一元一次方程知识点、题型归纳总结

合集下载

一元一次方程知识点总结和例题讲解

一元一次方程知识点总结和例题讲解

一元一次方程知识点及题型一、方程的有关概念1. 方程:含有未知数的等式就叫做方程.2. 一元一次方程:只含有一个未知数(元)x ,未知数x 的指数都是1(次),这样的方程叫做一元一次方程. 3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程. ⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论. 二、等式的性质三、移项法则:把等式一边的某项变号后移到另一边,叫做移项. 四、去括号法则 五、解方程的一般步骤1. 去分母(方程两边同乘各分母的最小公倍数)2. 去括号(按去括号法则和分配律)3. 移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)4. 合并(把方程化成ax = b (a≠0)形式)5. 系数化为1(在方程两边都除以未知数的系数a ,得到方程的解x=ba ).六.列一元一次方程解应用题的一般步骤(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,•是否符合实际,写出答案 【基础与提高】 一.选择题1.下列各式中,是方程的个数为( )(1)﹣4﹣3=﹣7;(2)3x ﹣5=2x+1;(3)2x+6;(4)x ﹣y=v ;(4)a+b >3;(5)a 2+a ﹣6=0. A . 1个B . 2个C . 3个D . 4个2.下列说法正确的是( ) A . 如果ac=bc ,那么a=b B . 如果,那么a=bC .如果a=b ,那么D . 如果,那么x=﹣2y3.若关于x 的方程mx m ﹣2﹣m+3=0是一元一次方程,则这个方程的解是( ) A .x =0 B .x =3 C . x =﹣3D .x =24.方程(m+1)x|m|+1=0是关于x的一元一次方程,则m()A.m=±1 B.m=1 C.m=﹣1 D.m≠﹣15.若关于x的方程nx n﹣1+n﹣4=0是一元一次方程,则这个方程的解是()A.x=﹣1 B.x=1 C.x=﹣4 D.x=46.已知x=3是关于x的方程x+m=2x﹣1的解,则(m+1)2的值是()A.1B.9C.0D.47.已知x=﹣6是方程2x﹣6=ax的解,则代数式的值是()A.4B.3C.2D.18.设P=2x﹣1,Q=4﹣3x,则5P﹣6Q=7时,x的值应为()A.B.C.D.﹣9.服装店同时销售两种商品,销售价都是100元,结果一种赔了20%,另一种赚了20%,那么在这次销售中,该服装店()A.总体上是赚了B.总体上是赔了C.总体上不赔不赚D.没法判断是赚了还是赔了10.如图是一个长方形试管架,在a cm长的木条上钻了4个圆孔,每个孔的直径为2cm,则x等于()A.cm B.cm C.cm D.cm11.关于x的方程(k﹣3)x﹣1=0的解是x=﹣1,那么k的值是()A.k≠3 B.k=﹣2 C.k=﹣4 D.k=212.江苏卫视《一站到底》栏目中,有一期的题目如图,两个天平都保持平衡,则三个球体的重量等于()个正方体的重量.A.2B.3C.4D.513.已知方程2x+k=5的解为正整数,则k所能取的正整数值为()A.1B.1或3 C.3D.2或314.小芳同学解关于x的一元一次方程﹣时,发现有个数模糊看不清楚,聪明的小芳翻看了书后的答案,知道这个方程的解是3.于是她很快补上了这个数.她补的这个数是()A.B.3C.8D.915.若代数式3x﹣7和6x+13互为相反数,则x的值为()A.B.C.D.16.按下面的程序计算,若开始输入的值x为正数,最后输出的结果为656,则满足条件的x的不同值最多有()A.2个B.3个C.4个D.5个二.填空题17.一件衣服先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元.若设这件衣服的成本是x元,根据题意,可得到的方程是_________.18.图1是边长为30cm的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是_________cm3.19.已知与的值相等时,x=_________.20.若x=﹣1是关于x方程ax+b=1的根,则代数式(a﹣b)2011的值是_________.21.某人用24000元买进甲、乙两种股票,在甲股票升值15%,乙股票下跌10%时卖出,共获利1350元,则此人买甲股票的钱比买乙股票的钱多_________元.22如果要由等式m﹙a+1﹚=x﹙a+1﹚得到m=x,需要满足的条件是_________.23.关于x的方程(a﹣1)x2+x+a2﹣4=0是一元一次方程,则方程的解为_________.24.关于x的方程(m+2)x=6解为自然数,当m为整数时,则m的值为_________.25.已知m+n=2008(m﹣n),则=_________.三计算题解方程:(1)3(x﹣1)﹣2(2x+1)=12;(2)(3).(4)﹣=.(5).(6)(7).(8)﹣=3.(9)(10)四.解答题1.若x=2是方程ax-1=3的解,求a的值2.方程x+2=5与方程ax-3=9的解相等 求a 的值3.为何值时,关于的方程4231x m x -=-的解是23x x m =-的解的2倍?4.已知,2x =是方程12()23m x x --=的解,求代数式2(62)m m -+的值.5.一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?6.一批货物,甲把原价降低10元卖出,用售价的10%做积累,乙把原价降低20元,用售价的20%做积累,若两种积累一样多,则这批货物的原售价是多少?7.某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?8.某蔬菜公司收购到某种蔬菜140吨,准备加工上市销售.该公司的加工能力是:每天可以精加工6吨或粗加工16吨,现计划用15天完成加工任务,该公司应安排几天精加工,几天粗加工?9.今年“六•一”儿童节,张红用8.8元钱购买了甲、乙两种礼物,甲礼物每件1.2元,乙礼物每件0.8元,其中甲礼物比乙礼物少1件,问甲、乙两种礼物各买了多少件?10.小明和小东两人练习跑步,都从甲地出发跑到乙地,小明每分钟跑250米,小东每分钟跑200米,小明让小东先出发3分钟之后再出发,结果两人同时到达乙地,求甲、乙两地之间的路程是多少米?11.某船从A地顺流而下到达B地,然后逆流返回,到达A、B两地之间的C地,一共航行了7小时,已知此船在静水中的速度为8千米/时,水流速度为2千米/时。

