一元一次方程知识点总结

合集下载

简易方程公式知识点总结

简易方程公式知识点总结

简易方程公式知识点总结一、一元一次方程1. 一元一次方程的定义:一元一次方程是指只含有一个未知数的一次方程。

一般地,一元一次方程可以用ax+b=0(a≠0)来表示,其中a和b是已知数,x是未知数。

2. 方程的解:方程ax+b=0的解即为x=-b/a。

其中,如果a=0且b≠0,那么方程无解;如果a=0且b=0,那么方程有无数解。

3. 解方程的方法:解一元一次方程可以通过如下几种方法:a. 移项法:将未知数的项移到等式的一边,其他项移到另一边。

b. 相消法:通过相等的两边增加或减少同一个量,使得方程两边的某个项相消掉。

c. 等价变形法:通过等式的加减乘除变形,使得方程的解变得更明显。

4. 例题:解方程3x+5=2x-7解:将未知数项移到左边去,得到3x-2x=-7-5,即x=-12。

二、一元二次方程1. 一元二次方程的定义:一元二次方程是指含有一个未知数的二次方程。

一般地,一元二次方程可以用ax^2+bx+c=0(a≠0)来表示,其中a、b和c是已知数,x是未知数。

2. 方程的解:一元二次方程的解可以用求根公式来表示,即x=[-b±√(b^2-4ac)]/(2a)。

其中,当Δ=b^2-4ac>0时,方程有两个不相等的实根;当Δ=0时,方程有两个相等的实根;当Δ<0时,方程没有实根。

3. 方程的图像:一元二次方程的图像是一个开口朝上或开口朝下的抛物线,其顶点坐标为(-b/2a,-Δ/4a)。

4. 例题:解方程x^2-5x+6=0解:根据求根公式,Δ=5^2-4*1*6=1,因此方程有两个不相等的实根,即x=[5±√1]/2=3或2。

三、一元三次方程1. 一元三次方程的定义:一元三次方程是指含有一个未知数的三次方程。

一般地,一元三次方程可以用ax^3+bx^2+cx+d=0(a≠0)来表示,其中a、b、c和d是已知数,x是未知数。

2. 方程的解:一般地,一元三次方程没有通用的求解公式,而是需要通过因式分解、配方法、换元等多种方法来求解。

高中数学方程的知识点总结

高中数学方程的知识点总结

高中数学方程的知识点总结一、一元一次方程一元一次方程是高中数学中首先接触到的一种方程类型,也是最基础的方程类型之一。

一元一次方程的一般形式为ax+b=0,其中a和b为已知数,x为未知数。

解一元一次方程的基本方法是化简、变形,通过加减或乘除等运算得到方程的解。

1. 一元一次方程的解法(1)加减法,将方程化简成形如x=c的形式,即可求得x的值。

(2)代入法,将已知条件代入方程中,求出未知数的值。

(3)变形法,通过变形方程的形式或者将未知数移到方程的一侧,使方程等号两边相等,从而求得未知数的值。

(4)克莱姆法则,利用克莱姆法则可以得到一元一次方程的解,该方法通常适用于二元一次方程组求解。

2. 一元一次方程的应用(1)线性规划问题,通过建立一元一次方程模型,可以求解实际生活中的最优化问题。

(2)物品价格、消费等问题,通过一元一次方程可以解决生活中的购物、消费等实际问题。

二、一元二次方程一元二次方程是高中数学中比较重要的方程类型之一,一般形式为ax^2+bx+c=0,其中a、b、c为已知数,x为未知数。

一元二次方程的求解需要利用一元二次方程的求根公式或者配方法等方法。

1. 一元二次方程的求根(1)求根公式,即利用一元二次方程的一般形式ax^2+bx+c=0,通过求解二次方程的根公式x=\frac{-b±\sqrt{b^2-4ac}}{2a},得到方程的解。

