基因组学
1.基因组学简介

母亲体内只有一小部分线粒体DNA分子会遗传给下一代
Mitochondrial threshold effect(线粒体阈值效应)
大多数情况下,遗传缺陷的表型表现只有当超过阈值水平时才会发生
Haplotype(单体型)
一组相互关联的单核苷酸多态性基因(SNP)位点,往往一起出现
Mitochondrial genome
37genes (No introns) 高突变率 Maternal inheritance 母系遗传——extranuclear inheritance
Mitochondrial genome Heteroplasmy(异质性)
一个个体/细胞可以同时存在多种类型的线粒体DNA
同病同治→同病异治
Right patients Right drugs Right dosage(剂量) Right time
药物研发过程
1.计算机辅助药物设计CADD(3-5年) 2.Ⅰ期临床:安全性、耐受性、药代动力学(1年) 3.Ⅱ期临床:安全性、疗效、剂量(安慰剂/已上市药物 for 对照)(单盲2年) 4.Ⅲ期临床:安全性、疗效的确证阶段(足够样本量的随机双盲对照试验)(双盲3年) 5.Ⅳ期及Ⅴ期为非必要
Haplogroup(单倍群)
一组相似的单体型,源自一个SNP突变的祖先 #Y染色体单倍群
最常被研究的单倍群是Y染色体单群和线粒体DNA单倍群
4P医学
Predictive medicine(预测医学) Preventative medicine(预防医学) Personalized medicine(个体化、精准医学) Participatory (公众参与性)
基因组学

名词解释:第一章基因组遗传图(连锁图):指基因或DNA标记在染色体上的相对位置与遗传距离。
单位是厘摩cM (基因或DNA片段在染色体交换过程中分离的频率)。
物理图:以已知核苷酸序列的DNA片段(序列标签位点,sequence-tagged site, STS)为“路标”,以碱基对作为基本测量单位(图距)的基因组图。
转录图:以EST(expressed sequence tag ,表达序列标签)为标记,根据转录顺序的位置和距离绘制的图谱。
EST:通过从cDNA文库中随机挑选的克隆进行测序所获得的部分cDNA的5'或3'端序列称为表达序列标签(EST),一般长300-500 bp左右。
序列图(分子水平的物理图):序列图是指整个人类基因组的核苷酸序列图,也是最详尽的物理图。
既包括可转录序列,也包括非转录序列,是转录序列、调节序列和功能未知序列的总和。
基因:合成有功能的蛋白质或RNA所必需的全部DNA序列,即一个基因不仅包括编码蛋白质或RNA的核酸序列,还应包括为保证转录所必需的调控序列。
基因组(genome):生物所具有的携带遗传信息的遗传物质的总和。
基因组学(genomics):涉及基因组作图、测序和整个基因组功能分析的一门学科。
C值:单倍体基因组的DNA总量,一个特定种属具有特征C值C值矛盾(C value paradox):指一个有机体的C值和其编码能力缺乏相关性。
单一序列:基因组中单拷贝的DNA序列。
重复序列:基因组中多拷贝的DNA序列。
复杂性(complexity):基因组中不同序列的DNA总长。
高度重复序列(highly repetitive sequence):重复片段的长度单位在几个到几百个碱基对(base pair,bp)之间(一般不超过200 bp),串联重复频率很高(可达106以上),高度重复后形成的这类重复顺序称为高度重复顺序。
