原子发射光谱的发展

合集下载

原子发射光谱分析法

原子发射光谱分析法
原子发射光谱分析法
2023-11-06
目录
• 原子发射光谱分析法概述 • 原子发射光谱仪 • 分析方法与样品处理 • 原子发射光谱法的应用 • 原子发射光谱法的优缺点 • 研究成果与应用实例
01
原子发射光谱分析法概述
定义与原理
定义
原子发射光谱分析法是一种基于原子发射光谱学的方法,通过对样品中原子 或离子的特征光谱进行分析,实现对其成分和含量的测定。
原理
当样品被加热或受到能量激发时,原子会从基态跃迁到激发态,并释放出特 征光谱。通过对这些光谱进行分析,可以确定样品中元素的种类和含量。
发展历程与重要性
发展历程
原子发射光谱分析法自19世纪末发展至今,经历了从经典光谱分析到现代光谱仪 器分析的演进过程。
重要性
原子发射光谱分析法在科学研究和工业生产中具有广泛的应用价值,为材料科学 、环境科学、生命科学等领域提供了重要的分析手段。
03
该方法广泛应用于地质、环保、生物医学等领域,用于研究复杂样品中元素的 含量、分布和化学形态。
05
原子发射光谱法的优缺点
优点
高灵敏度
原子发射光谱法可以检测到低浓度的元素 ,具有很高的灵敏度。
无需样品处理
原子发射光谱法不需要对样品进行复杂的 处理,可以直接进行分析。
快速分析
该方法可以实现多元素同时分析,大大缩 短了分析时间。
发和激发。
光谱仪的构造
包括入射狭缝、准直镜、光栅 、聚焦镜和ቤተ መጻሕፍቲ ባይዱ射狭缝。
光谱仪工作原理
样品被激发后,原子会产生不 同波长的光谱,通过光栅分光 后形成光谱,再经过聚焦镜聚 焦到出射狭缝,最后由检测器
进行检测。
光谱仪的分类与特点

第五章原子发射光谱

第五章原子发射光谱

• 处于高能级的电子经过几个中间能级跃 迁回到原能级,可产生几种不同波长的 光,在光谱中形成几条谱线。一种元素 可以产生不同波长的谱线,它们组成该 元素的原子光谱。 • 不同元素的电子结构不同,其原子光谱 也不同,具有明显的特征。
原子发射光谱技术的发展历程
原子发射光谱在50年代发展缓慢; 1960年,工程热物理学家 Reed ,设计了环形放电感耦等 离子体炬,指出可用于原子发射光谱分析中的激发光源;
电极,每转动180度,对接一次, 转动频率(50转/s),接通100次/s, 保证每半周电流最大值瞬间放电 一次;
高压火花的特点:
(1)放电瞬间能量很大,产生的温度高,激发能力强, 某些难激发元素可被激发,且多为离子线; (2)放电间隔长,使得电极温度低,蒸发能力稍低,适 于低熔点金属与合金的分析; (3)稳定性好,重现性好,适用定量分析;
原子发射光谱仪通常由三部分构成: 光源、分光、检测;
原子发射光谱激发光源
• 激发光源的基本功能是提供使试样中被 测元素原子化和原子激发发光所需要的 能量。对激发光源的要求是: 灵敏度高,稳定性好,光谱背景小,结 构简单,操作安全。
常用的激发光源: • 电弧光源。(交流电弧、直流电弧) • 电火花光源。 • 电感耦合高频等离子体光源(ICP光源) 等。
检测器
ICP形成原理
ICP火焰温度分布
缺点:出射狭缝固定,各通道检测的元素谱线一定;
改进型: n+1型ICP光谱仪
在多道仪器的基础上,设置一个扫描单色器,增加一个 可变通道;
2. 全谱直读等离子体光谱仪
采用CID阵列检测器,可同时检测165 ~800nm波长范围内出现的全部谱线; 中阶梯光栅分光系统,仪器结 构紧凑,体积大大缩小; 兼具多道型和扫描型特点; CID :电荷注入式检测器 (charge injection detector,CID), 28×28mm半导体芯片上,26万个感 光点点阵( 每个相当于一个光电倍 增管);

原子发射光谱法(aes)

原子发射光谱法(aes)
谱线强度法
通过测量待测样品中某一元素的特征谱线强度,与已知浓度的标准样品进行比 较,大致确定待测样品中该元素的含量范围。
定性分析
谱线识别法
通过对比已知元素的标准谱线与待测样品的谱线,确定待测样品中存在的元素种 类。
特征光谱法
利用不同元素具有独特的特征光谱,通过比对特征光谱的差异,确定待测样品中 存在的元素种类。
电热原子化器利用电热丝加热 ,使样品中的元素原子化。
化学原子化器利用化学反应将 样品中的元素转化为气态原子