(2)配方法,将一元二次方程利用配方法化为全平方或者差平方的形式,然后根据公式求解方程。

2. 一元二次方程的图像一元二次方程在平面直角坐标系中表示为一个抛物线的图像,通过方程的系数可以看出抛物线的开口方向、开口大小等特征。

3. 一元二次方程的应用(1)物理问题,通过一元二次方程可以解决流体力学、电磁学等领域的问题。

(2)几何问题,一元二次方程可以求解几何问题中的距离、面积等问题。

三、高次方程高次方程是指次数大于二的方程,一般形式为a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0=0。

初中数学一元一次方程的解法知识点总结

初中数学一元一次方程的解法知识点总结

初中数学一元一次方程的解法知识点总结一元一次方程是初中数学中最基本的方程类型之一,也是解题的起点和基础。

掌握一元一次方程的解法是学好数学的必备基础,本文将对一元一次方程的解法进行总结。

一、一元一次方程的定义一元一次方程是指仅含有一个未知数的一次方程,一般表现形式为:ax + b = 0。

其中,a和b为已知数,a≠0。

方程中的未知数为x。

二、一元一次方程解的概念解是指使方程成立的未知数的值。

对于一元一次方程来说,解即是能使ax + b = 0成立的x的值。

三、一元一次方程的解法1. 相反数法相反数法是一元一次方程的基本解法,其基本思想是方程两边同时加上或减去相同的数,使得方程变形后,未知数的系数或常数项可以消去。

举例说明:例1:求解方程2x - 5 = 1。

解:我们可以通过相反数法求解。

首先,将方程两边同时加上5,得到2x = 6。

然后,再将方程两边同时除以2,得到x = 3。

所以,方程2x - 5 = 1的解为x = 3。

2. 移项法移项法是一种较为常用的解一元一次方程的方法,其基本思想是将方程中包含未知数的项移动到方程的一边,使方程变形为ax = b的形式,进而求解未知数的值。

举例说明:例2:求解方程3x + 2 = 8。

解:我们可以通过移项法求解。

首先,将方程中包含未知数的项3x移动到方程的右边,得到2 = 8 - 3x。

然后,进一步化简得到3x = 8 - 2,即3x = 6。

最后,将方程两边同时除以3,得到x = 2。

所以,方程3x + 2 = 8的解为x = 2。

3. 等价方程法等价方程法是通过变形将一个方程转化为与之等价的方程,从而得到方程的解。

常用的等价方程变形方法包括通分、合并同类项等。

举例说明:例3:求解方程2(x + 3) - 5x = 3(2 - x) + 4。

解:我们可以通过等价方程法求解。

首先,将方程两边进行合并同类项,化简得到2x + 6 - 5x = 6 - 3x + 4。

一元一次方程(知识点完整版)

一元一次方程(知识点完整版)

第三章:一元一次方程本章板块⎪⎪⎪⎩⎪⎪⎪⎨⎧程实际问题与一元一次方方程的解解方程等式的基本性质定义一元一次方程.5.4.3.2.1 知识梳理【知识点一:方程的定义】方程:含有未知数的等式就叫做方程.注意未知数的理解,n m x ,,等,都可以作为未知数。

题型:判断给出的代数式、等式是否为方程 方法:定义法例1、判定下列式子中,哪些是方程?(1)4=+y x (2)2>x (3)642=+(4)92=x (5)211=x【知识点二:一元一次方程的定义】一元一次方程:①只含有一个未知数(元);②并且未知数的次数都是1(次); ③这样的整式方程叫做一元一次方程。

