导数概念及练习题
高等数学 第二章 第一节 导数的概念

第二章 第一节 导数的概念与性质A 组一、选择题1. 设函数f (x )可导,则=--→hx f h x f h )()3(lim【 】A. 3()f x 'B.1()3f x 'C. 3()f x '-D. 1()3f x '- 2. 设函数f (x )可导,则0(1)(1)lim 2x f f x x →--=【 】A. 2(1)f 'B. 1(1)2f ' C. 2(1)f '- D. 1(1)2f '-3. 函数x y =在0=x 处的导数【 】A. 不存在B. 1C. 0D. 1-4. 设函数f (x )可导,则0(2)()limh f x h f x h →+-=【 】A. 2()f x 'B. 1()2f x 'C. 2()f x '-D. 1()2f x '-5. 设y =sinx ,则y (7)|x=0=【 】 A. 1 B. 0 C. -1 D. 2n6. 设函数f (x )可导,则0(4)()lim2h f x h f x h→--=【 】A. -4()f x 'B. 2()f x 'C. -2()f x 'D. 4()f x '7.已知函数()f x 在0x x =的某邻域内有定义,则下列说法正确的是【 】 A. 若()f x 在0x x =连续, 则()f x 在0x x =可导B. 若()f x 在0x x =处有极限, 则()f x 在0x x =连续C. 若()f x 在0x x =连续, 则()f x 在0x x =可微D. 若()f x 在0x x =可导, 则()f x 在0x x =连续8. 设[]2()(0)sin lim 4x f x f x x →-= ,则(0)f '=【 】 A. 3 B. 4 C.43D. 不存在9.设()xf x e =,则0(1)(1)limx f x f x∆→+∆-=∆【 】A. 1B. eC. 2eD. 2e10.设函数()f x 在0x 可导且0()2'=f x ,则000()(2)lim→+--=h f x h f x h h【 】A. -2B. 1C. 6D. 3 12.设()x x x f ln =,且()20='x f ,则()0x f =( )。
专题13 导数的概念及其意义、导数的运算(原卷版)

基础知识:
导数的几何意义:函数y=f(x)在x=x0处的导数f′(x0)就是曲线y=f(x)在点P(x0,f(x0))处的切线的斜率k0,即k0=f′(x0),切线方程为y-f(x0)=f′(x0)·(x-x0).
基本题型:
1、(过某点处切线的方程)若经过点P(2,8)作曲线y=x3的切线,则切线方程为( )
基本题型:
1.设 , , ,…, , ,则 ()
A. B.
C. D.
2.已知函数 ,其导函数记为 ,则 ()
A.2B. C.3D.
3.求下列函数的导数.
(1) ;(2) ;(3) ;
(4) ;(5) ;(6) .
基本方法:
复合函数的求导:先确定复合关系,由外向内逐层求导,必要时可换元。
类型四、解析式中含有导数值的函数
3.(多选)设函数 ,则下列说法正确的是()
A. B.
C. 在 处的切线方程为 D.
基本方法:
1.求函数导数的总原则:先化简解析式,再求导.
2.常见形式及具体求导的几种方法
连乘形式:先展开化为多项式形式,再求导
三角形式:先利用三角函数公式转化为和或差的形式,再求导
分式形式:先化为整式函数或较为简单的分式函数,再求导
①直线 在点 处“切过”曲线 :
②直线 在点 处“切过”曲线 :
③直线 在点 处“切过”曲线 :
④直线 在点 处“切过”曲线 :
⑤直线 在点 处“切过”曲线 : .
5.(2020年高考数学课标Ⅰ卷理科)函数 的图像在点 处的切线方程为( )
A. B. C. D.
6.(2020年高考数学课标Ⅲ卷理科)若直线l与曲线y= 和x2+y2= 都相切,则l的方程为( )
专题4.1 导数的概念、运算及导数的几何意义(精练)(原卷版)

专题4.1 导数的概念、运算及导数的几何意义一、选择题1.(2019·全国高三月考(文))已知函数3()2(1)1f x x xf '=+-,则(1)f '=( )A .32B .3C .-3D .32-2.(2019·湖南省株洲二中高三月考(理))曲线1x y xe -=在点(1,1)处切线的斜率等于( ). A .2eB .eC .2D .13.(2019·河北省高三期末(理))曲线()3f x x x =-在点(1,(1))f --处的切线方程为( ) A .220x y ++= B .220x y +-= C .220x y -+=D .220x y --=4.(2018·湖南省湖南师大附中高三一模(理))已知直线y ax =是曲线ln y x =的切线,则实数a =( ) A .12B .12eC .1eD .21e 5.(2020·全国高三三模(文))函数()3sin 4cos f x x x =+的图象在点T (0, f (0))处的切线l 与坐标轴围成的三角形面积等于( ) A .43B .53C .73D .836.(2019·湖南省高三期末(文))曲线()32f x x x =+-在0p 处的切线平行于直线41y x =-,则0p 点的坐标为( ) A .()1,0 B .()2,8C .()1,0和()1,4--D .()2,8和()1,4--7.(2020·全国高三其他(理))曲线cos sin x y x =在点π,14⎛⎫⎪⎝⎭处的切线方程为( ). A .π2102x y --+= B .π2102x y ---= C .π2102x y +-+=D .π2102x y +--=8.(2020·黑龙江省哈九中高三三模(文))等比数列{}n a 中,12a =,84a =,函数()()()()128f x x x a x a x a =---,则()0f '=()A .122B .92C .82D .629.(2019·汕尾市普宁华美实验学校高三期中(文))已知曲线2()ln x f x x a=+在点(1,(1))f 处的切线的倾斜角为3π4,则a 的值为( ) A .1B .1-C .12-D .4-10.(2019·广东省普宁市华美实验学校高三开学考试(理))已知过点A (a ,0)作曲线C :y =x•e x的切线有且仅有两条,则实数a 的取值范围是( ) A .(﹣∞,﹣4)∪(0,+∞) B .(0,+∞) C .(﹣∞,﹣1)∪(1,+∞) D .(﹣∞,﹣1)二、多选题11.(2019·山东省高三月考)下列结论中不正确的是( ) A .若1cosy x =,则11sin y x x'=- B .若2sin y x =,则22cos y x x '= C .若cos5y x =,则sin 5y x '=-D .若1sin 22y x x =,则sin 2y x x '= 12.(2020·高密市教育科学研究院高三其他)若函数()1xf x e =-与()g x ax =的图象恰有一个公共点,则实数a 可能取值为( ) A .2B .0C .1D .1-13.(2020·山东省高三其他)已知曲线()32213f x x x ax =-+-上存在两条斜率为3的不同切线,且切点的横坐标都大于零,则实数a 可能的取值( ) A .196B .3C .103D .9214.(2020·山东省高三其他)已知函数()ln f x x =,若()f x 在1x x =和()212x x x x =≠处切线平行,则( )A12= B .12128x x <C .1232x x +<D .2212512x x +>三、填空题15.(2020·重庆高三其他(文))曲线32()f x x x =-在1x =处的切线方程为_____.16.