中度重复序列(intermediate repetitive sequence ):重复长度300~7000 bp不等,重复次数在102~105左右。
基因组学:基因与基因组的研究

基因编辑技术的伦理与法律问题
基因编辑技术如CRISPR-Cas9等为人类提供了重新编程生命的能力,具有巨大的潜力。然而,这种技 术的伦理和法律问题也引起了广泛的关注和讨论。例如,是否可以对人类胚胎进行基因编辑、是否可 以使用基因编辑技术创造“设计婴儿”等。
在伦理方面,人们担心基因编辑可能会破坏自然的生命过程,导致不公平的遗传优势,甚至可能引发 新的社会不平等问题。因此,需要建立严格的伦理准则和法律监管框架,以确保基因编辑技术的合理 和安全使用。
基因组学在医学领域的应用广泛,如疾病诊断、药物研发和 个性化医疗等方面,有助于提高疾病的预防、诊断和治疗水 平。
生物产业发展
基因组学的研究对于推动生物产业的发展也具有重要意义, 如基因治疗、生物制药和基因编辑等领域。
基因组学的研究历史与发展
研究历史
基因组学的研究可以追溯到20世纪初,随着DNA双螺旋结构的发现和分子遗传学的发展,基因 组学逐渐成为一门独立的学科。
04
基因组学在生物医学中的应 用
疾病诊断与预防
疾病诊断
基因组学技术可以帮助医生通过检测 基因变异来确定疾病的原因,为疾病 的早期诊断提供依据。
预防策略
基因组学研究有助于发现与疾病易感 性相关的基因变异,为制定针对性的 预防策略提供科学依据。
药物研发与治疗
药物靶点
基因组学有助于发现新的药物靶点, 提高药物研发的效率和成功率。
研究现状
目前,全球已经完成了多个人类和模式生物的基因组测序,基因组学的研究重点已经从基因组的 测序转向了基因的表达、调控和进化等领域。
发展趋势
未来,基因组学将继续朝着高通量、高精度和智能化等方向发展,同时与其他学科的交叉融合也 将更加紧密,如生物信息学、合成生物学和系统生物学等。
基因组学——精选推荐

基因组学1.基因组学包括那些研究内容?(1)结构基因组学:通过基因组作图、核苷酸序列分析,研究基因组结构,确定基因组成、基因定位的科学基因组测序:⾸先将整个基因组的DNA分解为⼀些⼩⽚段,然后将这些分散的⼩⽚段逐个测序,最后将测序的⼩⽚段按序列组装基因组作图:在长链DNA分⼦的不同位置寻找特征性的分⼦标记,绘制基因组图。
根据分⼦标记可以准确⽆误地将已测序的DNA⼩⽚段锚定到染⾊体的位置上。
(2)功能基因组学:利⽤结构基因组学提供的信息和产物,在基因组系统⽔平上全⾯分析基因功能的科学。
功能基因组学的研究内容:(1)进⼀步识别基因以及基因转录调控信息。
(2)弄清所有基因产物的功能,这是⽬前基因组功能分析的主要层次。
(3)研究基因的表达调控机制,分析基因产物之间的相互作⽤关系,绘制基因调控⽹络图。
(3)⽐较基因组学:研究不同物种之间在基因组结构和功能⽅⾯的亲源关系及其内在联系的学科。
⽐较基因组学的研究内容::(1)绘制系统进化树,显⽰进化过程中最主要的变化所发⽣的时间及特点。
据此可以追踪物种的起源和分⽀路径。
(2)了解同源基因的功能。
(3)对序列差异性的研究有助于认识产⽣⼤⾃然⽣物多样性的基础。
2.基因组学的历史变⾰与发展趋势?(⼀)1900年代以前:前遗传学时代(1)物种进化的⾃然选择学说——达尔⽂进化论。
(2)1865年G.Mendel发表豌⾖杂交实验结果,提出了遗传学的两⼤遗传规律—分离规律和独⽴分配规律,并认为是⽣物体内的遗传因⼦或遗传颗粒控制⽣物性状(⼆)1900—1950年代:经典遗传学时代标志:1900年,孟德尔遗传规律再发现标志着遗传学的诞⽣)⼈们开始把控制⽣物遗传性状的遗传单称为基因。
⽣命科学的研究基本都是围绕着基因来进⾏。