题型一:判断给出的代数式、等式是否为一元一次方程 方法:定义法例2、判定下列哪些是一元一次方程?0)(22=+-x x x ,712=+x π,0=x ,1=+y x ,31=+xx ,x x 3+,3=a题型二:形如一元一次方程,求参数的值方法:2x 的系数为0;x 的次数等于1;x 的系数不能为0. 例3、如果()051=+-mx m 是关于x 的一元一次方程,求m 的值例4、若方程()05122=+--ax x a 是关于x 的一元一次方程,求a 的值【知识点三:等式的基本性质】等式的性质1:等式两边都加上(或减去)同个数(或式子),结果仍相等.即:若a=b ,则a ±c=b ±c等式的性质2:等式两边同时乘以同一个数,或除以同一个不为0的数,结果仍相等.即:若b a =,则bc ac =;若b a =,0≠c 且cb c a = 例5、运用等式性质进行的变形,不正确的是( )A 、如果a=b,那么a —c=b-cB 、如果a=b,那么a+c=b+cC 、如果a=b ,那么cbc a = D 、如果a=b,那么ac=bc 【知识点四:解方程】方程的一般式是:()00≠=+a b ax 题型一:不含参数,求一元一次方程的解例7、解方程284=-练习1、()()()35123452+--=-+-x x x x练习2、14.01.05.06.01.02.0=+--x x 练习3、x =+⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+221413223题型二:解方程的题中,有相同的含x 的代数式方法:利用整体思想解方程,将相同的代数式用另一个字母来表示,从而先将方程化简,并求值。

一次方程与方程组知识点总结归纳

一次方程与方程组知识点总结归纳

一次方程与方程组知识点总结归纳一、一元一次方程。

1. 定义。

- 只含有一个未知数(元),未知数的次数都是1,等号两边都是整式的方程叫做一元一次方程。

- 一般形式:ax + b=0(a≠0),其中a是未知数x的系数,b是常数项。

例如2x + 3 = 0就是一元一次方程。

2. 方程的解。

- 使方程左右两边相等的未知数的值叫做方程的解。

例如x = - (3)/(2)是方程2x+3 = 0的解。

3. 等式的性质。

- 性质1:等式两边加(或减)同一个数(或式子),结果仍相等。

如果a=b,那么a±c = b±c。

- 性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

如果a = b,那么ac=bc;如果a=b(c≠0),那么(a)/(c)=(b)/(c)。

- 利用等式的性质可以求解一元一次方程,例如解方程2x+3 = 0,首先根据等式性质1,两边同时减3得2x=-3,再根据性质2,两边同时除以2得x = - (3)/(2)。

4. 一元一次方程的解法步骤。

- 去分母(若方程中存在分母时):根据等式性质2,在方程两边同时乘以各分母的最小公倍数,将分母去掉。

例如方程(x + 1)/(2)+(x - 1)/(3)=1,分母2和3的最小公倍数是6,方程两边同时乘以6得3(x + 1)+2(x - 1)=6。

- 去括号:根据乘法分配律将括号去掉。

如3(x + 1)+2(x - 1)=6去括号后变为3x+3 + 2x-2 = 6。

- 移项:把含未知数的项移到方程一边,常数项移到另一边,移项要变号。

例如3x+3 + 2x-2 = 6移项后得3x+2x=6 - 3+2。

- 合并同类项:将方程中同类项合并。

如3x+2x=6 - 3+2合并同类项得5x = 5。

- 系数化为1:根据等式性质2,方程两边同时除以未知数的系数。

如5x = 5两边同时除以5得x = 1。

二、二元一次方程(组)1. 二元一次方程。

初中数学知识点总结 一元一次方程

初中数学知识点总结 一元一次方程

初中数学知识点总结一元一次方程一元一次方程知识点总结一、从算式到方程(一)方程:含有未知数的等式叫做方程。

1、方程必须具备的两个条件(1)是等式。

(2)含有未知数。

(二)解方程:就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。

二、等式的性质(一)等式的性质1:等式两边同加(或减)司一个数(或式子),结果仍相等。

符号语言:如果a=b,那么B土C=B土C。

(二)等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

符号语言:如果a=b,那么ac=bc;(三)等式的性质是解方程的依据。

三、一元一次方程(一)定义:只含有一个未知数(元),并且未知数的次数都是1,等号两边都是整式,形如ax+b=0,这样的方程就叫一元一次方程。

(二)列一元一次方程(三)解一元一次方程1、去分母:解含有分母的一元一次方程时,方程两边乘各自分母的最小分倍数,从而约去分母,这个过程叫做去分母。

依据:等式的性质2;2、去括号:解一元一次方程式时,按照去括号法则把方程中的括号去掉,这个过程叫做去括号。

依据:乘法分配律、去括号法则;3、移项:把等号一边的某项变号后移到另一边,叫做移项。

(1)依据:等式的性质1;(2)目的:将含有未知数的项移到等号的一边,将常数项移到等号的另一边;移项时,一般都习惯把含未知数的项数到等号的左边,把常数项移到等号的右边。