(2020·河南省高三二模(理))已知函数()()2ln f x x x =-.则函数()f x 在1x =处的切线方程为___________.17.(2020·辽宁省大连二十四中高三一模(理))已知函数f (x )=axlnx ﹣bx (a ,b ∈R )在点(e ,f (e ))处的切线方程为y =3x ﹣e ,则a +b =_____. 18.(2020·天津高三二模)曲线1xy e x=-在点(1,(1))f 处的切线的斜率为_______,在该点处的切线方程为______.19.(2017·浙江省高三其他)已知函数3()f x x ax b =++的图象在点(1,(1))f 处的切线方程为250x y --=,则a =_______;b =_________.20.(2018·浙江省高三其他)已知曲线xy e -=,则其图像上各点处的切线斜率的取值范围为 __________;该曲线在点(0,1)处的切线方程为__________.21.(2017·北京高三期中(理))已知函数21()(2)1ax bx c x f x f x x ⎧++≥=⎨--<-⎩,其图象在点(1,(1))f 处的切线方程为__________,则它在点(3,(3))f --处的切线方程为__________. 四、解答题22.(2020·安徽省蚌埠二中高二月考(理))已知曲线32()2f x x x x =-+.(Ⅰ) 求曲线()y f x =在2x =处的切线方程; (Ⅱ) 求曲线()y f x =过原点O 的切线方程.23.(2020·山东省高二期中)(1)函数()()1sin f x x x =+的导数为()f x ',求2f π⎛⎫' ⎪⎝⎭; (2)设l 是函数1y x=图象的一条切线,证明:l 与坐标轴所围成的三角形的面积与切点无关. 24.(2020·安徽省怀宁县第二中学高二期中(理))已知函数()32f x x x =-及()y f x =上一点()1,1P -,过点P 作直线l ,使直线l 和()y f x =相切.求直线l 的方程.25.(2020·洮南市第一中学高二月考(理))已知函数()1ln 1xf x x+=-. (1)求函数()y f x =的定义域;(2)求曲线()y f x =在点()()0,0f 处的切线方程.26.(2020·湖北省高二月考)设点M 是幂函数()f x 图象上任意一点,点M 在x 轴和y 轴上的射影分别为P 、Q ,且四边形OPMQ 的面积为常数.(1)求()f x 的表达式;(2)证明:函数()f x 在点M 处的切线与坐标轴围成的面积为定值.27.(2020·河南省高二期末(理))已知函数3()16f x x x =+-(1)求曲线()y f x =在点(1,14)-处的切线的方程;(2)直线l 为曲线()y f x =的切线,且经过原点,求直线l 的方程及切点坐标.。
专题5.1 导数的概念及其意义、导数的运算【原卷版】

1.函数y =f (x )在x =x 0处的导数定义:称函数y =f (x )在x =x 0处的瞬时变化率为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即.2.函数f (x )的导函数 称函数为f (x )的导函数.1. 基本初等函数的导数公式原函数导函数 f (x )=c (c 为常数) f ′(x )=0 f (x )=x n (n ∈Q *) f ′(x )=nx n -1 f (x )=sin x f ′(x )=cos x f (x )=cos x f ′(x )=-sin x f (x )=a x f ′(x )=a x ln a f (x )=e x f ′(x )=e x f (x )=log a x f ′(x )=1x ln af (x )=ln xf ′(x )=1x0000()()limlim x x f x x f x yxx ∆→∆→+∆-∆=∆∆00000()()()lim lim x x f x x f x yf x x x ∆→∆→+∆-∆==∆∆0()()()limx f x x f x f x x∆→+∆-=∆专题5.1 导数的概念及其意义、导数的运算2.导数的运算法则(1) [f (x )±g (x )]′=f ′(x )±g ′(x ); (2) [f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)(g (x )≠0). (4) 复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.1.函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0).2.特别提醒:区分在点处的切线与过点处的切线(1)曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,斜率为f ′(x 0)的切线,是唯一的一条切线. (2)曲线y =f (x )过点P (x 0,y 0)的切线,点P 不一定是切点,切线至少有一条,切线可能有多条. 3.几类重要的切线方程(1)y =x -1是曲线y =l n x 的切线,y =x 是曲线y =l n (x +1)的切线,…,y =x +n 是曲线y =l n (x +n +1)的切线,如图1.(2)y =x +1与y =e x 是曲线y =e x 的切线,如图2. (3)y =x 是曲线y =si n x 与y =t an x 的切线,如图3.(4)y =x -1是曲线y =x 2-x ,y =x l n x 及y =1-1x 的切线,如图4. 由以上切线方程可得重要不等式,如l n x ≤x -1,x +1≤e x 等.1.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数.2.可导函数y =f (x)的导数为f ′(x),若f ′(x)为增函数,则f (x)的图象是下凹的;反之,若f ′(x)为减函数,则f (x)的图象是上凸的. 3.熟记以下结论: (1) 211()'x x=-; 2()'()()'()()'()()f x f x g x g x f x g x g x ⎡⎤⋅-⋅=⎢⎥⎣⎦(2) 21'()[]'()[()]f x f x f x =- (f (x )≠0); (3)[af (x )±bg (x )]′=af ′(x )±bg ′(x ).考点01 导数的概念【典例01】(2023上·北京·高三北京市第三十五中学校考阶段练习)某种新产品的社会需求量y 是时间t 的函数,记作:()y f t =.若()00f y =,社会需求量y 的市场饱和水平估计为500万件,经研究可得,()f t 的导函数()f t '满足:()()()()500f t kf t f t '=-(k 为正的常数),则函数()f t 的图像可能为( )【规律方法】1.根据导数的定义求函数在点处导数的方法: ①求函数的增量; ②求平均变化率;③得导数,简记作:一差、二比、三极限.2.函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”.【总结提升】1.求函数导数的一般原则如下:(1)连乘积的形式:先展开化为多项式的形式,再求导; (2)根式形式:先化为分数指数幂,再求导;(3)复杂公式:通过分子上凑分母,化为简单分式的和、差,再求导; (4)不能直接求导:适当恒等变形,转化为能求导的形式再求导.求复合函数的导数,一般是运用复合函数的求导法则,将问题转化为求基本函数的导数解决. ①分析清楚复合函数的复合关系是由哪些基本函数复合而成的,适当选定中间变量; ②分步计算中的每一步都要明确是对哪个变量求导,而其中特别要注意的是中间变量;③根据基本函数的 导数公式及导数的运算法则,求出各函数的导数,并把中间变量转换成自变量的函数; ④复合函数的求导熟练以后,中间步骤可以省略,不必再写出函数的 复合过程.3.