光源
01 光源用于提供能量,使样品中的元素原子 化并产生光谱信号。
02 光源类型有多种,如电弧灯、火花放电灯 等。
03
电弧灯利用电弧放电产生高温,使样品中 的元素原子化。
04
火花放电灯利用高压电场使气体放电,产 生高温,使样品中的元素原子化。
原子发射光谱法(AES)
目 录
• 原子发射光谱法(AES)概述 • AES的仪器与设备 • AES的样品制备与处理 • AES的分析方法与技术 • AES的优缺点与挑战 • AES的未来发展与展望
01 原子发射光谱法(AES)概 述
定义与原理
定义
原子发射光谱法(AES)是一种通过测量物质原子在受激发态跃迁时发射的特定波长的光来分析物质成分的方法。
02
发射光谱仪通常包括电 子激发源、真空系统、 光学系统、检测器等部 分。
03
电子激发源用于产生高 能电子,激发原子或离 子,使其跃迁至激发态。
04
真空系统用于维持仪器 内部的高真空环境,减 少空气对光谱信号的干 扰。
原子化器
01
02
03
04
原子化器是将样品转化为原子 蒸气的装置。

光谱分析的发展

光谱分析的发展

光谱分析的发展光谱分析法是测定物质与电磁辐射相互作用时所产生的发射、吸收辐射的波长和强度进行定性、定量和结构分析的方法。

光谱分析是近几十年发展起来的,当今发展迅速、方法门类众多,能够适应各个领域所提出的新任务,已成为现代分析的重要方法:1、原子发射光谱法1859年基尔霍夫、本生研制了第一台用于光谱分析的分光镜,实现了光谱检验;1900年普朗克提出了“量子化”概念并于1918年因创立量子论、发现基本量子获诺贝尔物理学奖;1905年爱因斯坦提出了光量子假说并于1921年因“光的波粒二象性”这一成就获得诺贝尔物理学奖,他们的理论为光谱分析的发展奠定了坚实的理论基础。

20世纪30年代建立了光谱定量分析法。

20世纪60年代以后原子发射光谱得到迅速发展,期间主要应用火焰、电弧及电火花等激发光源,在发现新元素、促进原子结构理论的发展及其在各种无机材料定性分析中发挥了重要作用。

20世纪70年代以来,应用了电感耦合高频率等离子体焰炬、激光等新型激发光源。

2、原子吸收光谱法1802年,伍朗斯顿在研究太阳连续光谱时发现了太阳连续光谱中有暗线。

1817年福劳霍费在研究太阳连续光谱时,再次发现了这些暗线,将这些暗线称为福劳霍费线。

1860年,本生和克希荷夫证明太阳连续光谱中的暗线,正是太阳大气圈中的钠原子对太阳光谱中的钠辐射吸收的结果。

1955年澳大利亚的瓦尔西发表了论文《原子吸收光谱在化学分析中的应用》奠定了原子吸收光谱法的理论基础;50年代末和60年代初,Hilger,Varian Techtron及Perkin-Elmer公司先后推出了原子吸收光谱商品仪器,发展了瓦尔西的设计思想。

1961年里沃夫发表了非火焰原子吸收法的研究工作。

1965年威尔斯将氧化亚氮—乙炔火焰成功地用于火焰原子吸收光谱法中,使可测定的元素达到了70个之多。

近年来,使用电视摄像管做多元素分析鉴定器,结合中阶梯光栅,设计了用电子计算机控制测定多元素的原子吸收分光光度计,为解决同时测定多种元素的问题开辟了新的途径。

原子光谱学的历史

原子光谱学的历史

原子光谱学的历史
原子光谱学是研究原子在特定条件下吸收和发射光辐射的学科,其历史可以追溯到18世纪末。

以下是原子光谱学的主要历史
发展:
1. 18世纪末至19世纪初:最早的原子光谱研究可以追溯到约
瑟夫·冯·弗拉·荷夫和威廉·海因里希·沃斯坎宁的工作。

他们分
别发现了氢原子和其它元素的光谱现象,并提出了一些基本规律。

2. 19世纪:光谱学的研究进一步深入。

格罗特里安·基尔霍夫、安格斯特·昂斯特罗姆和他们的学生们通过观察氢原子和其它
元素的光谱,提出了基尔霍夫规则和昂斯特罗姆定律,对光谱线的频率和波长的关系进行描述。