4、合并同类项:即将等号同侧的含未知数的项、常数项分别合并,把方程式转化为ax=b(a不等于0)的形式。

依据:合并同类项法则;5、系数化为1:即在方程两边同时除以未知数的系数(或乘以未知数系数的倒数,将未知数的系数为1,得到=—a不等于0)。

依据:等式的性质2;四、实际问题与一元一次方程(一)列一元一次方程解决实际问题的一般步骤1.审题找相等关系2、设未知数3、列方程4、解方程5、检验(1)检验所得结果是不是方程的解。

(2)检验方程的解是否符合实际意义。

6、写出答案。

七年级上一元一次方程题型及知识点总结

七年级上一元一次方程题型及知识点总结

七年级上一元一次方程题型及知识点总结一元一次方程题型及知识点总结一、知识点1.等式:用“=”号连接而成的式子叫等式。

2.等式的性质:等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式。

3.方程:含未知数的等式,叫方程。

4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!5.移项:改变符号后,把方程的项从一边移到另一边叫移项。

移项的依据是等式性质1.6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

7.一元一次方程的标准形式:ax+b=0(x是未知数,a、b 是已知数,且a≠0)。

8.一元一次方程解法的一般步骤:化简方程——分数基本性质去分母——同乘(不漏乘)最简公分母去括号——注意符号变化移项——变号合并同类项——合并后注意符号系数化为1——未知数细数是几就除以几二、典型例题:例1:解下列方程:1) 2x+1=10x+13y-15y+17y+12) x-1=4/-4/1.55x-0.813) (x-3)/(4+11)=2/(3-x)4) 0.5x^2+0.2x-41=2.3x5) 233.0-26.3x=1+(6)-x课堂练1】解方程:1) 3x-2=5x+32) 2x-3/4=1/2-3x/8巩固练:一、选择题1、下列方程中是一元一次方程的是()A、x-y=2005.B、3x-2004.C、x^2+x=1.D、2=32、方程1-(2x-4)/(x-2)=-7/36去分母得()A.1-2(2x-4)=-(x-7)B.6-2(2x-4)=-x-7C.6-2(2x-4)=-(x-7)D.以上答案均不对3、代数式x-(x-1)/3的值等于1时,x的值是().A)3(B)1(C)-3(D)-14、方程2-(3x-7)/(x^2+17)=4/45去分母得(。

一元一次方程知识点及经典例题

一元一次方程知识点及经典例题

一、知识要点梳理知识点一:一元一次方程及解的概念 1、 一元一次方程:一元一次方程的标准形式是:ax+b=0(其中x 是未知数,a,b 是已知数,且a≠0)。

要点诠释:一元一次方程须满足下列三个条件: (1) 只含有一个未知数; (2) 未知数的次数是1次; (3) 整式方程. 2、方程的解:判断一个数是否是某方程的解:将其代入方程两边,看两边是否相等. 知识点二:一元一次方程的解法1、方程的同解原理(也叫等式的基本性质)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。