函数的导数与导数值的区间与联系:导数是原来函数的导函数,而导数值是导函数在某一点的函数值,导数值是常数.考点03 曲线切线的斜率、倾斜角问题【典例05】(2023上·辽宁葫芦岛·高三校联考阶段练习)奇函数()()()324f x ax a x x =+-∈R 在点()()1,1f 处的切线斜率为( )()()1,1f 处切线方程为 .【规律方法】以曲线上的点(x 0,f (x 0))为切点的切线方程的求解步骤: ①求出函数f (x )的导数f ′(x ); ②求切线的斜率f ′(x 0);③写出切线方程y -f (x 0)=f ′(x 0)(x -x 0),并化简.考点05 求过一点的切线方程(斜率)【典例09】(2023·全国·模拟预测)过原点与曲线()2ln ,2,1,2x x f x x x ≥⎧=⎨+<⎩相切的一条切线的方程为 .【典例10】(2023下·江西萍乡·高二校联考阶段练习)已知函数()3234f x x x =--.(1)求曲线()y f x =在1x =处的切线1l 的方程; (2)求过原点O 与曲线()y f x =相切的直线2l 的方程. 【总结提升】如果已知点(x 1,y 1)不在曲线上,则设出切点(x 0,y 0),解方程组⎩⎪⎨⎪⎧y 0=f (x 0),y 1-y 0x 1-x 0=f ′(x 0),得切点(x 0,y 0),进而确定切线方程.求切线方程时,要注意判断已知点是否满足曲线方程,即是否在曲线上;与曲线只有一个公共点的直线不一定是曲线的切线,曲线的切线与曲线的公共点不一定只有一个.考点06 求切点坐标【典例11】(2023·高二课时练习)曲线33y x x =-+在点P 处的切线平行于直线21y x =-,则点P 的坐标【典例12】(2019·江苏·高考真题)在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(e ,1)(e 为自然对数的底数),则点A 的坐标是____. 【总结提升】已知斜率求切点:已知斜率k ,求切点(x 1,f (x 1)),即解方程f ′(x 1)=k .考点07 切线的平行与垂直ln230x y -+=平行,则实数=a ( )A .ln22-B .ln2-C .2ln2-D .3ln2-考点08 曲线的公切线问题【典例15】(2023下·四川绵阳·高二校考期中)若直线y kx b =+是曲线ln 2y x =+的切线,也是曲线()ln 1y x =+的切线,则k =( )A .2B .3C .1【规律总结】1.解决此类问题通常有两种方法一是利用其中一曲线在某点处的切线与另一曲线相切,列出关系式求解;二是设公切线l 在y =f (x )上的切点P 1(x 1,f (x 1)),在y =g (x )上的切点P 2(x 2,g (x 2)),则f ′(x 1)=g ′(x 2)=1212()()f xg x x x --.2.处理与公切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程(组)并解出参数,建立方程(组)的依据主要是:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.考点09 求参数问题【典例17】(2023·海南·校联考模拟预测)已知函数()()1e xf x x =+,过点(),0P m 作曲线()y f x =的两条切线,切点分别为()(),A a f a 和()(),B b f b ,若0a b +=,则实数m =( )A .0B .1C .2D .3【典例18】(2023下·广东汕头·高二统考期末)已知直线(,0)y ax b a b =+∈>R 是曲线()e x f x =与曲线已知曲线的切线条数求参数范围问题时,需要明确的是,曲线存在几条切线,就会相应的有几个切点,因此就可以将切线条数问题转化为切点个数问题;也就是说抓住“切点”这个“牛鼻子”,将问题进一步转化为关于相应函数零点个数问题.考点10 导数几何意义相关的应用问题【典例19】(2022·全国·高三专题练习)已知0,0a b >>,直线y x a =+与曲线1e 21x y b -=-+相切,则下列不等式成立的是( ) A .18ab ≤B .218a b+≤C D .3a b +≤求解与导数的几何意义有关问题时应注意的两点 (1)注意曲线上横坐标的取值范围. (2)谨记切点既在切线上又在曲线上.2.(2020·北京·高考真题)为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改,设企业的污水排放量W 与时间t 的关系为()W f t =,用()()f b f a b a---的大小评价在[,]a b 这段时间内企业污水治理能力的强弱,已知整改期内,甲、乙两企业的污水排放量与时间的关系如下图所示.给出下列四个结论: ①在[]12,t t 这段时间内,甲企业的污水治理能力比乙企业强;②在2t 时刻,甲企业的污水治理能力比乙企业强; ③在3t 时刻,甲、乙两企业的污水排放都已达标;④甲企业在[][][]112230,,,,,t t t t t 这三段时间中,在[]10,t 的污水治理能力最强. 其中所有正确结论的序号是____________________.3.(2022·全国·高考真题)若曲线()e x y x a =+有两条过坐标原点的切线,则a 的取值范围是________________. 一、单选题1.(2022下·安徽滁州·高二统考期末)已知函数()2ln f x x x =-,()f x '为()f x 的导函数,则()1f '的值为( )A .1-B .0C .1D .22.(2023上·山东济宁·高三统考期中)若曲线()1e xy ax =+在点()0,1处的切线方程是210x y -+=,则=a( ). A .3B .2C .1D .03.(2023上·陕西西安·高二长安一中校考期末)若曲线2ln 1y x x =++在点(1,2)处的切线与直线10x ay +-=垂直,则实数a 的值为( )A .-4B .-3C .4D .34.(2023下·湖北·高二武汉市第四十九中学校联考期中)若直线0x y a ++=是曲线()314f x x bx =+-与曲线()23ln g x x x =-的公切线,则a b -=( ).A .26B .23C .15D .11二、多选题5.(2023下·湖南·高二期中)过点(2,6)P -作曲线3()3f x x x =-的切线,则切线方程可能是( )A .30x y +=B .24540x y --=C .9240x y --=D .12240x y --=匀速旋转(到OB 处为止)时,所扫过的圆内阴影部分的面积S 是时间t 的函数,它的图象大致为( )A .B .C .D .若把图中的圆改成如图(1)所示的半圆,正确的答案是哪个?如果改成图(2)中的三角形呢?12.(2010上·黑龙江双鸭山·高三阶段练习)已知函数()316f x x x =+-.(1)求曲线()y f x =在点()2,6-处的切线方程;(2)直线l 为曲线()y f x =的切线,且经过原点,求直线l 的方程及切点坐标.。
导数练习题大全

导数练习题大全导数是微积分中的重要概念之一,它描述了函数在某一点的变化率。
掌握导数的计算方法和性质对于解决各种问题、理解函数行为至关重要。
本文将为你提供一些导数练习题,帮助你巩固导数的概念和运用。
1. 已知函数f(x) = 3x^2 + 2x + 1,求f(x)的导函数f'(x)。
解析:为求函数f(x)的导函数,我们需要按照导数的定义对f(x)进行求导。
