氧化镍基负极材料在锂离子电池中的性能改善研究进展

合集下载

锂离子电池的高镍正极材料的制备及性能优化

锂离子电池的高镍正极材料的制备及性能优化

化工进展Chemical Industry and Engineering Progress2024 年第 43 卷第 3 期锂离子电池高镍正极材料的制备及性能优化吴剑扬1,申兰耀1,2,于永利2,王汝娜2,蒋宁1,2,杨新河2,邱景义3,周恒辉1,2(1 北京大学化学与分子工程学院,北京 100871;2 北京泰丰先行新能源科技有限公司,北京 102200;3防化研究院,北京 102205)摘要:高镍三元正极材料具有很高的理论容量,可被用于提高锂离子电池体系的能量。

目前研究较多的高镍材料是镍摩尔分数在三元素中占比为80%的LiNi 0.8Co 0.1Mn 0.1O 2,但是为了追求更高的能量密度,具有更高镍摩尔分数(镍摩尔分数>88%)的超高镍材料也需要被研究。

然而,镍含量的提升对材料结构稳定性造成的负面影响阻碍了高镍材料的实际应用。

因此,优化高镍材料的制备工艺十分重要。

本工作首先制备了镍摩尔分数为88%、90%、92%、94%以及98%的超高镍材料,探究了它们的基本物理化学性质与电化学性能,验证了镍摩尔分数提升对于材料容量和结构稳定性带来的影响。

进一步地,本工作选取了镍摩尔分数为90%的高镍材料(Ni90),着重探究了烧结温度对其性质的影响,发现Ni90材料颗粒会随着烧结温度的上升而增大,而在750℃的适宜烧结温度下,材料能在结构和颗粒尺寸上达到平衡,得到倍率和循环综合性能最好的Ni90材料。

同时,对于不同镍含量的材料,也需要选择适中的温度进行烧结,才能兼顾材料的性能与稳定性。

关键词:电化学;制备;高镍材料;正极;锂离子电池中图分类号:TH3 文献标志码:A 文章编号:1000-6613(2024)03-1387-08Preparation and performance optimization of high-nickel cathodematerials in lithium-ion batteriesWU Jianyang 1,SHEN Lanyao 1,2,YU Yongli 2,WANG Runa 2,JIANG Ning 1,2,YANG Xinhe 2,QIU Jingyi 3,ZHOU Henghui 1,2(1 College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; 2 Beijing Taifeng PULEAD New Energy Technology Company Limited, Beijing 102200, China; 3 Research Institute of Chemical Defense, Beijing102205, China)Abstract: High-nickel material has high theoretical capacity, which can be used for promoting the energy density of LIBs. As a type of high-nickel material, LiNi 0.8Co 0.1Mn 0.1O 2 has been widely researched. Nevertheless, to pursuit higher energy density, the study on ultra-high-nickel materials (M N >88%) is necessary. Unfortunately, the high content of Ni not only promotes the theoretical capacity, but also causes negative effects on the structure stability of high-nickel materials, which inhibits the practical application of high-nickel materials. Therefore, the preparation technology of ultra-high-nickel materials is significant. Herein, we prepared ultra-high-nickel materials with Ni content of 88%, 90%, 92%, 94%, and 98%, then the relevant physiochemical properties as well as electrochemical performances were研究开发DOI :10.16085/j.issn.1000-6613.2023-0346收稿日期:2023-03-07;修改稿日期:2023-04-14。

锂离子电池高镍三元材料的研究进展

锂离子电池高镍三元材料的研究进展

锂离子电池高镍三元材料的研究进展发布时间:2023-03-01T09:16:52.168Z 来源:《科技新时代》2022年第19期作者:袁庆华[导读] 在本文的研究中,有必要讨论锂离子电池的高镍三元物质,了解目前高镍三元应用的背景,分析高镍三元袁庆华东莞市创明电池技术有限公司广东东莞 523000摘要:在本文的研究中,有必要讨论锂离子电池的高镍三元物质,了解目前高镍三元应用的背景,分析高镍三元物质的合成过程和改性方法。

电力的出现对人类发展起着重要作用,与不可再生能源相比,电力具有保护绿色环境的特性。

锂离子电池具有高比能量、长循环和自然放电功能,是最常用的锂离子电池。

目前用于电子设备、电动汽车和各种储能系统,有独特的推广优势。

关键词:锂离子;电池;高镍;三元材料引言锂离子电池的正极材料是重要部分,正极的材料部分占锂离子电池的1/3以上,正极材料是否有效决定了后续锂离子电池的供电效率。

在通常情况下,正极材料必须与元件融合,达到对应性质要求。

如锂离子在充放电时,氧化还原反应依靠电池中的镍元素进行变量。

因此,镍含量决定了电池的容量。

但是,镍的比例过高,会导致阳离子混合的问题,从而影响最终的使用指标和电池放电效率。

有必要考虑到电池本身稳定的分层结构,以确保充电速度提高。

锂离子电池高镍三元材料的研究中,发掘引入锰元素对结构有一定的稳定作用。

且锰元素有低廉成本的优势,能够降低电池应用损耗。

但锰元素的添加也需要掌握规律,锰元素添加不科学,如锰元素过高会对电池的层状结构产生破坏。

一、高镍三元材料合成工艺(一)固相法固相法是一种常见的处理方法,固相法可以将电池中的锂源以及过渡金属盐进行混合,混合后的物质通过高温燃烧,随后进行研磨,便会得到对应材料。