如果,那么;(c 为一个数或一个式子)。

等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

如果,那么;如果,那么要点诠释:分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。

即:(其中m≠0)特别须注意:分数的基本的性质主要是用于将方程中的小数系数(特别是分母中的小数)化为整数,如方程:-=1.6,将其化为: -=1.6。

方程的右边没有变化,这要与“去分母”区别开。

2、解一元一次方程的一般步骤:解一元一次方程的一般步骤变形步骤 具 体 方 法 变 形 根 据注 意 事 项去分母方程两边都乘以各个分母的最小公倍数等式性质21.不能漏乘不含分母的项;2.分数线起到括号作用,去掉分母后,如果分子是多项式,则要加括号去括号先去小括号,再去中括号,最后去大括号 乘法分配律、去括号法则 1.分配律应满足分配到每一项 2.注意符号,特别是去掉括号移 项 把含有未知数的项移到方程的一边,不含有未知数的项移到另一边等式性质11.移项要变号;2.一般把含有未知数的项移到方程左边,其余项移到右边合并同 类 项 把方程中的同类项分别合并,化成“b ax =”的形式(0≠a )合并同类项法则合并同类项时,把同类项的系数相加,字母与字母的指数不变未知数的系数化成“1”方程两边同除以未知数的系数a ,得a b x = 等式性质2 分子、分母不能颠倒要点诠释:理解方程ax=b 在不同条件下解的各种情况,并能进行简单应用:①a≠0时,方程有唯一解;②a=0,b=0时,方程有无数个解;③a=0,b≠0时,方程无解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次方程知识点总结三.方程的解与解方程例3:下列方程中解为2x的是()=A.x3=-x+3 B.0x=+3C.6-5=xx D.82=2例4:利用等式的性质解下列方程:(1)x5+=6x-xx726=2+(2)3掌握方法一.等量关系的确定方法列方程解应用题是初中数学的一个重点也是一个难点,要突破这一难关,学会寻找等量关系是关键,那么怎样寻找应用题中的等量关系呢?(1)从关键词中找等量关系;(2)对于同一个量,从不同角度用不同的方法表示,得到等量关系;(3)运用基本公式找等量关系;(4)运用不变量找等量关系。

例1:某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的20%,设把x 公顷旱地改为林地,则可列方程为( )。

A.108%2054⨯=-xB.)108%(2054x x +=-C.162%2054⨯=+xD.)54%(20108x x +=-二.利用方程的解求待定字母的方法利用方程的解求方程中的待定字母时,只要将方程的解代入方程,得到关于待定字母的方程,即可解决问题。

例2:已知2=x 是关于x 的方程)2(31+=+-x k k x 的解,则k 的值应为( )。

A.9 B.91 C.31 D.1一元一次方程解一元一次方程 夯实基础一.一元一次方程1.定义:只含有一个未知数(元),未知数的次数都是1,等号两边都是整式,这样的方程叫做一元一次方程。

2.标准形式:方程0=+b ax (其中x 是未知数,a 、b 是已知数,并且0≠a )叫做一元一次方程的标准形式。

温馨提示①一元一次方程中未知数所在的式子是整式,即分母不含未知数。

②一元一次方程只含有一个未知数,未知数的次数都为1。

如321=+x ,6=+y x ,+2x 06=-x 都不是一元一次方程。

例1:下列方程中,哪些是一元一次方程?哪些不是?(1)1145=+x ;(2)52=+y x ;(3)0652=+-x x ;(4)32=-x x ;(5)1321=+-y y 。

二.移项1.定义:把等式一边的某项变号后移到另一边,叫做移项。

2.示例:解方程5223+=-x x 时,可在方程的两边先加2,再减x 2,得=-+-x x 2223 x x 2252-++,即变形为2523+=-x x 。

与原方程比较,这个变形过程如下:5223+=-x2523+=-x温馨提示①移项的原理就是等式的性质1。

②移项所移动的是方程中的项,并且是从方程的一边移到另一边,而不是方程的一边交换两个项的位置。

③移项时一定要改变所移动的项的符号,不移动的项不能变号。

如解方程1053-=x x ,若移项,得1035-=-x x 就出错了,原因是被移动的项“x 5”的符号没有改变,而改变了没有被移动的项“x 3”的符号。

④在移动时,最好先写左右两边不移动的项,再写移来的项。

例2:下列各题中的变形为移项的是( )。

A.由1)2(21=+x ,得1121=+x B.由5735+=-x x ,得3557-=+x xC.由625=+--x x ,得652=--x xD.由x x -=-85,得58+=+x x三.去括号与去分母解一元一次方程的最终目标是要得到“a x =”这一结果。