利用常见的导数公式,我们可以得到f'(x) = 6x + 2。
因此,f(x)的导函数为f'(x) = 6x + 2。
2. 已知函数g(x) = sin(x) + cos(x),求g(x)的导函数g'(x)。
解析:对于g(x) = sin(x) + cos(x),我们可以利用常见的导数公式求导。
根据导数的性质和三角函数的导数公式,我们可以得到g'(x) =cos(x) - sin(x)。
因此,g(x)的导函数为g'(x) = cos(x) - sin(x)。
3. 设函数h(x) = x^3 - 2x^2 + 3x,求h(x)的导函数h'(x)。
解析:对于h(x) = x^3 - 2x^2 + 3x,我们可以使用幂函数的导数公式进行求导。
根据导数的性质,我们可以得到h'(x) = 3x^2 - 4x + 3。
因此,h(x)的导函数为h'(x) = 3x^2 - 4x + 3。
4. 已知函数k(x) = e^x,求k(x)的导函数k'(x)。
解析:对于k(x) = e^x,其中e为自然对数的底数,我们可以利用指数函数的导数公式进行求导。
根据导数的性质和指数函数的导数公式,我们可以得到k'(x) = e^x。
因此,k(x)的导函数为k'(x) = e^x。
通过以上练习题,我们巩固了求导的方法和概念。
熟练掌握导数的计算方法可以帮助我们更好地理解函数的变化趋势和性质。
高考数学一轮专项复习练习卷-北师大版-导数的概念及其意义、导数的计算(含解析)

一、单项选择题1.若函数f(x)=e x sin2x,则f′(0)等于()A.2B.1C.0D.-12.函数y=f(x)的图象如图所示,f′(x)是函数f(x)的导函数,则下列大小关系正确的是()A.2f′(3)<f(5)-f(3)<2f′(5)B.2f′(3)<2f′(5)<f(5)-f(3)C.f(5)-f(3)<2f′(3)<2f′(5)D.2f′(5)<2f′(3)<f(5)-f(3)3.(2023·榆林模拟)已知函数f(x)=a ln x+x2的图象在x=1处的切线方程为3x-y+b=0,则a+b等于()A.-2B.-1C.0D.14.(2023·成都川大附中模拟)若点P是曲线y=ln x-x2上任意一点,则点P到直线l:x+y -4=0距离的最小值为()B.2C.22D.42A.225.直线l与曲线y=e x+1和y=e x+1均相切,则l的斜率为()B.1C.2D.eA.126.若函数f(x)=x2-2ax2+ln(x+1)的图象上不存在互相垂直的切线,则a的取值范围是() A.a≤1B.a<0C.a≥1D.a≤0二、多项选择题7.对于函数f(x)=ln x-1,则下列判断正确的是()A.直线y=xe2是f(x)过原点的一条切线B.f(x)关于y=x对称的函数是y=e x-1C.若过点(a,b)有2条直线与f(x)相切,则ln a<b+1D.f(x)≤x-28.(2023·唐山质检)给出定义:若函数f(x)在D上可导,即f′(x)存在,且导函数f′(x)在D 上也可导,则称f(x)在D上存在二阶导函数,记f″(x)=(f′(x))′,若f″(x)<0在D上恒成立,则称f(x)在D()A.f(x)=sin x-cos xB.f(x)=ln x-3xC.f(x)=-x3+3x-1D.f(x)=x e-x三、填空题9.(2024·呼和浩特模拟)若曲线y=2sin x-2cos x x-ay+1=0垂直,则实数a=.10.(2023·本溪模拟)请写出与曲线y=sin x在原点(0,0)处具有相同切线的另一个函数.11.(2023·南京模拟)若直线y=x+m与曲线y=ax2和y=ln x均相切,则a=. 12.已知直线y=k1x与y=k2x(k1>k2)是曲线y=ax+2ln|x|(a∈R)的两条切线,则k1-k2=.四、解答题13.已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(e)+ln x.(1)求f′(e)及f(e)的值;(2)求f(x)在点(e2,f(e2))处的切线方程.14.设函数f(x)=ax-bx,曲线y=f(x)在点(2,f(2))处的切线方程为7x-4y-12=0.(1)求f(x)的解析式;(2)证明曲线f(x)上任一点处的切线与直线x=0和直线y=x所围成的三角形面积为定值,并求此定值.15.已知函数f (x )=ln x +x 的零点为x 0,过原点作曲线y =f (x )的切线l ,切点为P (m ,n ),则00e x mx 等于()A.1e B .e C.1e 2D .e 216.(2021·新高考全国Ⅱ)已知函数f (x )=|e x -1|,x 1<0,x 2>0,函数f (x )的图象在点A (x 1,f (x 1))和点B (x 2,f (x 2))的两条切线互相垂直,且分别交y 轴于M ,N 两点,则|AM ||BN |的取值范围是.§3.1导数的概念及其意义、导数的计算1.A 2.A 3.B 4.C 5.B6.A 7.ACD8.BCD [对于A ,f ′(x )=cos x +sin x ,f ″(x )=-sin x +cos x=-2sin当x ,f ″(x )=-2sin ,故A 错误;对于B ,f ′(x )=1x -3,f ″(x )=-1x2<0B 正确;对于C ,f ′(x )=-3x 2+3,f ″(x )=-6x <0C 正确;对于D ,f ′(x )=e -x -x e -x =(1-x )e -x ,f ″(x )=-e -x -(1-x )e -x =-(2-x )e -x ,因为x 2-x >0,所以f ″(x )=-(2-x )e -x <0D 正确.]9.-210.y =x 3+x (答案不唯一)11.14解析设直线y =x +m 与y =ln x 相切于点(x 0,ln x 0),因为y =ln x 的导函数为y ′=1x,所以1x 0=1,且ln x 0=x 0+m ,解得x 0=1,m =-1.因为直线y =x -1与曲线y =ax 2相切,联立得ax 2-x +1=0,a ≠0且Δ=1-4a =0,即a =14.12.4e解析由已知得,曲线的切线过点(0,0),当x >0时,曲线为y =ax +2ln x ,设x 1>0,直线y =k 1x 在曲线上的切点为(x 1,ax 1+2ln x 1),y ′=a +2x 1,∴切线方程为y -(ax 1+2ln x 1)x -x 1),又切线过点(0,0),∴-ax 1-2ln x 1-x 1),∴x 1=e ,k 1=a +2e;同理,当x <0时,曲线为y =ax +2ln(-x ),设x 2<0,直线y =k 2x 在曲线上的切点为(x 2,ax 2+2ln(-x 2)),y ′=a +2x 2,∴切线方程为y -[ax 2+2ln(-x 2)]x -x 2),又切线过点(0,0),∴-ax 2-2ln(-x 2)-x 2),∴x 2=-e ,k 2=a -2e,∴k 1-k 2=4e.13.解(1)∵f (x )=2xf ′(e)+ln x ,∴f ′(x )=2f ′(e)+1x,f ′(e)=2f ′(e)+1e,∴f ′(e)=-1e ,f (x )=-2x e+ln x ,∴f (e)=-2e e+ln e =-1.(2)∵f (x )=-2x e+ln x ,f ′(x )=-2e +1x,∴f (e 2)=-2e 2e +ln e 2=2-2e ,f ′(e 2)=-2e +1e2,∴f(x)在点(e2,f(e2))处的切线方程为y-(2-2e)-2e +x-e2),即(2e-1)x+e2y-e2=0.14.解(1)方程7x-4y-12=0可化为y=74x-3,当x=2时,y=1 2,又∵f′(x)=a+b x2,a-b2=12,+b4=74,=1,=3,∴f(x)=x-3x.