固相法的工艺较为简单,锻烧温度符合要求,能够保障物料之间扩散率的增加。

但同时,温度的控制是固相法的难点,若温度反应过高,物料间的扩散速度就会增加,反应速率提升[1]。

而温度过高,也会出现能源浪费。

锂离子电池石墨负极材料的改性研究进展

锂离子电池石墨负极材料的改性研究进展

锂离子电池石墨负极材料的改性研究进展一、内容描述通过调整石墨晶体的结构,可以有效地提高其作为锂离子电池负极材料的性能。

通过施加高压等静压处理,可以减小石墨颗粒之间的嵌合程度,从而提高其电化学性能。

利用化学气相沉积法(CVD)制备的石墨负极材料具有更加规整的表面形貌,有利于锂离子的嵌入和脱出。

表面修饰是一种有效的改性和优化石墨负极材料的方法。

通过物理或化学手段,在石墨表面引入特定的官能团或纳米结构,可以提高其在锂离子电池中的稳定性。

利用有机溶剂或水溶性聚合物对石墨进行包覆处理,可以有效防止石墨表面的锂枝晶生长,从而提高电池的安全性。

石墨负极材料的颗粒形貌对其电化学性能也有重要影响。

通过控制石墨的成核、生长和集料过程,可以制备出具有一定形状、粒度和分布的石墨负极材料。

特定形貌的石墨负极材料具有更高的比表面积和更低的锂离子扩散电阻,有利于提高电池的能量密度和功率密度。

石墨负极材料的组成对其性能也有一定的影响。

通过添加其他元素或化合物,可以改善石墨负极材料的结构稳定性和电化学性能。

在石墨中添加硅、锡等元素,可以增加石墨的理论嵌锂容量;添加硫、氮等元素,可以作为锂离子电池的电解质和吸附剂,提高电池的循环稳定性。

《锂离子电池石墨负极材料的改性研究进展》将围绕石墨负极材料的结构改良、表面修饰、形貌调控和组成优化等方面进行深入探讨,以期推动锂离子电池技术的不断发展和应用领域的拓展。

1. 锂离子电池的发展历程金属锂插层电池时代 (1970s1980s):在该阶段,研究人员开始关注锂插层化合物,例如LiMn2O4等,作为新一代蓄电池的可行性。

这些早期的锂离子电池使用金属锂作为阳极,然而由于金属锂在充放电过程中会产生锂枝晶,导致电池循环性能较差,因此该方法并未实现大规模商业化应用。

锂离子动力电池的诞生 (1990s):为解决金属锂插层电池存在的体积膨胀和锂枝晶问题,研究者们开始探索石墨类材料作为锂离子电池的负极。

天然石墨因其出色的循环稳定性、高比容量和低成本成为首选的负极材料。

锂离子电池石墨负极材料改性研究进展

锂离子电池石墨负极材料改性研究进展

锂离子电池石墨负极材料改性研究进展摘要:本文对近年来石墨负极材料改性的研究进行了系统的总结,重点阐述了石墨负极材料改性研究中所采用的主要方法及研究进展,并对未来石墨负极材料改性研究方向进行了展望。

关键词:锂离子电池;石墨负极材料;改性研究前言近年来,随着科学技术的不断发展以及新能源汽车产业的迅速发展,人们对锂离子电池负极材料的需求日益增多。

传统的石墨材料由于其较低的电子和离子电导率、较差的循环稳定性、不佳的嵌锂机制等问题限制了其应用。

因此,如何有效提高石墨材料性能成为了当前研究热点之一。

石墨作为锂离子电池负极材料,具有以下优点:(1)良好的导电性。

石墨具有良好的导电性,可以提高电池的充放电效率。

(2)稳定的化学性能。

石墨在充放电过程中化学性能稳定,不易与电解液发生反应,从而保证了电池的寿命和安全性。

(3)较高的比容量.石墨的比容量较高,可以提供较高的能量密度。

然而,石墨作为锂离子电池负极材料也存在一些缺点,如容量衰减较快、循环寿命较短等。

因此,未来研究人员探索石墨负极材料的改性研究,应主要以提高循环和容量等方面来开展,以提高电池的性能和寿命。

一、锂离子电池的电化学机理及石墨嵌锂机制(一)锂离子电池锂离子电池(LIBs)是一种以锂离子为工作物质的电池,能够在较高电流密度下快速充放电,并且具有高能量密度、良好的安全性和稳定性、较长的使用寿命等优点。

锂离子电池已经被广泛应用于电子设备和电动工具等领域。

目前,锂离子电池主要分为两类:第一类是锂金属电池。

包括钴酸锂电池、三元锂电池、磷酸铁锂电池和锰酸锂电池等;第二类是石墨负极材料的锂离子电池(简称石墨负极材料锂离子电池)。

金属锂离子电池(如图1所示)具有以下特点:(1)能量密度高,是目前公认的最具有应用前景的二次电池之一;(2)化学性能稳定,循环性能好,在过充过放情况下,不会产生明显的电解液分解;(3)对环境友好,生产过程中无有害气体排放,可回收利用;(4)对使用对象没有特殊要求,对工作电压和温度范围没有特殊要求。

铁镍电池负极研究进展

铁镍电池负极研究进展

第52卷第11期 辽 宁 化 工 Vol.52,No.11 2023年11月 Liaoning Chemical Industry November,2023收稿日期: 2023-03-20 铁镍电池负极研究进展王晓函,杨少华*,李继龙 (沈阳理工大学 环境与化学工程学院, 辽宁 沈阳 110159)摘 要:随着中国提出了2030年前实现碳达峰、2060年前实现碳中和,新能源技术成为中国的重要战略布局领域。

镍铁电池以其超长寿命、高安全性、高可靠性和生态友好的特点,为能源存储和转换设备和系统提供了巨大的机会。

然而,由于电极在水电解质中的钝化、析氢和自放电,导致其容量和充放电速率迅速下降,阻碍了其广泛应用。

总结了近些年国内外相关研究成果,介绍了不同类铁镍电池的改进和优化,通过研究分析,发现铁镍电池仍有进一步提高电池性能的空间。

关 键 词:铁镍电池;负极材料;电解液添加剂中图分类号:TM912 文献标识码: A 文章编号: 1004-0935(2023)11-1686-04传统化石燃料的应用为人类社会发展带来了前所未有的繁荣和福祉。

但是,人类活动造成的过多的二氧化碳排放量对全球温度和海洋酸度产生了负面影响。

除此之外,化石燃料是一种不可再生的资源,化石能源的枯竭将迫使人们寻求替代碳源达到维持可持续经济发展的目标。

风能、太阳能、潮汐能、地热能等多种能源是这方面很有前景的途径,但是,这些能源的利用受到了时间性和空间性以及成本问题的限制难以大规模使用[1-4],储能器件的研究对于提高可再生能源的利用效率非常关键[5]。

目前广泛应用的电池包括:锂离子电池、钠离子电池、镍氢电池、镍铬电池、铅酸电池和水系电池等[6-11]。

通过比较发现,水系镍铁电池具有很多优点:铁在地壳中分布广,负极材料容易获得且成本较低,适用于未来的大规模能源储备;铁镍电池能承受过充和过放,在自然或人为不利的条件下更加安全可靠;使用对环境更友好的电解液,有效阻止了有机电解液在充放电过程中的安全问题。