(三)1950—1990年代:分⼦⽣物学时代(前基因组学时代)标志:Watson & Crick 的DNA 双螺旋结构的发现[《Nature》1953.4.25],标志着分⼦⽣物学时代的开始 F.Crick根据DNA 的X射线衍射图谱,提出了DNA双螺旋结构模型,解释基因复制的机制,从⽽真正开始从分⼦⽔平上研究⽣命活动。
基因组学与蛋白质组学

基因组学与蛋白质组学在科学研究领域中,基因组学和蛋白质组学是两个重要且密切相关的学科。
基因组学研究基因组中的所有基因,而蛋白质组学则研究细胞或生物体内所有蛋白质的组成和功能。
本文将从基因组学和蛋白质组学的原理和技术入手,分别介绍它们的研究对象和方法,并探讨二者之间的关系与应用。
一、基因组学基因组学是研究基因组的学科,基因组是指一个生物体内的所有基因的总和。
基因是遗传信息的基本单位,负责编码蛋白质和调控生物体的生理功能。
通过基因组学的研究,我们可以了解到一个生物体的基因组组成、结构和功能等信息。
1.1 基因组的分类基因组可以分为原核生物基因组和真核生物基因组。
原核生物基因组比较简单,一般只有一个染色体,如细菌和古细菌。
真核生物基因组相对复杂,由多个染色体组成,如人类和动物。
此外,还有一个概念是人类基因组。
人类基因组是指人类体内的所有基因的总和,它是真核生物基因组的一种。
1.2 基因组研究的方法基因组学的研究方法主要包括基因测序和基因表达分析。
基因测序是确定一个生物体基因组DNA序列的过程。
早期的基因测序技术采用Sanger测序法,但随着高通量测序技术的发展,如第二代测序技术(NGS),基因测序的速度和效率大大提高。
基因表达分析是研究基因在特定条件下的表达水平和模式。
常用的方法有微阵列芯片和RNA测序。
1.3 基因组学的应用基因组学的研究对于理解生命的发展和信号传递、疾病的诊断和治疗等方面具有重要意义。
在生命科学领域,通过对基因组的研究,可以了解基因之间的相互作用和调控关系,从而深入了解生命的本质。
此外,基因组学也可以帮助研究人类进化和种群遗传学问题。
在医学方面,基因组学为疾病的诊断和治疗提供了新的思路和方法。
通过比较基因组,可以快速准确地诊断某些遗传性疾病,并开发个性化治疗方案。
二、蛋白质组学蛋白质组学是研究蛋白质组的学科,蛋白质组是指细胞或生物体内所有蛋白质的总和。
蛋白质是细胞内的重要功能分子,不仅可以作为酶催化化学反应,还可以作为结构蛋白和信号传递分子等。
第十三章 基因组学

四、基因组学研究内容
(三)蛋白质组学(proteomics) 研究细胞内蛋白质组成及其活动规律。旨 在阐明生物体全部蛋白质的表达模式及功能 模式,内容包括鉴定蛋白质表达、存在方式、 结构、功能和相互作用方式等。 基因是遗传信息的携带者,而全部生物功能 的执行者却是蛋白质, 仅仅从基因的角度来研 究是远远不够的。
(一) 人类基因组
1. 人类基因组计划 与曼哈顿原子 计划、阿波罗登月计划并称的人类科学 史上的重大工程。于1990年首先在美国启 动,后有德、 日、英、法、中等国的科学家先后正式加入。
人类基因组计划
▲ 1990年,美国国会批准美国的“人类基因组计划” 在10月1日正式启动。其总体规 划是准备在15年内 (1990-2005)至少投入30亿美元,分析人类的基因 组30 亿个碱基对。 ▲ 2003年,6国科学家宣布人类基因组序列图绘制成 功,HGP的所有目标全部实现。覆盖人类基因组所含 基因区域的99%,精确率达到99.99%,比原计划提前 两年多,耗资27亿美元。
SSR (simple sequence repeats) 或微卫星(microsatellite )