(2)设P(x0,y0)为曲线y=f(x)上任一点,由y′=1+3x2知曲线在点P(x0,y0)处的切线方程为y0x-x0).令x=0,得y=-6x0,∴切线与直线x=0令y=x,得y=x=2x0,∴切线与直线y=x的交点坐标为(2x0,2x0).∴曲线y=f(x)在点P(x0,y0)处的切线与直线x=0和y=x所围成的三角形的面积S=12|-6x0|·|2x0|=6.故曲线y=f(x)上任一点处的切线与直线x=0和y=x所围成的三角形面积为定值,且此定值为6.15.B[f′(x)=1x+1,切点为P(m,ln m+m),则切线方程为yx-m)+ln m+m,因为l过原点,所以0-m )+ln m +m ,解得m =e ,则P (e ,e +1),由ln x 0+x 0=0,可得x 0=-ln x 0,故00e x mx =e x 0·0ln ex -=e x 0·1x 0=e.]16.(0,1)解析由题意得,f (x )=|e x -1|-e x ,x <0,x -1,x ≥0,则f ′(x )e x ,x <0,x ,x ≥0,所以点A (x 1,1-1e x )和点B (x 2,2e x -1),k AM =-1e x ,k BN =2e x ,所以-1e x ·2e x =-1,x 1+x 2=0,所以AM :y -1+1e x =-1e x (x -x 1),M (0,1e x x 1-1e x +1),所以|AM |=x 1|,同理|BN |·|x 2|,所以|AM ||BN |1e x ==∈(0,1).。
导数 专题知识清单及例题练习(含答案)

桂林市卓远文化艺术培训学校专用资料导数专题知识清单及例题练习编写者: 审核者:邹俊飞一.导数的概念设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ∆,则函数值y 也引起相应的增量)()(00x f x x f y -∆+=∆;比值xx f x x f x y ∆-∆+=∆∆)()(00称为函数)(x f y =在点0x 到x x ∆+0之间的平均变化率;如果极限xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000 说明:1. 函数f (x )在点0x 处可导,是指0→∆x 时,x y ∆∆有极限。
如果x y∆∆不存在极限,就说函数在点x 0处不可导,或说无导数。
2.x ∆是自变量x 在0x 处的改变量,0≠∆x 时,而y ∆是函数值的改变量,可以是零。
3. 由导数的定义可知,求函数y=f (x )在点0x 处的导数的步骤(可由学生来归纳): (1)求函数的增量y ∆=f (0x +x ∆)-f (0x );(2)求平均变化率x y ∆∆=x x f x x f ∆-∆+)()(00; (3)取极限,得导数f’(0x )=x y x ∆∆→∆0lim。
例题: 利用定义求 2)(x x f =在x=2处的导数;练习:求 24)(x x f =在x=2处的导数二.导数的几何意义 (求切线方程)函数y=f (x )在点0x 处的导数的几何意义是曲线y=f (x )在点p (0x ,f (x 0))处的切线的斜率。
也就是说,曲线y=f (x )在点p (0x ,f (x 0))处的切线的斜率是f’( 0x )。
2023年新高考数学一轮复习4-1 导数的概念、运算及导数的几何意义(真题测试)含详解

专题4.1 导数的概念、运算及导数的几何意义(真题测试)一、单选题1. (2021·四川省叙永第一中学校高三阶段练习)对于以下四个函数:①y x =;②2y x ;③3y x =;④1y x=.在区间[]1,2上函数的平均变化率最大的是( ) A .①B .②C .③D .④2.(2020·全国·高考真题(理))函数43()2f x x x =-的图像在点(1(1))f ,处的切线方程为( ) A .21y x =-- B .21y x =-+ C .23y x =-D .21y x =+3.(2006·安徽·高考真题(理))若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( ) A .430x y --= B .450x y +-= C .430x y -+= D .430x y ++= 4.(2019·全国·高考真题(文))曲线y =2sin x +cos x 在点(π,–1)处的切线方程为( ) A .10x y --π-= B .2210x y --π-= C .2210x y +-π+=D .10x y +-π+=5.(2016·山东·高考真题(文))若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是( ) A .sin y x =B .ln y x =C .x y e =D .3y x =6.(2018·全国·高考真题(文))设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为( )A .2y x =-B .y x =-C .2y x =D .y x =7.(2016·四川·高考真题(文))设直线l 1,l 2分别是函数f(x)= ln ,01,{ln ,1,x x x x -<<>图象上点P 1,P2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是( ) A .(0,1)B .(0,2)C .(0,+∞)D .(1,+∞)8.(2022·四川省内江市第六中学模拟预测(文))若函数()21f x x =+与()2ln 1g x a x =+的图象存在公共切线,则实数a 的最大值为( )A .e 2B .eCD .2e二、多选题9.(2022·黑龙江·哈尔滨三中高二阶段练习)近两年为抑制房价过快上涨,政府出台了一系列以“限购、限外、限贷、限价”为主题的房地产调控政策.各地房产部门为尽快实现稳定房价,提出多种方案,其中一项就是在规定的时间T 内完成房产供应量任务S .已知房产供应量S 与时间t 的函数关系如图所示,则在以下各种房产供应方案中,在时间[]0,T 内供应效率(单位时间的供应量)不是..逐步提高的( ) A . B .C .D .10.(2022·吉林·长春市第二实验中学高二期中)若曲线()sin 1f x x x =-在πx =处的切线与直线210ax y ++=互相垂直,则( )A .()sin cos f x x x x '=-B .()sin cos f x x x x '=+C .()ππf '=-D .2πa =-11.(2022·广东·二模)吹气球时,记气球的半径r 与体积V 之间的函数关系为r (V ),()r V '为r (V )的导函数.已知r (V )在03V ≤≤上的图象如图所示,若1203V V <≤≤,则下列结论正确的是( )A.()()()()10211021r r r r --<-- B .()()'1'2r r > C .()()121222r V r V V V r ++⎛⎫< ⎪⎝⎭D .存在()012,V V V ∈,使得()()()21021r V r V r V V V --'=12.(2022·全国·高三专题练习)已知0,0a b >>,直线y x a =+与曲线1e 21x y b -=-+相切,则下列不等式成立的是( )A .18ab ≤B .218a b+≤C D .3a b +≤三、填空题13.(2015·天津·高考真题(文))已知函数()()ln ,0,f x ax x x =∈+∞,其中a 为实数,()f x '为()f x 的导函数,若()13f '=,则a 的值为_________.14.