一元一次方程知识点总结

一元一次方程知识点总结
一元一次方程知识点总结
一、等式与方程 .等式:
(1)定义:含有等号的式子叫做等式.
(2)性质: ①等式两边同时加上(或减去)同一个整式,等式的值不变. 若那么 ②等式两边同时乘以一个数或除以同一个不为0的整式,等式的
值不变. 若那么有或()
③对称性:若,则. ④传递性:若,则.
(3)拓展: ①等式两边取相反数,结果仍相等. 如果,那么 ②等式两边不等于0时,两边取倒数,结果仍相等. 如果,那么 ③等式的性质是解方程的基础,很多解方程的方法都要运用到等式的 性质.
(5)列一元一次方程解应用题的基本步骤及注意点: ①“审” 要沉着冷静,耐下心去,慢读细读多读,透彻理解题意.即弄清已知
量、未知量及其相互关系. ②“设” 设一个恰当的未知数,若有单位一定加单位,表示多项
式加单位括号. ③“列” 根据等量关系列出方程,即所列的方程应满足两边的量要相等;方
程两边的代数式的单位统一,用题目中的原数;题中条件应充 分利用,不能漏也不能将一个条件重复利用,重复用一个条件 会得到恒等式,解不出来. ④“解” 解出方程,一定在草纸上一步步认真计算,先化简往往 会简化计算. ⑤“验” 检验两方面,一是解得是否正确,用代入法;二是是 否符合实际情况.
根据是等式的性质①. Ⅲ移项的原则:移项时一般把含未知数的项向左移,常数项往右移,使左边
对含未知数的项合并,右边对常数项合并,方便求解.
(4)解一元一次方程的一般步骤及根据: ①去分母——等式的性质② ②去括号——分配律 ③移项——等式的性质① ④合并——合并同类项法则 ⑤系数化为1——等式的性质② ⑥检验——把方程的解分别代入方程的左右边看求得的值是否
路程=时间×速度,时间=,速度=.
(注意单位:路程——米、千米;时间——秒、分、时;速度