为了达到这一目标,方程中有括号就要根据去括号法则去掉括号,即为去括号;方程中有分母的,根据等式性质2去掉分母,即为去分母。

温馨提示(1)解含有括号的一元一次方程时,去括号时一般遵循去括号的基本法则。

但在实际去括号时,应根据方程的结构特点利用一些方法技巧,恰当地去括号,以简化运算。

对于一些特殊结构的方程,可采用以下去括号的技巧:①先去外再去内。

即在解题时,打破常规,不是由内到外去括号,而是由外到内去括号。

②整体合并去括号。

有些方程,把含有的某些多项式看作整体,先合并,再去括号,往往会简单。

如,解方程)8(23)8(21--=---x x x 时,可把8-x 看作整体先合并,再去括号。

(2)去分母时,在方程两边要同时乘以所有分母的最小公倍数,不要漏乘不含分母的项。

当分母时小数时,需要把分母化整。

同时注意分母化整只与这一项有关,而与其他项无关,要与去分母区分开。

例3:下列方程去括号正确的是( )。

A.由6)24(32=--x x 得62122=--x xB.由6)24(32=--x x 得66122=--x xC.由6)24(32=--x x 得66122=+-x xD.由6)24(32=--x x 得6632=+-x x例4:方程2133123+-=-+x x x ,去分母正确的是( )。

A.)1(318)12(218+-=-+x x xB.)1(3)12(3+-=-+x x xC.)1(18)12(18+-=-+x x xD.)1(33)12(23+-=-+x x x四.解一元一次方程的一般步骤例5:解一元一次方程123+=。

掌握方法一.一元一次方程概念的应用原方程为一元一次方程,即未知数的次数为1,系数不为0,由此来确定原方程中待定字母的值。

例1:(1)若2122=+-m x 是关于x 的一元一次方程,则m = ;(2)若方程20152014)4(=+-x m 是关于x 的一元一次方程,则=m 。

二.利用合并同类项与移项解方程的方法(1)合并同类项时,不能用连等号与原方程相连。

(2)几个常数项也是同类项,移项时应该把它们放到一起。

(3)移项时把某项改变符号后移到等式的另一边,而不是等式一边的两项交换位置。

(4)移项必变号,不变号不能移项。

例2:解方程:(1)x x 23273-=+;(2)143621-=-a a 。

三.利用去分母解方程的方法利用等式的性质2,在方程的两边同时乘各分母的最小公倍数,将分母去掉,把系数为分数的方程转化为系数为整数的方程。

(1)分数线具有括号的作用,分子如果是一个多项式,去掉分母后,要把分母后,要把分子放在括号里。

(2)去分母时,不能漏乘不含分母的项。

例3:解方程353213+=+-x x 。

四.含小数的一元一次方程的解法将小数化成整数,是根据分数的基本性质把含小数的项的分子、分母乘同一个适当的数,而不是方程所有的项都乘这个数。

小数化成整数,是对分母含小数的项的恒等变形。

例4:解方程:03.002.003.0255.094.0x x x +=---。

五.有关同解方程的解题方法如果两个方程的解相同,那么我们把这两个方程称为同解方程。

已知两个一元一次方程是同解方程,求其中待定字母的取值,主要有两种常见题型,其解法有所不同。

(1)在两个同解方程中,如果只有一个方程中含有待定字母,一般先解不含待定字母的方程,再把未知数的值代入含有待定字母的方程中,求出待定字母的值。

(2)如果在两个同解方程中都含有相同的待定字母,一般是分别解两个方程,用这个待定字母分别表示两个方程的解,并建立等式,形成关于这个待定字母的方程,求出该待定字母的值。