【干货】锂离子电池硅氧化物负极材料的研究进展

【干货】锂离子电池硅氧化物负极材料的研究进展

【干货】锂离子电池硅氧化物负极材料的研究进展负极作为其关键构成成分之一,直接决定了锂离子电池的性能,目前市场上主要采用石墨类负极材料。

然而,石墨类负极的两个致命缺陷:低能量密度(理论比容量372mAh·g–1)和安全隐患(“析锂”现象)令其无法适用于动力电池。

因此,寻找一种新型高容量、安全性好和长循环的材料来替换石墨类负极材料成为动力锂离子电池进一步发展的关键。

硅因其超高比容量(理论值4200mAh·g–1)、低嵌锂电位(300%),使活性材料粉化、电极内电接触失效以及新固相电解质层SEI重复生成,最终导致循环性能迅速衰退。

为改善硅负极循环稳定性,研究者们做了各种改性。

近年来,一种已经产业化的工业原料硅氧化物(SiOx,0<x≤2)引起了人们的特别关注,最常见的如氧化亚硅(SiO,x≈1),目前已经开始用于锂离子电池负极材料并展现出巨大的潜力。

SiOx与碳石墨类材料相比,具有较高的比容量,与Si单质相比拥有良好的循环稳定性。

为此,近些年来研究者们对硅氧化物负极材料做了大量的研究工作。

本文从SiOx的结构与电化学储锂机制方面出发,介绍了SiOx的结构与电化学性能的关系,阐明了SiOx存在的主要挑战问题,并归纳了近期研究者们对硅氧化物负极的主要改进思路,最后对 SiOx负极材料未来发展方向进行了展望。

1 SiOx结构SiOx材料早在几十年前就已被人们所认知并在许多功能性应用中实现商业化,如利用其半导体属性而广泛运用于各种光电子器件,之后才被运用于锂离子电池负极材料。

因为SiOx为一种无定形结构,且在SiOx中Si的化合价态存在多样性(Si0、Si2+、 Si4+等),一些常规测试技术手段如X射线衍射(XRD),X射线光电子谱(XPS)和X射线Raman 衍射等分辨率有限,仅能提供无定型SiOx的平均结构信息,因此,对于SiOx微观结构的确定长期以来一直是个难题。