一元一次方程题型总结

一元一次方程题型总结

一元一次方程题型总结一元一次方程是代数学中最基础的方程类型之一。

它由一个变量和一个常数项组成,可以表示为 ax + b = 0 的形式,其中 a 和 b 是已知数,x 是未知数。

1. 等式形式:在一元一次方程中,最常见的题型是让我们求解方程的解。

解就是使得方程左右两边相等的变量值。

例如:2x + 3 = 7我们可以通过逆运算的方法,将常数项移到方程的另一边,然后用系数除以变量的系数,求得解 x 的值。

在这个例子中,我们可以得出 x = 2。

2. 换元法:有时候,我们需要用一个变量来表示另一个变量,然后将其代入方程中求解。

例如:2(x + 3) = 14这个方程中,我们可以将 x + 3 表示为一个新的变量 y,然后将方程转化为2y = 14。

解这个方程后,我们可以得到 y = 7,进而求得 x = 4。

3. 线性关系:一元一次方程也可以表示两个变量之间的线性关系。

例如:2x + 3y = 10这个方程中,我们需要找到使得方程成立的 x 和 y 的取值。

我们可以通过解方程组或者图形法来求解。

4. 比例关系:在一元一次方程中,有时候我们需要找到变量之间的比例关系。

例如:(2x + 3) / 5 = 7在这个方程中,我们需要求解 x 的值。

我们可以通过逆运算,将常数项移到方程的另一边,然后用系数乘以分母,求得解 x 的值。

5. 实际问题:一元一次方程也可以应用于解决实际问题。

例如:一家商店打折出售一件商品,原价为 x 元,现在以 30% 的折扣出售,售价为120 元。

我们可以列出方程 0.7x = 120,并求解 x 的值来得到原价。

总结一下,一元一次方程是求解变量与常数之间的关系的基础代数方程。

在解题过程中,我们常常需要运用逆运算、换元法以及其他解方程的方法来求解。

它们不仅能帮助我们理解方程的解,也有助于我们解决实际生活中的问题。

专题17解一元一次方程(7个知识点3种题型2种中考考法)(原卷版)

专题17解一元一次方程(7个知识点3种题型2种中考考法)(原卷版)

专题17解一元一次方程(7个知识点3种题型2种中考考法)【目录】倍速学习四种方法【方法一】脉络梳理法知识点1.方程的解与解方程的概念(重点)知识点2等式的基本性质(重点)知识点3.利用等式的基本性质解方程(重点)知识点4.利用移项、合并同类项解方程(难点)知识点5.利用去括号解方程(难点)知识点6.利用去分母解方程(重点)知识点7.解一元一次方程的一般步骤(重点)【方法二】实例探索法题型1.方程的解的应用题型2.解一元一次方程题型3.一元一次方程的解的情况【方法三】仿真实战法考法1.方程的解的应用考法2.解一元一次方程【方法四】成果评定法【学习目标】1.了解方程的解与解方程的概念,会根据等式的基本性质解方程。

2.掌握解一元一次方程的方法,了解解一元一次方程的一般步骤,并能灵活运用,能判别解的合理性。

3.经历和体会解一元一次方程中“转化”的思想方法。

【知识导图】【倍速学习四种方法】【方法一】脉络梳理法知识点1.方程的解与解方程的概念(重点)方程的解:使方程两边相等的未知数的值 解方程:求方程的解的过程【例1】如果关于x 的方程2x +k ﹣4=0的解x =﹣3,那么k 的值是( ) A .﹣10B .10C .2D .﹣2【变式】如果x =2是方程x ﹣2a =﹣2的解,那么a 的值是( ) A .﹣6B .﹣2C .0D .2知识点2等式的基本性质(重点)1)等式两边同加或同减一个数(或式子),等式仍然成立。