☆重复序列 ◆串联重复序列(tandem repeated sequence),其重复单位首尾相连,成串排列 (Flavell 1986)。 ◆散布重复序列(interspersed repeated sequence),其重复单位与其它无关序列或单 拷贝序列相间排列。
AFLP反应过程示意图
EST (expressed sequence tags)
☆遗传信息由DNA →mRNA →蛋白质。 ☆一个典型的真核生物mRNA分子:5′- U TR ( 5′端 转录非翻译区) , ORF (开放阅读框架) ,3′- U TR ( 3′端 转录非翻译区) ,polyA
基因组学

我国水稻基因组计划 • 我国超级杂交稻(籼稻)基因组计划2001年7月启动, 2002年4月5日《Science》。
☆材料:籼稻“9311”。
☆完成单位:华大基因研究中心、中科院遗传与发育生物 学研究所等12个单位。 ☆水平:水稻基因组的总基因数约为46022~55615个,工 作框架图序列已覆盖水稻整个基因组92%以上的基因。
大肠杆菌基因组是双链环状DNA , 全长4.6 ×106bp,含有4230个基因, 编码蛋白的序列占基因组的87.7%, 非编码的重复序列占0.7%,剩下 的11.6%可能起调控作用。
二、细菌和病毒基因组特点
4. 功能相关的几个基因排列在一起形成操纵子
如,乳糖操纵子结构
5. 存在重叠基因 如,ΦΧ174基因组为5386bp,
▲ 1986年3月,杜伯克在美国《科学》杂志上发 表了一篇题为《癌症研究的转折点:测序人类 基因组》的文章,这篇短文后来被称为人类基 因组计划的“标书”。
(一)人类基因组计划
• 1990年,美国国会批准美国的“人类基因组计划”在10月1日 正式启动。其总体规 划是准备在15年内(1990-2005)至少 投入30亿美元,分析人类的基因组30亿个碱基对。 • 1996,完成标记密度为0.6cM的人类基因组遗传图谱,100kb 的物理图谱 • 2000,完成草图
四、基因组学的发展
(一)人类基因组计划
与曼哈顿原子 计划、阿波罗登月计划并称的人类科学 史上的重大工程。于1990年首先在美国启 动,后有德、 日、英、法、中等国的科学家先后正式加入。
(一)人类基因组计划
▲美国从70年代起启动了 “肿瘤计划”,但是, 不惜血本的投入换来的是令人失望的结果。人 们渐渐认识到,包括癌症在内的各种人类疾病 都与基因直接或间接相关。测出基因的碱基序 列,Fra bibliotek是基因研究的基础。
基因组学基本知识

.
.
比较基因组学
1988年,发现番茄和马铃薯的遗传图谱很相似。 基于结构基因组学,对基因和基因组进行比较,以了解基
因的表达、功能和进化。 对同一物种不同个体以及不同物种的基因组进行比较,分
❖ 借助这些标记利用比较作图可以将遗传图和物 理图整合起来
.
(三)基因组测序
利用现有DNA测序方法,每个测序反应通常 只能得到800个核苷酸的序列。
小基因组物种常用鸟枪法。
.
鸟枪射击法
.
大基因组测序存在两个问题: 片段数庞大,片段间连接和装配非常复杂 基因组中相同或相似的重复序列在连接和装 配时容易出错
.
(3)研究目的 找出所有人类基因,破译出人类全部遗传信息, 使得人类在分子水平上全面认识自我 将基因用于改善人类的生活质量 解决人类疾病、健康的问题
.
(4)研究意义
➢ 确定人类基因的序列、物理位置、产物及功能 ➢ 理解基因转录与转录后调节 ➢ 研究空间结构对基因调节的作用 ➢ 发现与DNA复制、重组等有关的序列 ➢ 研究DNA突变、重排和染色体断裂等,了解疾病的分
.
五、基因组学的研究方法
(一)遗传图谱的构建 (二)物理图谱的构建 (三)基因组测序 (四)基因鉴定 (五)基因功能研究
.