3. 20世纪上半叶:量子力学的出现使得原子光谱学得到了更
加严谨的理论解释。

尤金·鲍尔和亚伯拉罕·彼得·里特在1920
年代提出了量子力学描述原子结构的模型,这一模型能够解释光谱线的位置和强度。

4. 20世纪中叶:原子光谱学在天体物理学和化学中的应用得
到了广泛发展。

研究人员通过观察星系和星际空间中的光谱,发现了一些新的元素和物质。

5. 近现代:随着科学技术的进步,原子光谱学的应用范围进一步扩大。

包括激光光谱学、原子吸收光谱法等在内的新技术不断涌现,为物质分析、环境监测等领域提供了强大的工具。

总之,原子光谱学的历史经历了对光谱现象的观察和实验研究、基于量子力学的理论解释以及应用的不断发展和创新,其研究成果为我们深入理解原子结构和物质性质提供了重要依据。

原子发射光谱分析

原子发射光谱分析

ICP的分析特点 的分析特点
1. 对大多数元素有高的灵敏度 检测限达 -9-10-11 检测限达10 g·L-1因为温度高(等离子体核处 因为温度高(等离子体核处10000K,中央 ,中央6000- - 8000K);惰性气氛,有利于难熔物质分解。 );惰性气氛 );惰性气氛,有利于难熔物质分解。 2. 测定线性范围宽 因趋肤效应而无自吸现象。 因趋肤效应而无自吸现象 自吸现象。 高频电流密度在导体截面呈不均匀分布, 趋肤效应 高频电流密度在导体截面呈不均匀分布,集 中在导体表层的现象。 中在导体表层的现象。 3. 碱金属电离不造成干扰,因电流密度大。 碱金属电离不造成干扰,因电流密度大。 4. 无电极污染 因是无极放电。 因是无极放电。 5. 耗样量小 载气流速低,试样在中央通道充分激发 载气流速低, 6. 背景干扰小 因工作气体氩气是惰性气体不产生其 它物质。 它物质。
第一共振线 原子由第一激发态跃迁到基态发射的谱线。 原子由第一激发态跃迁到基态发射的谱线。 最易发生,能量最小,一般是最灵敏线,又叫最后线。 最易发生,能量最小,一般是最灵敏线,又叫最后线。 原子获得足够的能量(电离能)产生电离。 原子获得足够的能量(电离能)产生电离。失去一个电 子形成一级离子,再失去一个电子形成二级离子。 子形成一级离子,再失去一个电子形成二级离子。 离子由第一激发态跃迁到基态发射的谱线。 电离线 离子由第一激发态跃迁到基态发射的谱线。与电 离能大小无关,离子的特征共振线。 离能大小无关,离子的特征共振线。 识别元素的特征光谱鉴别元素的存在 定性分析 测定特征谱线的强度测定元素的含量 定量分析
R 镇流电阻 调节 和稳定电流 L 减小电流波动
直流电弧工作原理
电弧点燃后,热电子流高速通过分析间隔冲击阳极, 电弧点燃后,热电子流高速通过分析间隔冲击阳极, 产生高热,试样蒸发并原子化, 产生高热,试样蒸发并原子化,电子与原子碰撞电离出 正离子冲向阴极。电子、原子、离子间的相互碰撞, 正离子冲向阴极。电子、原子、离子间的相互碰撞,使 原子跃迁到激发态,返回基态时发射出该原子的光谱。 原子跃迁到激发态,返回基态时发射出该原子的光谱。 弧焰温度: 多种元素激发 弧焰温度:4000~7000 K,可使 多种元素激发。 ~ ,可使70多种元素激发。 绝对灵敏度高,背景小,适合定性分析。 特 点:绝对灵敏度高,背景小,适合定性分析。

原子光谱分析的进展及应用

原子光谱分析的进展及应用

原子发射光谱分析进展及应用一、进祥系统G.E.BaMescu认为,在一个样品的整个分析过程中,取样和进样部分应占40%,测量占20%,而数据采集和数据处理占40%。