即:c b c a ±=±=,则若b a (注:此处字母可表示一个数字,也可表示一个式子)2)等式两边同乘一个数(或式子),或同除一个不为零的数(式子),等式仍然成立。

即:⎩⎨⎧≠÷=÷⨯=⨯=0c c b c a c b c a b a ,,则若(此处字母可表示数字,也可表示式子)例:3x+7=22x 3x+7+2x=22x+2x 3x+7+2x7=22x+2x7 5x=5 5x ÷5=5÷5 x=1 3)其他性质:①对称性:若a=b ,则b=a ;②传递性:若a=b ,b=c ,则a=c 。

一元一次方程主要题型汇总.

一元一次方程主要题型汇总.

类型十七:销售问题 1、基本知识 ①商品打 x 折出售:是按标价的 ③商品的利润率=
x 出售。②商品利润=商品售价-商品成本价。 10
商品利润 100% 。④商品的销售额=商品销售价×商品销售 商品成本价
量。 ⑤商品的销售利润=(销售价-成本价)×销售量。 2、相等关系:销售价=定价×打折-让利=成本×(1+利润率) 3、某服装店出售一种优惠卡,花 200 元买这种卡后,可凭卡在这家商店按 8 折 购物。小芳购卡后买了一件原价 1200 元的西装,小敏购卡后买了一件原价 500 元的毛衣。则小芳买卡购物 划算,则小芳买卡购物 划算, 在购买超过 元情况下买卡购物才划算。 类型十八:方案选择问题 建模: 1、弄清两种方案收费表达式 2、求出消费多少时,两种方案收费一样(找出临界点) 3、得出在什么消费范围时方案一合算,在什么消费范围时方案二合算。 练习:下表中有两种移动电话计费方式。 月租 主叫限定时间 主叫超时费(元/ 被叫 (分) 分) 方式一 58 150 0.25 免费 方式二 88 350 0.19 免费 考虑下列问题。 (1)设一个月内用移动电话主叫 t 分钟(t 是正整数) 。根据上表,列表说明: 当 t 在不同时间范围内取值时,按方式一和方式二如何计费。 主叫时间 t(分 钟) t﹤150 t=150 150﹤t﹤350 t=270 t=350 t﹥350 方式一计费(元) 方式二计费(元) 省钱方案
类型十五:数字问题 1、基础知识 ①一个三位数可以表示为:百位上的数字×100+十位上的数字×10+个位上的数 字 ②若 x 表示一个一位数,y 表示一个两位数,则把 x 放在 y 的左边组成的三位数 表示为:100x+y, 把 x 放在 y 的右边组成的三位数表示为:10y+ x。 2、设未知数的方法:设某位数字为 x,表示其他数位上的数字。 3、 3、一个两位数,个位上的数字与十位上的数字之和为 13,交换这两个数字的位 置所得新数比原来两位数大 45,求这个两位数。 解:设这个两位数的十位上的 数字为 x,则个位上的数字为 ,这个两位数表示为 ,新两位数表示为 ,可列方程为 。

一元一次方程(知识点完整版)

一元一次方程(知识点完整版)

第三章:一元一次方程本章板块⎪⎪⎪⎩⎪⎪⎪⎨⎧程实际问题与一元一次方方程的解解方程等式的基本性质定义一元一次方程.5.4.3.2.1 知识梳理【知识点一:方程的定义】方程:含有未知数的等式就叫做方程.注意未知数的理解,n m x ,,等,都可以作为未知数。

题型:判断给出的代数式、等式是否为方程 方法:定义法例1、判定下列式子中,哪些是方程?(1)4=+y x (2)2>x (3)642=+(4)92=x (5)211=x【知识点二:一元一次方程的定义】一元一次方程:①只含有一个未知数(元);②并且未知数的次数都是1(次); ③这样的整式方程叫做一元一次方程。