随着科技的不断进步,对SiOx的结构认识也在不断深入。

锂离子电池高镍三元正极材料表面改性研究进展

锂离子电池高镍三元正极材料表面改性研究进展

㊀第56卷第3期郑州大学学报(理学版)Vol.56No.3㊀2024年5月J.Zhengzhou Univ.(Nat.Sci.Ed.)May 2024收稿日期:2023-08-31基金项目:国家自然科学基金面上项目(52272242)㊂第一作者:李静(2000 ),女,硕士研究生,主要从事电化学储能研究,E-mail:1650193197@㊂通信作者:许春阳(1991 ),男,讲师,主要从事电化学储能研究,E-mail:chunyangxu@㊂锂离子电池高镍三元正极材料表面改性研究进展李㊀静1,㊀梁雅文1,㊀李㊀威2,㊀叶㊀飞1,2,㊀崔鑫炜1,㊀许春阳1(1.郑州大学㊀河南先进技术研究院㊀河南郑州450003;2.新乡天力锂能股份有限公司㊀河南新乡453002)摘要:高镍三元材料存在表面结构不稳定㊁锂镍混排㊁晶间裂纹等问题,导致材料的循环性能降低以及高比容量无法充分发挥,表面包覆是解决上述问题的主要手段㊂目前的包覆材料主要有电化学惰性材料㊁离子/电子电导性材料和复合包覆材料,从这三个方面综述了高镍三元材料的表面改性研究㊂介绍了不同类型包覆材料的界面改善稳定机制㊁离子在固液界面的迁移率提升机理㊁界面副反应抑制机制以及对材料电化学性能的影响,并对高镍三元正极材料包覆改性的发展方向进行了展望㊂关键词:锂离子电池;高镍三元;正极材料;表面改性中图分类号:TM911文献标志码:A文章编号:1671-6841(2024)03-0041-08DOI :10.13705/j.issn.1671-6841.2023207Research Progress on Surface Modification of High-nickel TernaryCathode Materials for Lithium-ion BatteriesLI Jing 1,LIANG Yawen 1,LI Wei 2,YE Fei1,2,CUI Xinwei 1,XU Chunyang 1(1.Henan Institute of Advanced Technology ,Zhengzhou University ,Zhengzhou 450003,China ;2.Xinxiang Tianli Lithium Energy Co.,Ltd ,Xinxiang 453002,China )Abstract :Problems of high-nickel ternary materials such as unstable surface structure,lithium-nickelco-segregation,and intergranular cracking led to a decrease in the cycling performance of the materials and inability to fully utilize high specific capacity.Surface coating was the primary approach to address these problems.Currently,coating materials mainly included electrochemically inert materials,ion /elec-tron-conductive materials,and composite coating materials.A review was conducted on the surface modi-fication research of high-nickel ternary materials from these aspects.The mechanisms for interface im-provement and stabilization of different types of coating materials,enhancement of ion migration at the solid-liquid interface,suppression of interface side reactions,and their impacts on the electrochemical performance were introduced.The development directions of surface modification of high-nickel ternarycathode materials were also discussed.Key words :lithium-ion battery;high-nickel ternary;cathode material;surface modification0㊀引言随着化石能源的逐渐匮乏以及环境污染的日趋严峻,高性能电化学储能器件的研发已经刻不容缓㊂在众多储能器件中,锂离子电池(lithium-ion battery,LIB)具有高能量密度㊁长循环寿命和高能量转换效率,已成为电动汽车和便携式电子设备最主要的能量来源㊂在锂离子电池正极材料中,高镍三元正极材料NCM /NCA (LiNi x Co y Mn z O 2和LiNi x Co y Al z O 2,x +y +z =1)在能量密度上具有巨大优势,是动力电池市场的主导材料㊂郑州大学学报(理学版)第56卷以NCM为例,其具有α-NaFeO2型层状结构,属六方晶系,R-3m空间群㊂Ni2+㊁Co3+和Mn4+共同占据八面体中心位置,以立方密堆积方式形成层状排列[1]㊂开发高镍三元正极材料可以满足人们日益增长的能量密度需求㊂但是,高镍三元材料存在一些不足之处,包括表面结构不稳定㊁锂镍混排㊁晶间裂纹等[2]㊂为了解决上述问题,研究者们提出了各种改性策略,主要包括表面包覆㊁晶内掺杂和晶体形貌控制,这些策略在改善三元材料电化学性能方面展现出了良好的效果㊂其中,表面改性是最常用㊁最有效的方法之一㊂目前,高镍三元材料表面改性所选的包覆材料主要有电化学惰性材料㊁离子电导性材料和电子电导性材料,并在此基础上发展到复合包覆㊂本文综述了高镍三元材料的表面改性研究进展,通过介绍不同类型包覆材料的保护机制和对材料电化学性能的影响,进而剖析目前各种包覆材料的优势及存在的问题,并展望了高镍三元正极材料包覆改性的未来发展趋势㊂1㊀电化学惰性材料电化学惰性材料主要有金属氧化物㊁金属氟化物和金属磷酸盐等,它们能有效阻隔三元正极材料和电解质之间的直接接触,有助于防止HF的侵蚀和界面副反应的发生㊂1.1㊀金属氧化物包覆材料金属氧化物包覆材料主要有Al2O3㊁ZrO2㊁TiO2㊁WO3等㊂金属氧化物包覆层可以与HF反应转化为金属氟化物,达到消除HF的目的,从而降低电解液的酸性,提升电极的结构稳定性㊂但是,这些氧化物的Li+传输速率和电子导电性相对较低,会造成包覆界面电子和离子传输阻力的增加㊂Al2O3是最常用的金属氧化物包覆材料㊂Wu 等[3]通过聚合物辅助溶胶-凝胶法在NCM622材料表面上实现微孔聚合物/γ-Al2O3保护层的构建㊂这种包覆层能有效减轻NCM622材料的电极-电解液界面副反应的发生,使材料在高压循环下的电化学性能得到显著的提升,其循环稳定性和倍率性能分别比原始材料提高了22.8%和26%㊂Ma等[4]利用水热合成法制备了NCM622单晶颗粒,然后以三异丙氧基铝为铝源通过干混烧结的方法形成Al2O3包覆层㊂13nm厚的Al2O3包覆层使NCM622的放电比容量㊁倍率性能和循环性能均得到大幅度提升,但是过厚的Al2O3包覆层也会使NCM622的储锂性能降低㊂ZrO2具有较高的化学稳定性,ZrO2包覆能有效缓解电解液的分解㊂Kim等[5]给出了ZrO2包覆样品的SEM图和带隙能量图,如图1所示㊂可以看出,其通过简单的还原反应,将白色单斜ZrO2转化为黑色的缺氧四方ZrO2-x,降低了材料的能带能(图1(b)),并成功地将其修饰在高镍正极NCM811表面(图1(a))㊂黑色ZrO2-x通过电感保持Ni2+的高氧化态,有效地抑制了在高压4.5V充电过程中的气体析出㊂图1㊀ZrO2包覆样品的SEM图和带隙能量图[5] Figure1㊀SEM images and Tauc of ZrO2coated