例5:已知方程x+m=(3-x的解相同,求mm+x=-1)1)(2的解与关于x的方程1的值。

一元一次方程列一元一次方程解应用题夯实基础一.列一元一次方程解应用题的一般步骤(1)审:弄清题意和题目中的数量关系。

(2)设:用字母表示题目中的一个未知量。

(3)找:找出能够表示应用题全部含义的一个相等关系。

(4)列:根据这个相等关系列出方程。

(5)解:解所列的方程,求出未知数的值。

(6)验:检验方程的解是否符合问题的实际意义。

(7)答:写出答案。

二.设未知数的几种方法设未知数的方法有三种:(1)直接设未知数:题目求什么就设什么为未知数。

(2)间接设未知数:对于一些应用题,如果直接设所求的量为未知数,可能不容易列方程,这时可以间接地设一个或几个与所求的量有关系的量作为未知数,进而求出所求的量。

(3)设辅助未知数:如果前两种方法都行不通,便可设某个量为辅助未知数,辅助未知数仅作为题目中量与量之间关系的一种桥梁,一般情况下,解方程时不需要求出这个量。

温馨提示①采用直接设未知数的方法,原则是使分析条件更方便,列方程更简单,这样比较容易得到方程,同时还要兼顾所得到的方程求解时难易。

直接设未知数,好处是容易选取未知数,而且在解方程时可以直接得到问题的解。

②如果题目里涉及的几个量存在某种数量关系或某种比例关系,多采用间接设未知数的方法,间接设未知数是在直接设未知数、分析条件或列方程感到困难的时候才采取的方法。

其优点是列出方程和解方程的过程都比较容易。

③如果应用题涉及的量较多,各量之间的关系又不明显,若能设立适当的辅助未知数,把不明显的关系表示出来,就可以顺利地列出方程或方程组。

例1:通讯员原计划5h从甲地到乙地,因为任务紧急,他每小时比原计划快3km,结果提前1h 到达,求甲、乙两地间的距离。

解析:解法一:直接设未知数。

设甲、乙两地间的距离为x km 。

利用速度间的关系作相等关系:原计划速度=+3实际速度,得1535-=+xx ,解得60=x 。

解法二:间接设未知数,设原计划的速度为x km/h ,则实际的速度为)3(+x km/h 。

利用路程关系作相等关系:原计划的路程=实际的路程,得)3()15(5+⋅-=x x ,解得12=x ,甲、乙两地的距离为)(601255km x =⨯=。

答:甲、乙两地的距离为60km 。

例2:一只船在逆水中航行,船上的一只救生圈掉入水中,5分钟后,发现救生圈落水,船掉头去追赶救生圈,几分钟能够追上救生圈?(船掉头的时间忽略不计)解析:(设辅助未知数)设船在静水中的航行速度为a 米/分,水流速度为b 米/分,t 分钟后船能够追上落水的救生圈。

根据题意,得)(55)(b a b bt t b a -+=-+。

a at 5=,5=t 。

答:5分钟后船能够追上落水的救生圈。

三.一元一次方程应用题的常见类型掌握方法一.列一元一次方程解决配套问题在现实生活中常见到一些配套组合问题,如螺栓与螺母的配套,盒身与盒底的配套等。

解决此类问题的方法是抓住配套比,设出未知数,然后根据配套比列出方程,通过解方程解决问题。

例1:某场共有120名生产工人,每名工人每天可产生螺栓50个或螺母20个,如果一个螺栓与两个螺母配成一套,那么每天安排多少名工人生产螺栓,多少人名工人生产螺母,才能使每天生产出来的产品配成最多套?二.用列表法解决增长率、数字等问题解复杂的问题时,可借助表格来确定等量关系。

先找出已知量、未知量,并用含已知量或未知量的式子把中间的那些起桥梁作用的量表示出来,同时利用表格显示出等量关系。

例2:已知甲、乙两种商品的原单价和为100元,因市场变化,甲商品降价10%,乙商品提价5%,调价后,甲、乙两种商品的单价和比原单价和提高了2%,求甲、乙两种商品的单价各是多少元。

相关文档
最新文档