(二)物理图谱的构建
为什么要构建基因组图谱? ➢ 基因组计划的主要任务是获得全基因组序列 ➢ 但是,现在的测序方法每次只能测800~1000bp ➢ 大量的测序片段要拼接 ➢ 要知道序列在染色体上的位置才能正确拼接 ➢ 基因组计划的第一个环节:构建基因组图谱
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基因组学的定义有广义和狭义之分。
广义的基因组学涉及到细胞学、遗传学、进化论和分子生物学的研究对象和范畴,可以称为是规模化的生物学研究。
狭义的基因组学主要是以各类物种的基因组为研究对象,形成复杂的概念、理论框架和研究命题。
基因内涵的最新发展基因在分子生物学中占据了核心地位,基因概念的发展贯穿了分子生物学理论的整个发展历程。
在某种程度上,基因内涵的更新与发展可以视为分子生物学发展阶段的标志。
从最初孟德尔通过离散型表型抽象出的遗传因子(genetic factor)开始,在基因内涵的发展史上先后出现过遗传物质究竟是核酸还是蛋白质之争、DNA琴弦假说等早期探索性工作。
目前,大家所熟知的基因形式包括顺反子、断裂基因、重复基因、重叠基因、跳跃基因、rRNA基因、tRNA基因、假基因等,近来又发现了以微小RNA基因为代表的多种非编码RNA基因(noncoding RNA gene)、跨染色体剪接基因、跨物种横向转移基因(即自然界的转基因)等多种新的基因形式。
诺贝尔生理医学奖在历史上曾多次与基因的更新和发展有关。
随着更多新的基因形式被不断发现,基因内涵也在不断发生变化。
Gerstein等(2007)和Pesole(2008)分别对基因的概念做了较新的定义。
他们给出的基因新概念主要在强调基因编码产物形式的多样性,其本质仍然是遗传信息的功能单位,而且细胞核基因组DNA也仍然是承载基因的主要物质载体。
在传统观念中,除了RNA编辑、剪接,以及蛋白质分子修饰之外,遗传信息从DNA到表型的传递过程几乎是完全线性的,至DNA以下的所有环节,包括中间分子信息和表型均最终受控于基因组DNA,生物的可遗传组分完全由基因组DNA的序列信息决定。
但随着研究的不断深入,这种传统观点正逐渐被打破,目前已经知道表观遗传及其他“软”遗传(soft inheritance)机制也广泛参与了跨代遗传的调控过程。
此外,已在细胞水平和整体水平上证明环境刺激引起的基因表达模式改变也可以在一定条件下实现跨代遗传,好像米丘林遗传学这一被扔进历史垃圾堆里的伪科学又死灰复燃了,在与孟德尔遗传学分道扬镳多年后又开始有了相互靠拢的新迹象(说不准某些曾经的伪科学还真有咸鱼翻身的机会)。
由此大胆推测,与基因组DNA序列及其修饰无关的可跨代的“软”遗传现象暗示细胞质分子缓冲信息系统中可能存在游离于基因组DNA之外(extra-genomic)的遗传信息单位。
这种现象提示可能存在更为新颖的基因形式,即在细胞质中可能存在不以基因组DNA序列为直接模版的新的基因形式。
在此,本文将其暂称为游离基因(dissociative gene)。
游离基因是指在细胞质以RNA cache为重要形式的分子缓冲系统中存在的不依赖于基因组DNA的独立遗传信息单位。
Lolle 等(2005)认为细胞RNA cache系统中的分子序列可直接作为模板,这提示了游离基因的可能来源之一。
目前只能间接推断游离基因的存在,游离基因的功能和作用机制等诸多细节尚不清楚,对于游离基因的来源、数量、维持机制、具体存在形式、游离基因如何复制、如何鉴定具体的游离基因、游离基因的进化机制等可能的科学问题均有待进一步研究。
跨物种核移植胚胎可在早期发育但不能发育至更晚时期的可能原因之一就是因为游离基因的保守性较低、具有高度的物种特异性。