题型一:判断给出的代数式、等式是否为一元一次方程 方法:定义法例2、判定下列哪些是一元一次方程?0)(22=+-x x x ,712=+x π,0=x ,1=+y x ,31=+xx ,x x 3+,3=a题型二:形如一元一次方程,求参数的值方法:2x 的系数为0;x 的次数等于1;x 的系数不能为0. 例3、如果()051=+-mx m 是关于x 的一元一次方程,求m 的值例4、若方程()05122=+--ax x a 是关于x 的一元一次方程,求a 的值【知识点三:等式的基本性质】等式的性质1:等式两边都加上(或减去)同个数(或式子),结果仍相等.即:若a=b ,则a ±c=b ±c等式的性质2:等式两边同时乘以同一个数,或除以同一个不为0的数,结果仍相等.即:若b a =,则bc ac =;若b a =,0≠c 且cb c a = 例5、运用等式性质进行的变形,不正确的是( )A 、如果a=b,那么a —c=b-cB 、如果a=b,那么a+c=b+cC 、如果a=b ,那么cbc a = D 、如果a=b,那么ac=bc 【知识点四:解方程】方程的一般式是:()00≠=+a b ax 题型一:不含参数,求一元一次方程的解例7、解方程284=-练习1、()()()35123452+--=-+-x x x x练习2、14.01.05.06.01.02.0=+--x x 练习3、x =+⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+221413223题型二:解方程的题中,有相同的含x 的代数式方法:利用整体思想解方程,将相同的代数式用另一个字母来表示,从而先将方程化简,并求值。

清单03一元一次方程(五大考点梳理题型解读解决实际问题12种题型)(原卷版)

清单03一元一次方程(五大考点梳理题型解读解决实际问题12种题型)(原卷版)