sample[5] TiO2由于其电化学性质不活泼以及具有电荷补偿作用而被用作包覆材料㊂Mo等[6]通过湿法包覆将TiO2引入NCM622样品的二次粒子表面㊂TiO2与残留的锂化合物反应生成Li2TiO3并充当隔离层,减少了副反应的发生㊂此外,通过该方法还获得了从外到内不同Ti4+浓度的扩散层,这不仅强化了初级粒子,减少了随机取向晶粒之间的间隙,所提供的包覆层还有助于将Ti4+扩散到NCM622的晶格中,从而增加了晶格层间距,使随后的Li+迁移更加容易,迁移速率有所增加,并且机械强度和界面稳定性也会更高㊂因此,NCM622样品的循环稳定性得到增强㊂WO3具有较高的电子电导率(1.76S㊃cm-1),且作为酸性氧化物,其具有更好的耐HF蚀性㊂此外,WO3还可以和锂化合物反应,有助于消除部分残留在NCM材料表面上的碱性化合物㊂Gan等[7]将一定量的WO3溶解在H2O2中,并将其分散在无24㊀第3期李㊀静,等:锂离子电池高镍三元正极材料表面改性研究进展水乙醇中,然后再和NCM811混合蒸发高温烧结,形成WO3包覆㊂研究结果表明,WO3包覆改性在一定程度上降低了NCM811的极化,提高了NCM811的倍率和循环性能㊂此外,SiO2由于具有电化学活性低㊁储量丰富㊁环境友好㊁价格低廉等优点而备受人们关注㊂其同样可以与HF反应,保护正极颗粒免受电解液的侵蚀,缓解循环过程中的表面结构退化㊂Li等[8]采用静电引力法,通过调整SiO2溶胶悬浮体与NCM715之间的电动电位,将SiO2溶胶均匀吸附在NCM715表面,然后经过热处理形成SiO2包覆层㊂NCM715表面的SiO2包覆层减少了电解液与正极之间的反应,保护了电极的层状结构,减小了界面阻抗,即使在4.5V的高截止电压下,依然能表现出良好的电化学稳定性㊂1.2㊀金属氟化物包覆材料最主要的金属氟化物包覆材料是AlF3㊂AlF3包覆层可以通过缓解晶格膨胀来抑制循环过程中的锂镍混排和锂损失㊂此外,它还可以抑制高镍三元材料在储存过程中表面残碱的产生,提高高镍三元材料与电解质之间的界面稳定性㊂传统的干法或湿法构筑的包覆层对层结构的厚度和保形性的可控性较小,因此包覆层通常是不均匀的,这会导致电极的离子和电子传输阻力增加㊂原子层沉积(atomic layer deposition,ALD)技术是一种先进的构建包覆层技术㊂此技术可以在具有较高比表面积的基材上沉积薄膜,即使几何形状不规则,也可以精确控制其沉积厚度,保证沉积的均匀性㊂Yang等[9]使用三甲基铝和HF-吡啶作为前驱体材料,然后利用ALD技术在NCM811表面上均匀地形成AlF3纳米包覆层㊂结果表明,AlF3保护层抑制了锂镍混排,稳定了NCM811的结构㊂Li等[10]通过溶液法成功合成了AlF3包覆的Li[Ni0.80Co0.15Al0.05]O2,制备过程中首先将原始的Li[Ni0.80Co0.15Al0.05]O2粉末浸入Al(NO3)3稀溶液中,然后逐滴加入NH4F溶液,通过沉淀反应形成不同包覆厚度的AlF3㊂与原始Li[Ni0.8Co0.15Al0.05]O2相比,0.5%AlF3包覆层样品在不同测试温度下均表现出较高的容量保持率和倍率性能㊂1.3㊀金属磷酸盐包覆材料金属磷酸盐包覆材料主要有AlPO4㊁MnPO4等㊂金属磷酸盐在界面附近有转化成非晶态的趋势,这个过程可抑制相变的发生,使三元材料内部和界面处的结构更加稳定,提高材料的循环稳定性㊂Tang等[11]通过简单的干混和煅烧,成功合成了AlPO4改性的NCM622㊂研究结果表明,在NCM622表面上Al和P的存在形式分别是LiAlO2和Li3PO4,它们是由AlPO4和NCM622在煅烧过程中发生化学反应产生的㊂Al取代Ni位生成LiAlO2和Li3PO4包覆层,共同稳定了NCM622的结构㊂尽管与原始NCM622相比,在0.1C倍率时初始放电比容量有所降低,但是AlPO4提高了循环性能并缓解了高温状态下的晶格应变,提升了材料的结构稳定性,降低了微裂纹的产生㊂Liu等[12]也将AlPO4在NCM811正极材料上形成Li3PO4-LiAlO2包覆层,并研究了不同AlPO4包覆量对样品的改性㊂NCM811表面形成的Li3PO4-LiAlO2保护层不仅可以减轻表面附近的层状结构退化生成盐岩相,还可以防止HF和H2O对本体材料的侵蚀,从而使材料的结构更加稳定㊂Wu等[13]首次将非水溶液中的成膜工艺用于三元正极材料AlPO4的改性,这种方法克服了沉淀方法中包覆层不均匀的难点㊂AlPO4质量分数可控制在0.2%,这远低于之前大多数文献中的含量,超薄包覆层可以最大限度地减少包覆层的形成对Li+扩散速率㊁电子电导率和能量密度的影响,但较薄的包覆层也更容易消耗殆尽㊂2㊀离子/电子电导性材料2.1㊀离子电导性材料高镍三元正极材料的倍率性能较差,主要源于Li+在层状结构中的二维扩散通路和阻碍Li+扩散的锂镍混排,这些因素限制了它们在高功率密度领域的应用㊂Huang等[14]通过溶胶-凝胶法将Li2MnO3纳米域引入初级NCM811颗粒的层状结构中,并在这种集成结构中构建许多域边界,从而形成三维离子扩散网络,Li2MnO3包覆NCM811样品的TEM图和选区电子衍射图如图2所示㊂在这种体系中,由于颗粒尺寸减小诱导出了中空结构,增加了Li+的迁移速率,同时Li2MnO3纳米域整合到NCM811基体中,阻碍了锂镍混排的形成㊂上述因素共同促成了Li+的快速传输,从而提高了NCM811的倍率性能㊂LiAlO2具有优异的Li+传输性能㊂LiAlO2包覆层不仅可以稳定正极和电解质之间的界面结构,而且由于其提供了良好的Li+脱嵌过程的传输网络,可以显著提高电化学性能㊂Tang等[15]设计了一种通过蚀刻诱导包覆层策略,在高镍NCM811正极材料上形成γ-LiAlO2保护层和Li+导电性包覆层,以提34郑州大学学报(理学版)第56卷图2㊀Li2MnO3包覆NCM811样品的TEM图和选区电子衍射图[14]Figure2㊀TEM images and selected area electrondiffraction pattern of Li2MnO3-coated NCM811[14]高其电化学性能㊂性能提升主要是由于Al3+扩散到NCM811的晶格内部,可以减轻锂镍混排并增强结构稳定性㊂LiAlO2包覆层为Li+提供了良好的传输网络,提高了结构稳定性并防止核心材料受到电解液的侵蚀㊂Li2TiO3具有较宽的工作电压㊁较高的热稳定性和快速的Li+传输动力学,被认为是有效的用于三元正极表面修饰的包覆层材料㊂He等[16]提出一种新型的Li2TiO3纳米颗粒包覆层,避免了Ti4+的掺杂造成的锂镍混排过程的恶化㊂纳米Li2TiO3包覆的NCA8155显示出几乎没有变化的形貌结构和较低的表面残碱,因此Li2TiO3包覆层显著提升了循环稳定性和倍率性能㊂最优异的表面包覆层不仅能通过阻断电解质和电极表面上高活性阳离子之间的物理接触来解决不稳定性问题,还能稳定电极中晶格氧离子,改善Li+的迁移率㊂Wang等[17]提出了一种直接调控策略,用于适应固相中的高活性阳离子㊂通过利用锂镧镍氧双离子导体(层状钙钛矿La4NiLiO8)包覆层中稳定的氧空位和间隙,显著抑制了表面晶格氧离子的活性,抑制了晶格中的氧释放以及不可逆相变和晶间机械裂纹㊂同时,引入的双离子导体还可以改善Li+在颗粒表面的扩散动力学和材料本体的电子导电性㊂另外,Li等[18]首次采用简单的一步法制备了结构和界面可靠的B掺杂和La4NiLiO8包覆改性的NCM811正极㊂La4NiLiO8包覆层可以防止电极遭受电解液的腐蚀,并提升Li+的传输动力学㊂此外, B掺杂可以有效地抑制有害的H2~H3相变,并将初级粒子的取向调整为径向排列,这阻碍了由于晶体各向异性导致的体积变化而引起的微裂纹产生㊂Yang等[19]通过一种简单的方法成功地制备了La和Al共掺杂和包覆改性的NCM811㊂XRD和XPS证实,La和Al不仅可以掺杂到NCM811本体中,而且可以在表面形成La2Li0.5Al0.5O4包覆层㊂高压电化学性能的提高主要归因于La和Al通过共掺杂增强了体相结构,形成的La2Li0.5Al0.5O4包覆层作为高T c超导氧化物,不仅促进了Li+的传输,而且保护了材料免受电解质的侵蚀㊂此外,残留的锂盐还能通过形成La2Li0.5Al0.5O4而被还原㊂电化学性能的提升表明,La2Li0.5Al0.5O4包覆层的改性和La-Al共掺杂是NCM811材料大规模工业化生产的一种有竞争力的方法㊂Wang等[20]引入晶体结构相似的钙钛矿相来 铆钉 层状结构的膨胀收缩,钉扎效应显著减轻了由于晶体结构的体积变化所带来的有害结构演变㊂与传统材料相比,每个循环中的晶格应变演变减少了近70%,这显著增强了二次颗粒的完整性,从而提高了电池的可逆循环性能㊂这种应变抑制方法拓宽了晶格工程的应用前景,以释放锂嵌(脱)产生的应变,并为开发具有长寿命的高能量密度正极铺平道路㊂Wang等[21]提出一种利用富锂和富锰层状氧化物(lithium-and manganese-rich layered oxide,LMR)的低应变材料在富镍层状氧化物(nickel-rich lay-ered