试验方案,来支持决策,请你思考下列问题:
a)试验需要为决策提供什么样的信息?c)按照上述目的,请写出你的数据抽样方法、需要采集的数据指标项,以及你选择的统计
方法。
a)试验要能证明该改进计划能显著提升A、B、C三类客户的周消费次数。
b)根据三类客户的数星,采用分层比例抽样;
需要采集的数据指标项有:客户类别,改迸计划前周消费次数,改进计划后周消费次数;选用统计方法为:分别针对A、B、C三类客户,进行改进前和后的周消费次数的,两独立样本T■检验(two-sample t-test)。
点评:业务理解能力和数据分析思路,这是数据分析的核心竞争力。
综上所述:一个合格的数据分析应该具备统计学基础知识、数据分析方法、数据获取、数据解读和业务理解、数据分析思想几个方面能力。