清单03 一元一次方程(五大考点梳理+题型解读+解决实际问题12种题型)【知识导图】【知识清单】考点一、一元一次方程的概念1.方程:含有未知数的等式叫做方程.【例1】(2022秋•颍州区期末)下列各式中,是方程的个数为()①x=0;②3x﹣5=2x+1;③2x+6;④x﹣y=0;⑤=5y+3;⑥a2+a﹣6=0.A.2个B.3个C.5个D.4个2.一元一次方程:只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程.细节剖析:判断是否为一元一次方程,应看是否满足:①只含有一个未知数,未知数的次数为1;②未知数所在的式子是整式,即分母中不含未知数.【例2】(2022秋•汉台区期末)已知(m﹣3)x|m|﹣2=18是关于x的一元一次方程,则()A.m=2B.m=﹣3C.m=±3D.m=13.方程的解:使方程的左、右两边相等的未知数的值叫做这个方程的解.【例3】(2023春•蒸湘区校级期末)若x=﹣1是方程2x+m﹣6=0的解,则m的值是()A.﹣4B.4C.﹣8D.8【变式】(2022秋•宁阳县期末)若一元一次方程ax+b=0的解是x=1,则a,b的关系为()A.相等B.互为相反数C.互为倒数D.互为负倒数4.解方程:求方程的解的过程叫做解方程.考点二、等式的性质与去括号法则1.等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.【例4】(2022秋•雅安期末)下列等式变形错误的是()A.若,则x﹣1=2xB.若x﹣1=3,则x=4C.若x﹣3=y﹣3,则x﹣y=0D.若3x+4=2x,则3x﹣2x=﹣42.合并法则:合并时,把系数相加(减)作为结果的系数,字母和字母的指数保持不变.3.去括号法则:(1)括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.(2)括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号相反.考点三、一元一次方程的解法解一元一次方程的一般步骤:(1)去分母:在方程两边同乘以各分母的最小公倍数.(2)去括号:依据乘法分配律和去括号法则,先去小括号,再去中括号,最后去大括号.(3)移项:把含有未知数的项移到方程一边,常数项移到方程另一边.(4)合并:逆用乘法分配律,分别合并含有未知数的项及常数项,把方程化为ax=b(a≠0)的形式.(5)系数化为1:方程两边同除以未知数的系数得到方程的解bxa(a≠0).(6)检验:把方程的解代入原方程,若方程左右两边的值相等,则是方程的解;若方程左右两边的值不相等,则不是方程的解.【例5】(2022秋•东宝区期末)解方程:(1)4﹣2x=﹣3(2﹣x);(2).考点四、列方程解应用题的步骤:①审:审题,分析题中已知什么,求什么,明确各数量之间关系②设:设未知数(一般求什么,就设什么为x)③找:找出能够表示应用题全部意义的一个相等关系④列:根据这个相等关系列出需要的代数式,进而列出方程⑤解:解所列出的方程,求出未知数的值⑥答:检验所求解是否符合题意,写出答案(包括单位名称)【例6】(2022秋•汇川区期末)如图,已知数轴上有A,B两点,它们分别表示数a,b,且(a+6)2+|b﹣12|=0.(1)填空:a=,b=;(2)点C以2个单位长度/秒的速度从点A向点B运动,到达点B后停止运动.若点D为AC中点,点E为BC中点,在点C运动过程中,线段DE的长度是否发生改变?若不变,求线段DE的长度,若变化,请说明原因;(3)在(2)的条件下,点P以1个单位长度/秒的速度同时从原点O向点B运动,P点到达B点后停止运动,问点P运动多少秒后,点P与点C相距2个单位长度?【例7】(2022秋•秦淮区期末)根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2015年5月1日起对居民生活用电实施“阶梯电价”收费,具体收费标准见下表:一户居民一个月用电量的范围电费价格(元/千瓦时)不超过150千瓦时的部分a 超过150千瓦时,但不超过300千瓦时的部分b 超过300千瓦时的部分a +0.32015年5月份,该市居民甲用电100千瓦时,交费60元;居民乙用电200千瓦时,交费125元. (1)求上表中a 、b 的值;(2)实施“阶梯电价”收费以后,该市一户居民月用电多少千瓦时,其当月交费285元?【例8】.(2022秋•常州期末)列方程解决问题:小华和妈妈一起玩成语竞猜游戏,商定如下规则:小华猜中1个成语得2分,妈妈猜中1个成语得1分,结果两人一共猜中了30个成语,得分恰好相等.请问小华猜中了几个成语?考点五、用一元一次方程解决实际问题的常见类型 1.行程问题:路程=速度×时间2.和差倍分问题:增长量=原有量×增长率3.利润问题:商品利润=商品售价-商品进价4.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量5.银行存贷款问题:本息和=本金+利息,利息=本金×利率×期数6.数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+ 7.数字问题;8.分配问题; 9.比赛积分问题;10.水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度水流速度).题型1.配套问题1.某生产教具的厂家准备生产正方体教具,教具由塑料棒和金属球组成(一条棱用一根塑料棒,一个顶点由一个金属球镶嵌),安排一个车间负责生产这款正方体教具,该车间共有34名工人,每个工人每天可生产塑料棒100根或金属球75个,如果你是车间主任,你会如何分配工人成套生产正方体教具?2.某车间有62个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个.已知每3个甲种零件和2个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?题型2.销售问题销售问题中有四个基本量:成本(进价)、销售价(收入)、利润、利润率。

七年级上一元一次方程题型及知识点总结

七年级上一元一次方程题型及知识点总结

七年级上一元一次方程题型及知识点总结一元一次方程题型及知识点总结一、知识点1.等式:用“=”号连接而成的式子叫等式。

2.等式的性质:等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式。

3.方程:含未知数的等式,叫方程。

4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!5.移项:改变符号后,把方程的项从一边移到另一边叫移项。