oxide,NLO)正极上重建稳定表面的策略㊂新的表面结构不仅由梯度结构组成,而且形成了丰富的氧空位和阳离子有序的缺陷结构,这种结构可以同时提升Li+的扩散速率并在锂嵌(脱)过程中稳定晶体结构㊂NLO中的这些特征显著改善了电化学性能,特别是在高压循环下的稳定性㊂Tan等[22]通过在NCM811的层状相中引入尖晶石状榫卯结构,可以显著抑制正极材料中不利的体积变化㊂同时,该榫卯结构对Li+的快速传输起到了类似高速公路的作用㊂此外,具有榫卯结构的颗粒通常以最稳定的(003)面终止㊂该工作提供了一种可行的晶格工程,以解决NLO的稳定性和低首次库仑效率的问题,并有助于实现具有高能量密度和长耐久性的锂离子电池㊂Cai等[23]提出了高压诱导析氧的理论,并报道了一种镧系化过程,以调节正极材料的近表面结构,并将这种超越传统的表面修饰推广到贫钴/无钴高44㊀第3期李㊀静,等:锂离子电池高镍三元正极材料表面改性研究进展能量密度层状正极中,证明了有效的表面钝化抑制了表面降解和改善了电化学性能,高压循环稳定性大大增强,最高可达4.8V(相对于Li+/Li)㊂所设计的表面相在高电压下抑制了析氧反应㊂表明通过高氧活性钝化㊁选择性化学合金化和使用湿化学的应变工程进行改性,能获得高性能层状氧化物正极材料㊂Yang等[24]制备了Li0.5La2Al0.5O4(LLAO)原位包覆层和Mn离子补偿掺杂的多层LiNi0.82Co0.14Al0.04O2㊂XRD精修表明,La-Mn协同改性可以实现适当的锂镍混排㊂计算结果和原位XRD分析表明,LLAO包覆层能够有效地抑制二次颗粒中的机械裂纹,这得益于内部晶体应变被抑制㊂测试结果表明,LLAO-Mn改性的循环后的正极具有更完整的形貌,与电解液的副反应更少㊂进一步研究了气体析出时的正极电解质界面,表明NCA-LM2比NCA-P释放更少的CO2,从而达到更稳定的表面㊂2.2㊀电子电导性材料石墨烯具有大的比表面积㊁优异的电子导电性和机械性能,其化学性质稳定㊂石墨烯的引入可以有效地提高电极材料表面的电子电导率㊁电容性能等㊂Luo等[25]通过模板自组装法制备了一种具有三维纳米结构的NCA8155/石墨烯复合材料(G-NCA8155)㊂首先将制备的石墨烯溶在无水乙醇中,在大功率超声搅拌下形成均匀的石墨烯分散液,然后把NCA8155粉末加入上述溶液中,将混合物轻微超声搅拌自组装,透析㊁干燥后得到G-NCA8155㊂石墨烯三维网络增加了材料的比表面积,同时协同效应能够提高电子导电性和稳定晶体结构,从而显著提高倍率性能和循环稳定性㊂Tian等[26]通过共沉淀和水热反应制备了一种具有独特结构的三维多孔石墨烯气凝胶包裹的NCM622纳米颗粒(NCM@GA)㊂由于其高导电性和大量相互交织的开放孔结构,自组装后的石墨烯气凝胶网络可以极大地加快电子和离子的传输速率,提升电化学反应动力学㊂此外,分散良好的NCM622纳米颗粒可以提供更大的电极-电解质界面并促进Li+的快速传输㊂因此,三维导电结构和分散良好的纳米粒子的协同作用可以有效地增强NCM@GA材料的电化学性能㊂Liu等[27]用蔗糖和葡萄糖作为碳料,在NCA8155表面构建纳米碳包覆层㊂结果表明,以蔗糖为碳源构建的包覆层具有更好的电化学性能㊂原因是葡萄糖碳化后形成的包覆层较致密,而蔗糖形成的包覆层相对疏松,内部分布着尺寸较大的孔结构㊂这样的碳包覆层具有较大的比表面积,有利于电解液的浸润,同时也有利于Li+的脱嵌和迁移,并能减缓电解液对本体材料的侵蚀㊂Cao等[28]制备了集聚苯胺(PANI)优异的电子导电性和聚乙二醇(PEG)的高离子导电性于一体的双功能导电聚合物,用于NCM811材料的表面改性,获得高性能NCM@PANI-PEG复合材料㊂具有高弹性和高柔韧性的PANI-PEG聚合物在减轻循环过程中NCM811材料的体积收缩和膨胀方面发挥着至关重要的作用㊂过渡金属的溶解是由电解液分解产生的HF腐蚀引起的,这会对电化学性能产生不利的影响㊂在相同的储存时间下,表面改性电极中Ni㊁Co和Mn过渡金属的溶解量均低于未修饰的电极㊂包覆到NCM811颗粒表面的PANI-PEG保护层提供了物理屏障,以防止正极材料被HF侵蚀,从而抑制过渡金属的溶解,进而提高主体材料在高温下的循环稳定性㊂苝-3,4,9,10-四羧酸二酐(PTCDA)是一种具有高化学稳定性的N型有机半导体材料㊂PTCDA的高电子亲和力(约3.6eV)导致附加负电荷更容易稳定化,为黏附石墨烯提供了理论基础㊂从结构上看,PTCDA分子为二维共轭π电子体系,其所携带的苯环与石墨烯的六方结构是一致的㊂Ning等[29]在PTCDA的作用下,通过简单的物理混合来制备均匀的rGO包覆的NCM811(PG-NCM)材料㊂在使用PG-NCM作为正极材料时,rGO纳米片和PTCDA的协同作用可以提供更好的电子导电性和更稳定的电极-电解质界面㊂特别是P1G1-NCM(仅含质量分数1.0%的添加剂)在所有样品中表现最佳,在1C 倍率下达到了194.1mAh㊃g-1的放电比容量,在循环100次后容量保持率为92.8%,并且在高倍率下性能也得到了提升(10C倍率下放电比容量达到122.1mAh㊃g-1)㊂3㊀复合包覆材料3.1㊀电子电导性材料和金属氧化物复合包覆通过电子电导性材料和金属氧化物复合包覆层可以同时改善正极材料的导电性和结构稳定性㊂在这种方法中,其中一种成分可以通过保护表面免受不需要的副反应来提高循环性能,而另一种成分则提升了电子导电性能,提高了放电比容量㊂Y2O3作为包覆剂,使用石墨烯作为导电添加剂㊂Y2O3属于稀土元素氧化物,具有很高的热稳定性㊂Loghavi等[30]通过湿法化学煅烧的方法用Y2O354郑州大学学报(理学版)第56卷修饰NCA811正极材料,并将制备的材料与石墨烯机械混合㊂电化学性能测试表明,NCA811㊁Y 2O 3/NCA811和石墨烯/Y 2O 3/NCA811材料在2C 倍率下分别提供109㊁136和164mAh ㊃g -1的放电比容量㊂石墨烯/Y 2O 3/NCA811材料在100次循环后(0.5C)依旧拥有180mAh㊃g-1的放电比容量,而原始NCA811仅提供了87mAh ㊃g -1的放电比容量㊂3.2㊀离子电导性和电子电导性材料复合包覆在材料表面构建一种具有高离子和电子导电性的双功能包覆层,可以提高电池在循环过程和离子储存过程中的稳定性㊂本体材料㊁离子包覆材料㊁电子包覆材料和电解质共同形成了四相正极-电解质界面,这对容量保持率的大幅度提高起到了关键作用㊂Yang 等[31]在NCM811表面构建了具有高离子和电子电导率的多功能包覆层,以提高电池在循环过程中的稳定性㊂磷酸与原始NCM811上残留的锂盐发生反应,形成具有碳纳米管穿透的Li 3PO 4包覆层,具有高离子和电子导电性㊂NCM811㊁Li 3PO 4㊁CNT 和电解质共同形成四相正极-电解质界面,这对提高容量保持率起到关键作用,在0.5C 倍率下循环500次后,容量保持率从原始的50.3%提高到84.8%㊂改进后的NCM811在高截止电压4.5V㊁高温55ħ和10C 倍率下依旧具有出色的电化学性能㊂此外,在高湿度空气中暴露2周后,它还可以在500次循环后提供154.2mAh㊃g -1的放电比容量㊂CNT-LPO-NCM 的机理示意图和循环性能如图3所示㊂图3㊀CNT-LPO-NCM 的机理示意图和循环性能[31]Figure 3㊀Schematic diagram of mechanism and cycling performance of CNT-LPO-NCM [31]为了提高锂离子电池正极材料的离子和电子导电性,Na 等[32]提出一种具有高离子导体Li 1.3Al 0.3Ti 1.7[PO 4]3(LATP )和高电子导体多壁碳纳米管的Li 1.03(Ni 0.88Co 0.08Mn 0.04)O 2正极材料的表面改性,LATP 粉末使用改进的Pechini 方法制备而成㊂表面改性的高镍NCM 电极,其表面高离子和电子导电网络能够实现Li +和电子的快速传输,从而显著增强充放电循环期间的电化学性能㊂3.3㊀离子电导性材料和金属氧化物复合包覆金属氧化物可以保护材料免受电解液的侵蚀,金属氧化物包覆层可以提高材料界面结构的稳定性,提升电池的循环性能㊂离子电导性材料包覆层可以增强Li +的传输能力,提高电池的倍率性能㊂离子电导性材料和金属氧化物复合包覆层可以同时提高电池的容量保持率和倍率性能㊂Maiti 等[33]采用了一种简单有效的ALD 包覆策略,用Al 2O 3㊁Li 5AlO 4和Na 5AlO 4对NCM424粉末材料进行表面包覆,从而提高了其氧化还原活性,抑制不可逆的氧从晶格中释放出来㊂在1C 倍率下超过400次循环后,未包覆的NCM424材料的放电比容量仅有63mAh ㊃g -1,而具有复合包覆层的NCM424材料显示出大约两倍的放电比容量㊂通过XPS 光谱和电压分布进行分析,得出了改性后的NCM424材料的表面锰从四价态部分还原到较低的价态㊂根据研究结果,在有ALD 包覆层的情况下,表面锰的还原可能是由于三甲基铝挥发性物质通过其在正极材料表面的分解反应与它们接触而发生的㊂这项工作的关键发现是,与所有包覆的正极材料相比,通过阳离子氧化(Ni 2+/Ni 4+,Co 3+/Co 4+)传递的电荷容量和经过阴离子氧化证实的电荷容量均略低于未包覆材料㊂该发现可能与NCM424颗粒表面包覆层上形成的修饰电极-电解质界面有关㊂4㊀结语高镍三元正极材料因其具有高能量密度而备受科研人员关注㊂然而,这些材料存在着一系列问题,如对空气敏感㊁与电解液反应㊁阳离子混排㊁晶格氧析出㊁过渡金属离子迁出以及微裂纹形成等,这些问题限制了高镍三元正极材料的应用与发展㊂包覆是高镍三元正极材料表面改性的重要方法㊂常用的包覆材料有电化学惰性材料㊁离子电导性材料㊁电子电导性材料㊂在此基础上发展到复合包覆,常见的复合包覆有电子电导性材料和金属氧化物复合包覆㊁离子电导性和电子电导性材料复合包覆㊁离子电导性材料和金属氧化物复合包覆㊂包覆材料不仅可以保护材料表面和提高材料的结构稳定性,还可以提高离子或电子的传输能力,提高材料的电化学性能㊂64。