事实上,在超越单纯的基因组DNA层次上,遗传信息单位的形式已从概念上得到了极大的拓展,目前已出现从基于DNA序列信息的传统等位基因(allele)向广义生物等位基因(bioallele)发展的趋势,包括表观等位基因(epiallele)(Johannes et al., 2008)、转录等位基因(transcriptallele)、蛋白等位基因(proteallele)、代谢等位基因(metaboallele)以及生理等位基因(physiallele)等一些广义生物等位基因的新概念。
随着生命科学日新月异的发展,一些更新的基因形式将可能被发现或提出来,比如笔者认为,新出现的元基因组(metagenome)概念甚至可能催生跨个体、跨种的metagene出现。
在可以预期的未来,生命科学的一个重要研究内容就是不断发现新的基因形式,并深入探索这些新的遗传信息单位(即新的基因形式)的特性及其参与生命过程的调控机制。
真核细胞的基因结构在遗传学上通常将能编码蛋白质的基因称为结构基因。
真核生物的结构基因是断裂的基因。
一个断裂基因能够含有若干段编码序列,这些可以编码的序列称为外显子。
在两个外显子之间被一段不编码的间隔序列隔开,这些间隔序列称为内含子。
每个断裂基因在第一个和最后一个外显子的外侧各有一段非编码区,有人称其为侧翼序列。
在侧翼序列上有一系列调控序列(图3-3),主要包括启动子、增强子、终止子等。
启动子启动子主要包括以下两个序列:①在5′端转录起始点上游约20~30个核苷酸的地方,有TA TA框(TA TA box)。
TA TA框是一个短的核苷酸序列,其碱基顺序为TA TAA TAA T。
TA TA框是启动子中的一个顺序,它是RNA聚合酶的重要的接触点,它能够使酶准确地识别转录的起始点并开始转录。
当TA TA框中的碱基顺序有所改变时,mRNA的转录就会从不正常的位置开始。
②在5′端转录起始点上游约70~80个核苷酸的地方,有CAA T框(CAA T box)。
CAA T框是启动子中另一个短的核苷酸序列,其碱基顺序为GGCTCAA TCT。
CAA T框是RNA聚合酶的另一个结合点,它的作用还不很肯定,但一般认为它控制着转录的起始频率,而不影响转录的起始点。
当这段顺序被改变后,mRNA的形成量会明显减少。
增强子在5′端转录起始点上游约100个核苷酸以远的位置,有些顺序可以起到增强转录活性的作用,它能使转录活性增强上百倍,因此被称为增强子。
当这些顺序不存在时,可大大降低转录水平。
研究表明,增强子通常有组织特异性,这是因为不同细胞核有不同的特异因子与增强子结合,从而对不同组织、器官的基因表达有不同的调控作用。
例如,人类胰岛素基因5′末端上游约250个核苷酸处有一组织特异性增强子。
在胰岛素β细胞中有一种特异性蛋白因子,可以作用于这个区域以增强胰岛素基因的转录。
在其他组织细胞中没有这种蛋白因子,所以也就没有此作用。
这就是为什么胰岛素基因只有在胰岛素β细胞中才能很好表达的重要原因。
终止子在3′端终止密码的下游有一个核苷酸顺序为AA TAAA,这一顺序可能对mRNA的加尾(mRNA尾部添加多聚A)有重要作用。
这个顺序的下游是一个反向重复顺序。
这个顺序经转录后可形成一个发卡结构(图3-4)。
发卡结构阻碍了RNA聚合酶的移动。
发卡结构末尾的一串U与转录模板DNA中的一串A之间,因形成的氢键结合力较弱,使mRNA与DNA杂交部分的结合不稳定,mRNA就会从模板上脱落下来。
同时,RNA聚合酶也从DNA上解离下来,转录终止。
AA TAAA 顺序和它下游的反向重复顺序合称为终止子,是转录终止的信号。
原核细胞的基因结构原核生物的基因结构多数以操纵子形式存在(见课本第二节中的乳糖操纵子),即完成同类功能的多个基因聚集在一起,处于同一个启动子的调控之下,下游同时具有一个终止子。