移项的依据是等式性质1.6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

7.一元一次方程的标准形式:ax+b=0(x是未知数,a、b 是已知数,且a≠0)。

8.一元一次方程解法的一般步骤:化简方程——分数基本性质去分母——同乘(不漏乘)最简公分母去括号——注意符号变化移项——变号合并同类项——合并后注意符号系数化为1——未知数细数是几就除以几二、典型例题:例1:解下列方程:1) 2x+1=10x+13y-15y+17y+12) x-1=4/-4/1.55x-0.813) (x-3)/(4+11)=2/(3-x)4) 0.5x^2+0.2x-41=2.3x5) 233.0-26.3x=1+(6)-x课堂练1】解方程:1) 3x-2=5x+32) 2x-3/4=1/2-3x/8巩固练:一、选择题1、下列方程中是一元一次方程的是()A、x-y=2005.B、3x-2004.C、x^2+x=1.D、2=32、方程1-(2x-4)/(x-2)=-7/36去分母得()A.1-2(2x-4)=-(x-7)B.6-2(2x-4)=-x-7C.6-2(2x-4)=-(x-7)D.以上答案均不对3、代数式x-(x-1)/3的值等于1时,x的值是().A)3(B)1(C)-3(D)-14、方程2-(3x-7)/(x^2+17)=4/45去分母得(。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次方程知识点、题型归纳.(一)、方程的有关概念1. 方程:含有未知数的等式就叫做方程.2. 一元一次方程:只含有一个未知数(元)x ,未知数x 的指数都是1(次),这样的方程叫做一元一次方程.例如: 1700+50x=1800, 2(x+1.5x )=5等都是一元一次方程. (例1)3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解. (例2)注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程.⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.(二)、等式的性质等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等. 等式的性质(1)用式子形式表示为:如果a=b ,那么a±c=b±c等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,等式的性质(2)用式子形式表示为:如果a=b ,那么ac=bc;如果a=b(c≠0),那么a c =b c(三)、移项法则:把等式一边的某项变号后移到另一边,叫做移项.(例3)(四)、去括号法则1. 括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.2. 括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.(五)、解方程的一般步骤(例4)1. 去分母(方程两边同乘各分母的最小公倍数)2. 去括号(按去括号法则和分配律)3. 移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)4. 合并(把方程化成ax = b (a≠0)形式)5. 系数化为1(在方程两边都除以未知数的系数a ,得到方程的解x=b a). 一.列一元一次方程解应用题的一般步骤(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,•是否符合实际,检验后写出答案.二、一元一次方程的实际应用1. 和、差、倍、分问题:增长量=原有量×增长率 现在量=原有量+增长量(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现.(2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现.例1:兄弟二人今年分别为15岁和9岁,多少年后兄的年龄是弟的年龄的2倍?解:设x 年后,兄的年龄是弟的年龄的2倍,则x 年后兄的年龄是15+x ,弟的年龄是9+x .由题意,得2×(9+x )=15+x18+2x=15+x ,移向得:2x-x=15-18∴x=-3答:3年前兄的年龄是弟的年龄的2倍.(点拨:-3年的意义,并不是没有意义,而是指以今年为起点前的3年,是与3•年后具有相反意义的量)1.一个数的3倍比它的2倍多10,若设这个数为x ,可得到方程__________.2. 用一根长80厘米的绳子围成一个长方形,且这个长方形的长比宽多10厘米,则这个长方形的长和宽各是_______、________.面积是_______.2. 等积变形问题:(1)“等积变形”是以形状改变而体积不变为前提.常用等量关系为:①形状面积变了,周长没变;②原料体积=成品体积.(2 常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式 V=底面积×高=S ·h =h r 2π②长方体的体积 V =长×宽×高=abc例2 将一个装满水的内部长、宽、高分别为300毫米,300毫米和80•毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米,π≈3.14).1. 一根内径为3㎝的圆柱形长试管中装满了水,现把试管中的水逐渐滴入一个内径为8㎝、高为1.8㎝的圆柱形玻璃杯中,当玻璃杯装满水时,试管中的水的高度下降了____㎝.3. 工程问题:工程问题:工作量=工作效率×工作时间完成某项任务的各工作量的和=总工作量=1例3. 一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?解:1. 甲、乙工程队从相距100m 的马路两端开始挖沟,甲工程队每天挖沟的进度是乙工程队的2倍少1m ,若5天完工,两队每天各挖几米?4.行程问题:路程=速度×时间时间=路程÷速度速度=路程÷时间(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.例4. 甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。