锂电池负极材料的研究进展

锂电池负极材料的研究进展

2020年第3期广东化工第47卷总第413期 ·115 ·锂电池负极材料的研究进展高敬园(宁德新能源科技有限公司PMC,福建宁德352000)[摘要]随着科技的发展,锂离子电池应用的范围越来越广。

负极材料作为锂离子电池重要部分,越来越多的被人们研究开发。

本文从碳负极材料和非碳负极材料两个方面对锂离子负极材料的研究发展进行了汇总,同时对其制备也进行了简单综述。

[关键词]锂电池;负极材料;负极材料的制备[中图分类号]TQ [文献标识码]A [文章编号]1007-1865(2020)03-0115-02,Study on Anode Materials for Lithium-ion BatteryGao Jingyuan(PMC, Ningde Amperex Technology Limited, Ningde 352000, China)Abstract: With the development of science and technology, lithium-ion batteries are widely used. As an important part of lithium-ion batteries, more and more anode materials have been researched and developed. In this paper, the research and development of lithium-ion anode materials are summarized from the aspects of carbon anode materials and non carbon anode materials, and the preparation of lithium-ion anode materials is also briefly reviewed.Keywords: lithium ion battery;carbon anode material;preparation of anode materials随着科技的发展,锂电池凭借高电压、高能量密度、良好的循环性能、低自放电等突出优势在人们生活中的应用越来越广泛[1-2]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