(2015·全国·高考真题(文))已知曲线ln y x x =+在点()1,1处的切线与曲线()221y ax a x =+++相切,则a=________.15.(2020·全国·高考真题(文))曲线ln 1y x x =++的一条切线的斜率为2,则该切线的方程为______________. 16.(2012·浙江·高考真题(文))定义:曲线C 上的点到直线l 的距离的最小值称为曲线C 到直线l 的距离.已知曲线C 1:y =x 2+a 到直线l :y =x 的距离等于C 2:x 2+(y +4) 2 =2到直线l :y =x 的距离,则实数a =______________. 四、解答题17.(2022·浙江·高三专题练习)已知()f x '是一次函数,()()()2212x f x x f x '--=,求()f x 的解析式.18.(2021·全国·高三专题练习)已知曲线313y x =.求该曲线的过点82,3P ⎛⎫ ⎪⎝⎭的切线方程.19.(2022·全国·高三专题练习)已知曲线32y x x =+-在点0P 处的切线1l 平行于直线410x y --=,且点0P 在第三象限. (1)求0P 的坐标;(2)若直线1l l ⊥,且l 也过切点0P ,求直线l 的方程.20.(2011·陕西·高考真题(理))如图,从点1(0,0)P 作x 轴的垂线交曲线xy e =于点1(0,1)Q ,曲线在1Q 点处的切线与x 轴交于点2P ,再从2P 作x 轴的垂线交曲线于点2Q ,依次重复上述过程得到一系列点:1P ,1Q ;2P ,2Q ;;n P ,n Q 记k P 点的坐标为(,0)k x (1,2,,k n =)(1)试求k x 与1k x -的关系(2k n ≤≤) (2)求1122n n PQ P Q P Q +++21.(2022·四川·绵阳中学实验学校模拟预测(文))已知曲线()()()211ln ,2f x x x x ax b a b =+--+∈R 在1x =处的切线经过坐标原点.(1)求b 的值;(2)若()0f x ≤,求a 的取值范围.22.(2020·北京·高考真题)已知函数2()12f x x =-. (Ⅰ)求曲线()y f x =的斜率等于2-的切线方程;(Ⅱ)设曲线()y f x =在点(,())t f t 处的切线与坐标轴围成的三角形的面积为()S t ,求()S t 的最小值.专题4.1 导数的概念、运算及导数的几何意义(真题测试)一、单选题1. (2021·四川省叙永第一中学校高三阶段练习)对于以下四个函数:①y x =;①2y x ;①3y x =;①1y x=.在区间[]1,2上函数的平均变化率最大的是( ) A .① B .②C .③D .④【答案】C 【解析】 【分析】分析求出四个函数的平均变化率,然后比较即可. 【详解】①21121y x ∆-==∆-,②41321y x ∆-==∆-,③81721y x ∆-==∆-,④1112212y x -∆==-∆-. 故选:C .2.(2020·全国·高考真题(理))函数43()2f x x x =-的图像在点(1(1))f ,处的切线方程为( ) A .21y x =-- B .21y x =-+ C .23y x =- D .21y x =+【答案】B 【解析】 【分析】求得函数()y f x =的导数()f x ',计算出()1f 和()1f '的值,可得出所求切线的点斜式方程,化简即可. 【详解】()432f x x x =-,()3246f x x x '∴=-,()11f ∴=-,()12f '=-, 因此,所求切线的方程为()121y x +=--,即21y x =-+. 故选:B.3.(2006·安徽·高考真题(理))若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( ) A .430x y --= B .450x y +-= C .430x y -+= D .430x y ++= 【答案】A 【解析】【详解】与直线480x y +-=垂直的直线l 为40x y m -+=,即4y x =在某一点的导数为4,而34y x '=,所以4y x =在(1,1)处导数为4,此点的切线为430x y --=,故选A4.(2019·全国·高考真题(文))曲线y =2sin x +cos x 在点(π,–1)处的切线方程为( ) A .10x y --π-= B .2210x y --π-= C .2210x y +-π+= D .10x y +-π+=【答案】C 【解析】 【分析】先判定点(,1)π-是否为切点,再利用导数的几何意义求解. 【详解】当x π=时,2sin cos 1y =π+π=-,即点(,1)π-在曲线2sin cos y x x =+上.2cos sin ,y x x '=-2cos sin 2,x y πππ=∴=-=-'则2sin cos y x x =+在点(,1)π-处的切线方程为(1)2()y x --=--π,即2210x y +-π+=.故选C .5.(2016·山东·高考真题(文))若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是( ) A .sin y x = B .ln y x = C .x y e = D .3y x =【答案】A 【解析】 【分析】若函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则函数y =f (x )的导函数上存在两点,使这点的导函数值乘积为﹣1,进而可得答案. 【详解】解:函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直, 则函数y =f (x )的导函数上存在两点,使这点的导函数值乘积为﹣1, 当y =sin x 时,y ′=cos x ,满足条件;当y =lnx 时,y ′1x=>0恒成立,不满足条件;当y =ex 时,y ′=ex >0恒成立,不满足条件;当y =x 3时,y ′=3x 2>0恒成立,不满足条件; 故选A .6.(2018·全国·高考真题(文))设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为( )A .2y x =-B .y x =-C .2y x =D .y x =【答案】D 【解析】 【详解】分析:利用奇函数偶次项系数为零求得1a =,进而得到()f x 的解析式,再对()f x 求导得出切线的斜率k ,进而求得切线方程.详解:因为函数()f x 是奇函数,所以10a -=,解得1a =, 所以3()f x x x =+,2()31x f 'x =+, 所以'(0)1,(0)0f f ==,所以曲线()y f x =在点(0,0)处的切线方程为(0)'(0)y f f x -=, 化简可得y x =,故选D.7.(2016·四川·高考真题(文))设直线l 1,l 2分别是函数f(x)= ln ,01,{ln ,1,x x x x -<<>图象上点P 1,P2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是( ) A .(0,1) B .(0,2) C .(0,+∞) D .(1,+∞)【答案】A 【解析】 【详解】试题分析:设()()111222,ln ,,ln P x x P x x -(不妨设121,01x x ><<),则由导数的几何意义易得切线12,l l 的斜率分别为121211,.k k x x ==-由已知得12122111,1,.k k x x x x =-∴=∴=∴切线1l 的方程分别为()1111ln y x x x x -=-,切线2l 的方程为()2221ln y x x x x +=--,即1111ln y x x x x ⎛⎫-=-- ⎪⎝⎭.