(1)慢车先开出1小时,快车再开。

两车相向而行。

问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?例4.1. 已知轮船逆水前进的速度为m千米/时,水流速度为2千米/时,则轮船在静水中的速度是__________。

1. A、B两地相距30千米,甲、乙两人分别从A、B两地同时出发,相向而行。

已知甲比乙每小时多走1千米,经过2.5小时两人相遇,求甲、乙两人的速度?5.商品销售问题(1)商品利润率=商品利润商品成本价×100% (2)商品销售额=商品销售价×商品销售量(3)商品的销售利润=(销售价-成本价)×销售量(4)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.有关关系式:商品售价=商品标价×折扣率(5)商品利润=商品售价—商品进价=商品标价×折扣率—商品进价例5.工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等.该工艺品每件的进价、标价分别是多少元?1.一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?6. 储蓄问题⑴顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率.利息的20%付利息税⑵利息=本金×利率×期数本息和=本金+利息利息税=利息×税率(20%)(3)利润=每个期数内的利息本金×100%例6. 国家规定存款利息的纳税方法是:利息税=利息×20%,储户取款时由银行代扣代收.若银行1年定期储蓄的年利率为1.98%,某储户取出1年到期的本金及利息时,扣除了利息税31.68元,则银行向该储户支付的现金是多少元?1.某同学把250元钱存入银行,整存整取,存期为半年。

半年后共得本息和252.7元,求银行半年期的年利率是多少?(不计利息税)7. 数字问题(1)要搞清楚数的表示方法:一般可设个位数字为a,十位数字为b,百位数字为c.十位数可表示为10b+a,百位数可表示为100c+10b+a.然后抓住数字间或新数、原数之间的关系找等量关系列方程(其中a、b、c均为整数,且1≤a≤9, 0≤b≤9, 0≤c≤9)(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n 表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示.例7.一个两位数,十位上的数字与个位上数字和是8,将十位上数字与个位上数字对调,得到新数比原数的2倍多l0.求原来的两位数.8.劳力调配问题:这类问题要搞清人数的变化,常见题型有:(1)既有调入又有调出; (2)只有调入没有调出,调入部分变化,其余不变;(3)只有调出没有调入,调出部分变化,其余不变例1.在一次美化校园活动中,先安排31人去拔草,18人去植树,后又是增派20人去支援他们,结果拔草的人数是植树人数的2倍,问支援拔草和植树的人分别有多少人?9.配套问题点评:产品配套是工厂生产中基本原则之一,如何分配生产力,使生产出来的产品恰好配套成为主管生产人员常见的问题,解决配套问题的关键是利用配套本身所存在的相等关系,其中两种最常见的配套问题的等量关系是:(1)“二合一”问题:如果a件甲产品和b件乙产品配成一套,那么甲产品数的b倍等于乙产品数的a倍,即a b=甲产品数乙产品数; (2)“三合一”问题:如果甲产品a件,乙产品b件,丙产品c件配成一套,那么各种产品数应满足的相等关系式是:a b c==甲产品数乙产品数丙产品数.例1.某车间有28个工人,生产某种螺栓和螺母,已知一个螺栓的两头各配一个螺母组成一套零件。

如果每人每天生产12个螺栓或18个螺母。

安排多少个工人生产螺栓,多少个工人生产螺母,才能使这一天生产的螺栓和螺母正好配套?3.某厂共有120名生产工人,每个工人每天可生产螺栓25个或螺母20个,如果一个螺栓与两个螺母配成一套,那么每天安排多名工人生产螺栓,多少名工人生产螺母,才能使每天生产出来的产品配成最多套。

相关文档
最新文档