氧化镍基负极材料在锂离子电池中的性能改善研究进展
氧化镍作为一种常见的锂离子电池负极材料,具有较高的比容量和较低的成本,因此备受研究者的关注。

然而,其在锂离子电池中存在一些问题,如较差的循环稳定性、容量衰减以及安全性等。

近年来,关于氧化镍基负极材料在锂离子电池中的性能改善的研究取得了一些进展。

首先,表面修饰是改善氧化镍基负极材料性能的重要途径之一。

常见的表面修饰方法包括涂层、包覆和合成复合材料等。

涂层方法通过在氧化镍颗粒表面形成一层保护膜来改善其循环稳定性和容量衰减问题。

常用的涂层材料有碳纳米管、二氧化硅和石墨烯等。

研究结果表明,涂层能够有效减少氧化镍表面与电解液之间的相互作用,阻止电解液中溶解的锂离子进入氧化镍颗粒内部,从而提高电池的循环寿命和容量保持率。

除了涂层方法外,包覆方法也被广泛应用于氧化镍基负极材料的改性研究中。

包覆材料通常选择电解液降解产物较少的材料,如石墨、碳纳米管和石墨烯等。

包覆材料能够有效抑制氧化镍与电解液之间的反应,并增强电极材料的结构稳定性。

研究显示,包覆层能够提高氧化镍基负极材料的循环寿命和容量保持率,同时减少电池的容量衰减速率。

此外,合成氧化镍基复合材料也是提高其性能的重要方法之一。

常见的复合材料包括氧化镍与碳纤维、石墨烯和钛酸锶等的复合材料。

通过将氧化镍与其他物质进行复合,可以改善其电极材料的结构稳定性,并提高电极材料的电导率和循环寿命。

研究结果显示,复合材料能够显著提高氧化镍基负极材料的电化
学性能,使其具备更好的循环稳定性和容量保持率。

除了表面修饰和复合材料制备方法,晶体结构调控也被证明是改善氧化镍基负极材料性能的重要手段之一。

传统的氧化镍材料具有较大的晶格体积,导致其在锂离子嵌入和析出过程中发生严重的体积变化,从而导致材料的结构破坏和容量衰减。

通过控制合成条件和添加合适的添加剂,可以调控氧化镍的晶体结构,使其具有更好的结构稳定性。

研究结果表明,晶体结构调控能够有效提高氧化镍的循环寿命和容量保持率,使其在锂离子电池中具有更好的表现。

需要指出的是,虽然氧化镍基负极材料在锂离子电池中的性能改善研究取得了一些进展,但仍然存在一些挑战。

例如,氧化镍与电解液之间的相互作用问题仍然需要解决,电极材料的体积变化问题也需要进一步深入研究。

因此,未来的研究方向应该着重于解决这些问题,以进一步提高氧化镍基负极材料在锂离子电池中的性能。

综上所述,氧化镍基负极材料在锂离子电池中的性能改善研究已经取得了一些进展,表面修饰、复合材料制备和晶体结构调控等方法被广泛应用于此领域。

然而,仍然存在一些挑战需要解决。

相信随着更多的研究和技术的不断进步,氧化镍基负极材料在锂离子电池中的性能将得到进一步提升,为电动汽车和可再生能源储存等领域的发展提供更好的支持。

在氧化镍基负极材料性能改善的研究中,除了表面修饰、复合材料和晶体结构调控等方法外,还涉及到了一些其他的因素。

例如,电解液的选择、循环稳定性的评估以及安全性等方面的研究。

首先,电解液的选择对于氧化镍基负极材料的性能有着重要影响。

电解液中的溶剂和盐浓度等参数能够影响电化学反应的动力学过程,从而影响材料的循环稳定性和容量衰减速率。

研究表明,选择合适的溶剂和盐浓度等参数可以减少氧化镍与电解液之间的相互作用,从而提高材料的循环寿命和容量保持率。

此外,还可以通过添加添加剂来改变电解液的性质,进一步提高氧化镍基负极材料的性能。

其次,循环稳定性的评估是氧化镍基负极材料性能改善研究的重要一环。

循环稳定性是评估材料在循环充放电过程中容量损失的程度和循环寿命的指标。

常用的评估方法包括循环伏安法、循环伏安谱和循环容量衰减等。

通过这些评估方法,可以了解材料在循环充放电过程中的电化学性能变化情况,以及导致容量衰减的原因,从而指导材料的性能改善研究。

此外,安全性也是氧化镍基负极材料性能改善研究中需要考虑的重要因素。

氧化镍在充放电过程中会发生体积变化,并且存在着与电解液中的锂离子发生剧烈反应的风险。

这些问题可能导致电池过热、内部压力增大,甚至发生热失控和爆炸等安全问题。

为了提高材料的安全性,研究者们通常会加入抑制剂或添加剂等物质,来减少氧化镍与电解液之间的反应和减缓体积变化速率。

此外,也有学者致力于寻找其他更安全的负极材料替代氧化镍。

总体而言,氧化镍基负极材料在锂离子电池中的性能改善研究涉及到表面修饰、复合材料制备、晶体结构调控、电解液选择、
循环稳定性评估和安全性等多个方面。

通过这些研究,旨在提高氧化镍基负极材料的循环稳定性、容量保持率和安全性,以促进锂离子电池的性能和应用的进一步发展。

需要指出的是,尽管目前氧化镍基负极材料的性能还存在一些问题和挑战,但在未来的研究中,随着更多新材料、新技术的不断涌现,相信能够取得更多突破和进展。

例如,石墨烯、二氧化硅、金属有机骨架材料等新材料可以作为表面修饰或复合材料组分,进一步提高氧化镍基负极材料的性能。

此外,探索新的制备方法和合成策略也是研究的方向之一,如溶剂热法、水热法、共沉淀法等,有助于实现更好的材料结构和性能调控。

综上所述,氧化镍基负极材料在锂离子电池中的性能改善研究取得了一定的进展,但仍然面临挑战。

在未来的研究中,应进一步探索新的材料和方法,解决材料与电解液之间的相互作用、循环稳定性和安全性等问题,以进一步提高氧化镍基负极材料在锂离子电池中的性能,促进相关领域的发展。

相关文档
最新文档