分别令0x =得()()110,1ln ,0,1ln .A x B x -++又1l 与2l 的交点为221111112222111121211,ln .1,1,0111211PAB A B P PAB x x x x P x x S y y x S x x x x ∆∆⎛⎫-++>∴=-⋅=<=∴<< ⎪++++⎝⎭,故选A . 8.(2022·四川省内江市第六中学模拟预测(文))若函数()21f x x =+与()2ln 1g x a x =+的图象存在公共切线,则实数a 的最大值为( ) A .e 2B .e CD .2e【答案】B 【解析】 【分析】分别设公切线与()21f x x =+和:()2ln 1C g x a x =+的切点()211,1x x +,()22,2ln 1x a x +,根据导数的几何意义列式,再化简可得2222222ln a x x x =-,再求导分析22()22ln (0)h x x x x x =-⋅>的最大值即可【详解】()2f x x '=,()2a g x x'=,设公切线与()21f x x =+的图象切于点()211,1x x +,与曲线:()2ln 1C g x a x =+切于点()22,2ln 1x a x +,∴()()2221211221212ln 1122ln 2a x x a a x x x x x x x x +-+-===--,故12a x x =,所以212211212ln 2x x x x x x x -=-,∴122222ln x x x x =-⋅,∵12a x x =,故2222222ln a x x x =-,设22()22ln (0)h x x x x x =-⋅>,则()2(12ln )h x x x '=-,∴()h x在上递增,在)+∞上递减,∴max ()e h x h ==, ∴实数a 的最大值为e 故选:B. 二、多选题9.(2022·黑龙江·哈尔滨三中高二阶段练习)近两年为抑制房价过快上涨,政府出台了一系列以“限购、限外、限贷、限价”为主题的房地产调控政策.各地房产部门为尽快实现稳定房价,提出多种方案,其中一项就是在规定的时间T 内完成房产供应量任务S .已知房产供应量S 与时间t 的函数关系如图所示,则在以下各种房产供应方案中,在时间[]0,T 内供应效率(单位时间的供应量)不是..逐步提高的( )A . B .C .D .【答案】ACD 【解析】 【分析】根据变化率的知识,结合曲线在某点处导数的几何意义,可得结果. 【详解】单位时间的供应量逐步提高时,供应量的增长速度越来越快,图象上切线的斜率随着自变量的增加会越来越大,则曲线是上升的,且越来越陡,故函数的图象应一直下凹的.则选项B 满足条件,所以在时间[0,T ]内供应效率(单位时间的供应量)不是逐步提高的是ACD 选项, 故选:ACD.10.(2022·吉林·长春市第二实验中学高二期中)若曲线()sin 1f x x x =-在πx =处的切线与直线210ax y ++=互相垂直,则( )A .()sin cos f x x x x '=-B .()sin cos f x x x x '=+C .()ππf '=-D .2πa =-【答案】BCD 【解析】 【分析】由已知,选项A 、选项B ,可根据给出的曲线解析式直接求导做出判断,选项C ,可将πx =带入求解出的()f x '中进行求解判断,选项D ,根据求解出的()πf '结合直线方程的斜率,利用在πx =处的切线与直线互相垂直即可列出等量关系,求解出a 的值.【详解】选项A ,已知曲线()sin 1f x x x =-,所以()sin cos f x x x x '=+,故该选项错误; 选项B ,已知曲线()sin 1f x x x =-,所以()sin cos f x x x x '=+,故该选项正确;选项C ,因为()sin cos f x x x x '=+,所以()πsin ππcos πf '=+0ππ=-=-,故该选项正确;选项D ,直线210ax y ++=的斜率为2a-,而()ππf '=-,由已知,曲线()sin 1f x x x =-在πx =处的切线与直线210ax y ++=互相垂直,所以(π)12a--=-,所以2πa =-,该选项正确; 故选:BCD.11.(2022·广东·二模)吹气球时,记气球的半径r 与体积V 之间的函数关系为r (V ),()r V '为r (V )的导函数.已知r (V )在03V ≤≤上的图象如图所示,若1203V V <≤≤,则下列结论正确的是( )A .()()()()10211021r r r r --<-- B .()()'1'2r r > C .()()121222r V r V V V r ++⎛⎫< ⎪⎝⎭D .存在()012,V V V ∈,使得()()()21021r V r V r V V V --'=【答案】BD 【解析】 【分析】 A :设()()()()1021tan ,tan =1021r r r r αθ--=--,由图得αθ>,所以该选项错误; B:根据图象和导数的几何意义得()()12r r '>',所以该选项正确; C:设120,3,V V == 3(3)()22r r >,所以该选项错误;D:结合图象和导数的几何意义可以判断该选项正确. 【详解】 解:A :设()()()()1021tan ,tan =1021r r r r αθ--=--,由图得αθ>,所以tan tan ,αθ>所以()()()()10211021r r r r -->--,所以该选项错误;B:由图得图象上点的切线的斜率越来越小,根据导数的几何意义得()()12r r '>',所以该选项正确;C:设()()1212123(3)=(0,3,),2222r V r V V V r r V V r ++⎛⎫= ⎪⎝⎭==∴,因为3()(0)2r r ->3(3)(),2r r -所以3(3)()22r r >,所以该选项错误; D:()()2121r V r V V V --表示1122(,()),(,())A V r V B V r V 两点之间的斜率,()0r V '表示00(,())C V r V 处切线的斜率,由于()012,V V V ∈,所以可以平移直线AB 使之和曲线相切,切点就是点C ,所以该选项正确. 故选:BD12.(2022·全国·高三专题练习)已知0,0a b >>,直线y x a =+与曲线1e 21x y b -=-+相切,则下列不等式成立的是( ) A .18ab ≤B .218a b+≤C D .3a b +≤【答案】AC 【解析】 【分析】利用导数的几何意义,求出a ,b 的关系,再结合均值不等式逐项分析、计算并判断作答. 【详解】设直线y x a =+与曲线1e 21x y b -=-+相切的切点为00(,)x y , 由1e 21x y b -=-+求导得:1e x y -'=,则有01e 1x -=,解得01x =, 因此,0122y a b =+=-,即21a b +=,而0,0a b >>,对于A ,211212()2228a b ab a b +=⋅⋅≤=,当且仅当122a b ==时取“=”,A 正确;对于B ,21214(2)()448b a a b a b a b a b +=++=++≥+=,当且仅当4b a a b =,即122a b ==时取“=”,B 不正确;对于C ,因22332(2)222a a b b a b +=+++=+=,则有232≤,=4a b =时取“=”,由214a b a b+=⎧⎨=⎩得21,36a b ==,所以当21,36a b ==时,max C 正确; 对于D ,由21a b +=,0,0a b >>得,102b <<,11(,1)2a b b +=-∈,而函数3x y =在R 上单调递增,33a b +<,D 不正确. 