取样和进样系统的可靠性代表着分析化学家技术水平的高低。

近年来,电热蒸发技术(ETV)与流动注射技术(n)的应用,使电感锅台等离子体光谱(ICP)与微波等离子体(MIP)的进样系统有较大改进。

提高了分析的灵敏度,简化了分析过程。

(1)电热蒸发技术电热蒸发技术目前已成为ICP的一种较通用的进样系统,适合于固体粉末样品的直接分析和微量液体样品的分析。

电热蒸发系统代替气动雾化器作为ICP的进样系统,使样品的传输效率提高,检出限降低1—2个数量级。

固体粉末样品可用500一700微升的样品杯来代替称重,液体样品的取样量为微升。

将样品置于石墨桥上,石墨桥密闭后与ICP炬管直接相通,通大电流加热,最高温度可达2900K,使样品完全蒸发和原子化后进1CP炬管。

固体样品的常规化学处理耗时长、空白高、灵敏度低,田由执兹常林术育按讲行固体粉末样品的分析可以克服以上缺点。

G011nch等曾用以上ETV—ICP系统进行了多元素同时测定,分析了合金钢、碳化硅、淤泥、土壤以及灰中的痕量元素,基体干扰通过选择蒸发时间来消除。

测量的相对标准偏差(RSD)为3—11%,动态线性范围为104一105,用不同标样制作同一个分析元素的工作曲线,线性很好。

电热蒸发技术的最大问题是Iv—VI族元素以及稀土元素(REE)和碳形成难熔的碳化物,很难蒸发,从而使这些元素的信噪比低、记忆效应较严重。

江祖成等人用聚四氟乙烯(PTFE)作氟化剂,使Ⅳ—Ⅵ族及稀土元素分析的检出限降低了1—2个数量级,并且基体效应减小,固体样品的颗粒效应也明显减小,允许进行直接固体粉末样品分析的颗粒尺寸增大了15倍。

他们使用该氟化剂,用ETV—ICP系统分析了生物样品中的Cr、B、Mo、V和REE。

(2)流动注射进样系统流动注射技术作为一种高效率的液体样品的分离和富集技术c41,近年来用于作ICP和MIP的进样系统,显示了它的优越性:样品传输效率高;所需的溶液样品量少,一般仅为30一300微升;此外,可以分析高盐分样品溶液,即使注入含盐量为40%的样品溶液,也不会堵塞雾化器。

原子光谱分析的研究进展及应用现状

原子光谱分析的研究进展及应用现状

原子光谱分析的研究进展及应用现状原子光谱分析的研究进展及应用现状_________________________________________________________________原子光谱分析作为一项重要的现代分析技术,具有较高的灵敏度,较大的测量范围,较强的选择性等优点,在化学分析、环境分析、生物分析等方面得到了广泛的应用。

本文将介绍原子光谱分析的研究进展及其应用,以更好地理解其在分析领域中的重要作用。

##### 一、原子光谱分析研究进展原子光谱分析是一种用来测定物质或样品中各元素成分及其含量的方法。

其主要原理是:将样品中的物质放入高温的电弧中,使其发生电离而产生原子,然后通过离子源将原子加速,使其出现不同的能量层次,从而产生不同的光谱图谱,从而实现对样品中元素的测定。

目前,已发展出多种原子光谱分析技术,如X射线发射光谱、原子吸收光谱、原子发射光谱、原子荧光光谱、原子共振光谱、电感耦合等体等,为物质成分及其含量的测定提供了强有力的技术手段。

随着近年来电子计算机技术的发展,原子光谱分析也在不断发展,如多元素分析仪的发展使得单仪器多元素分析成为可能;微型化使得原子光谱仪器尺寸减小;多样化使得原子光谱仪可以测量多种不同样品;实时性使得原子光谱仪可以实时检测样品中的物质成分及其含量;高性能使得原子光谱仪可以测量样品中物质成分及其含量的低浓度。

##### 二、原子光谱分析在化学、环境、生物分析中的应用1. 在化学分析中,原子光谱分析可以用来测定各种样品中的物质成分及其含量,如铁、钙、镁、锌、铜、锰、钼、铬、锡、钒、钽、铅、镉、铝、钛、钇、钇等金属元素及相应的氧化物。

此外,还可以测定一些有机物中的元素,如氮、氧、碳、氢、氧氮化合物等。

2. 在环境分析中,原子光谱分析可以用来测定大气、水体、土壤中的各种有害物质成分及其含量,如重金属元素如铅、镉、氟、氯、氮氧化物等。

此外,还可以测定一些有机物中的元素,如甲醛、氯乙烯、氯乙烯等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

原子发射光谱的发展
原子发射光谱的发展可以追溯到19世纪中期,德国学者基尔霍夫和本生通过利用分光镜研究盐和盐溶液在光焰中加热时所产生的特征光辐射,发现了某些波长的光线是表征某些元素的特征,从而开辟了原子发射光谱的领域,也奠定了光谱分析的基础。

20世纪30年代以后,世界科学领域在光谱定量研究方面投入了大量精力,科学家们采用了内标准法以及标准试样摄谱法对原子发射光谱技术进行定量方面的研究,为今后的原子发射光谱分析技术应用于元素的定量分析方面奠定了坚实基础。

随着技术的不断发展,原子发射光谱分析技术变得更加成熟。

从过去的看谱、摄谱分析到现在的直读光谱分析,分析速度大大提高,同时也将实验人员逐步从繁琐复杂的分析程序中解放出来。

进一步发展的真空光电直读光谱仪又使如碳、硫、磷等非金属元素的分析成为可能。

而电感耦合等离子体(ICP)光电光谱仪的发展又以溶液中多元素同时测定的极大优势使原子吸收光谱分析受到了前所未有的挑战。

相关文档
最新文档