两个基因之间存在长度不等的间隔序列,如与乳糖代谢有关酶的基因。
在距转录起始点-35和-10(转录起始点上游的核苷酸序列为“-”,下游的核苷酸序列为“+”)附近的序列都有RNA聚合酶识别的信号。
RNA聚合酶先与-35附近的序列(称为Pribnow框)结合,然后才与-10附近的序列(称为Sextama框)结合。
至于RNA聚合酶是如何从一个位置转到另一个位置的,目前尚不清楚。
RNA聚合酶一旦与-10附近序列结合,就立即从识别位点上解离下来,DNA双链解开,转录开始。
除启动子外,往往还有一些调控转录的其他因子,如调节基因和操纵基因。
原核生物基因转录终止之前同样有一段回文序列结构,称为终止子,它的特殊的碱基排列顺序能够阻碍RNA聚合酶的移动,并使其从DNA模板链上脱离下来。
基因组研究的基本方法:物理图谱(physical map)物理图谱是指有关构成基因组的全部基因的排列和间距的信息,它是通过对构成基因组的DNA分子进行测定而绘制的。
绘制物理图谱的目的是把有关基因的遗传信息及其在每条染色体上的相对位置线性而系统地排列出来。
DNA物理图谱是指DNA链的限制性酶切片段的排列顺序,即酶切片段在DNA链上的定位。
因限制性内切酶在DNA链上的切口是以特异序列为基础的,核苷酸序列不同的DNA,经酶切后就会产生不同长度的DNA片段,由此而构成独特的酶切图谱。
因此,DNA物理图谱是DNA分子结构的特征之一。
DNA是很大的分子,由限制酶产生的用于测序反应的DNA片段只是其中的极小部分,这些片段在DNA链中所处的位置关系是应该首先解决的问题,故DNA物理图谱是顺序测定的基础,也可理解为指导DNA测序的蓝图。
广义地说,DNA测序从物理图谱制作开始,它是测序工作的第一步。
制作DNA物理图谱的方法有多种,这里选择一种常用的简便方法──标记片段的部分酶解法,来说明图谱制作原理。
用部分酶解法测定DNA物理图谱包括二个基本步骤:(1)完全降解选择合适的限制性内切酶将待测DNA链(已经标记放射性同位素)完全降解,降解产物经凝胶电泳分离后进行自显影,获得的图谱即为组成该DNA链的酶切片段的数目和大小。
(2)部分降解以末端标记使待测DNA的一条链带上示踪同位素,然后用上述相同酶部分降解该DNA链,即通过控制反应条件使DNA链上该酶的切口随机断裂,而避免所有切口断裂的完全降解发生。
部分酶解产物同样进行电泳分离及自显影。
比较上述二步的自显影图谱,根据片段大小及彼此间的差异即可排出酶切片段在DNA链上的位置。
下面是测定某组蛋白基因DNA物理图谱的详细说明。
完整的物理图谱应包括人类基因组的不同载体DNA克隆片段重叠群图,大片段限制性内切酶切点图,DNA片段或一特异DNA序列(STS)的路标图,以及基因组中广泛存在的特征型序列(如CpG序列、Alu序列,isochore)等的标记图,人类基因组的细胞遗传学图(即染色体的区、带、亚带,或以染色体长度的百分率定标记),最终在分子水平上与序列图的统一。
基本原理是把庞大的无从下手的DNA先“敲碎”,再拼接。
以Mb、kb、bp作为图距,以DNA探针的STS(sequence tags site)序列为路标。
1998 年完成了具有52,000个序列标签位点(STS),并覆盖人类基因组大部分区域的连续克隆系的物理图谱。
构建物理图的一个主要内容是把含有STS对应序列的DNA的克隆片段连接成相互重叠的“片段重叠群(contig)”。
用“酵母人工染色体(Y AC)作为载体的载有人DNA片段的文库已包含了构建总体覆盖率为100%、具有高度代表性的片段重叠群”,近几年来又发展了可靠性更高的BAC、PAC库或cosmid库等。