故选:AC 三、填空题13.(2015·天津·高考真题(文))已知函数()()ln ,0,f x ax x x =∈+∞,其中a 为实数,()f x '为()f x 的导函数,若()13f '=,则a 的值为_________. 【答案】3 【解析】'()ln f x a x a =+,所以'(1)3f a ==.14.(2015·全国·高考真题(文))已知曲线ln y x x =+在点()1,1处的切线与曲线()221y ax a x =+++相切,则a=________. 【答案】8 【解析】 【详解】试题分析:函数ln y x x =+在(1,1)处的导数为111|1|2x x y x===+=',所以切线方程为;曲线2(2)1y ax a x =+++的导函数的为,因与该曲线相切,可令,当时,曲线为直线,与直线平行,不符合题意;当时,代入曲线方程可求得切点,代入切线方程即可求得.15.(2020·全国·高考真题(文))曲线ln 1y x x =++的一条切线的斜率为2,则该切线的方程为______________. 【答案】2y x = 【解析】 【分析】设切线的切点坐标为00(,)x y ,对函数求导,利用0|2x y '=,求出0x ,代入曲线方程求出0y ,得到切线的点斜式方程,化简即可. 【详解】设切线的切点坐标为001(,),ln 1,1x y y x x y x=++'=+, 00001|12,1,2x x y x y x ='=+===,所以切点坐标为(1,2), 所求的切线方程为22(1)y x -=-,即2y x =. 故答案为:2y x =.16.(2012·浙江·高考真题(文))定义:曲线C 上的点到直线l 的距离的最小值称为曲线C 到直线l 的距离.已知曲线C 1:y =x 2+a 到直线l :y =x 的距离等于C 2:x 2+(y +4) 2 =2到直线l :y =x 的距离,则实数a =______________. 【答案】94【解析】 【详解】试题分析:由新定义可知,直线与曲线相离,圆的圆心到直线的距离为,此时直线与圆相离,根据新定义可知,曲线到直线的距离为,对函数求导得,令,故曲线在处的切线方程为,即,于是曲线到直线的距离为,则有,解得或,当时,直线与曲线相交,不合乎题意;当时,直线与曲线相离,合乎题意.综上所述,.四、解答题17.(2022·浙江·高三专题练习)已知()f x '是一次函数,()()()2212x f x x f x '--=,求()f x 的解析式.【答案】()2442f x x x =++【解析】 【分析】分析可知,函数()f x 为二次函数,可设()()20f x ax bx c a =++≠,根据导数的运算法则结合已知条件可得出关于a 、b 、c 的方程组,解出这三个未知数的值,即可得出函数()f x 的解析式. 【详解】由()f x '为一次函数可知()f x 为二次函数.设()()20f x ax bx c a =++≠,则()2f x ax b '=+.所以,()()()()()()222212212x f x x f x x ax b x ax bx c '--=+--++=,即()()2220a b x b c x c -+-+-=,所以,02020a b b c c -=⎧⎪-=⎨⎪-=⎩,解得442a b c =⎧⎪=⎨⎪=⎩,因此,()2442f x x x =++.18.(2021·全国·高三专题练习)已知曲线313y x =.求该曲线的过点82,3P ⎛⎫⎪⎝⎭的切线方程.【答案】123160x y --=或3320x y -+=. 【解析】 【分析】设出曲线过P 点的切线方程的切点坐标,把切点的横坐标代入到导函数中即可表示出切线的斜率,根据切点坐标和表示出的斜率,写出切线的方程,把P 的坐标带入到切线方程即可得到关于切点横坐标的方程,求出方程的解即可得到切点横坐标的值,分别代入所设的切线方程即可. 【详解】解:设切点坐标为()00,x y ,切点在曲线上,∴在点()00,x y 处切线的斜率为020x x k y x =='=.∴切线方程为()2000y y x x x -=-.又切线过点82,3P ⎛⎫ ⎪⎝⎭,且切点()00,x y 在曲线313y x =上()200030082,31,3y x x y x ⎧-=-⎪⎪∴⎨⎪=⎪⎩整理得3200340x x -+=,即()()200210x x -+=,解得02x =或01x =-.∴当02x =,083y =,即切线斜率为4时,切线的方程为123160x y --=;当01x =-,031y =-,即切线斜率为1时,切线的方程为3320x y -+=.综上,所求切线方程为123160x y --=或3320x y -+=.19.(2022·全国·高三专题练习)已知曲线32y x x =+-在点0P 处的切线1l 平行于直线410x y --=,且点0P 在第三象限. (1)求0P 的坐标;(2)若直线1l l ⊥,且l 也过切点0P ,求直线l 的方程. 【答案】(1)(1,4)--; (2)4170x y ++=. 【解析】 【分析】(1)设点000(,)P x y ,求出给定函数的导数,再利用导数的几何意义,列式计算作答. (2)求出直线l 的斜率,由(1)的结论结合直线的点斜式方程求解作答. (1)由32y x x =+-求导得:231y x '=+,设切点000(,)P x y ,而点0P 在第三象限,即000,0x y <<,依题意,20314x +=,解得:01x =-,此时,04y =-,显然点(1,4)--不在直线410x y --=上,所以切点0P 的坐标为(1,4)--. (2)直线1l l ⊥,而1l 的斜率为4,则直线l 的斜率为14-,又l 过切点0P (1,4)--,于是得直线l 的方程为14(1)4y x +=-+,即4170x y ++=,所以直线l 的方程为:4170x y ++=.20.(2011·陕西·高考真题(理))如图,从点1(0,0)P 作x 轴的垂线交曲线xy e =于点1(0,1)Q ,曲线在1Q 点处的切线与x 轴交于点2P ,再从2P 作x 轴的垂线交曲线于点2Q ,依次重复上述过程得到一系列点:1P ,1Q ;2P ,2Q ;;n P ,n Q 记k P 点的坐标为(,0)k x (1,2,,k n =)(1)试求k x 与1k x -的关系(2k n ≤≤)(2)求1122n n PQ P Q P Q +++【答案】(1)11k k x x -=-()2k n ≤≤(2)11ne e e --- 【解析】 【详解】(1)根据函数的导数求切线方程,然后再求切线与x 轴的交点坐标;(2)尝试求出通项n n P Q 的表达式,然后再求和.(1)设点1k P -的坐标是1(,0)k x -,∵x y e =,∴x y e '=, ∴111(,)k x k k Q x e---,在点111(,)k x k k Q x e ---处的切线方程是111()k k x x k y e e x x ----=-,令0y =,则11k k x x -=-(2k n ).(2)∵10x =,11k k x x --=-,∴(1)k x k =--,∴(1)k x k k k PQ e e--==,于是有 112233n n PQ PQ PQ P Q ++++12(1)1111n k e e e ee -------=++++=-11ne e e --=-, 即112233n n PQ PQ PQ P Q ++++11ne e e --=-.21.(2022·四川·绵阳中学实验学校模拟预测(文))已知曲线()()()211ln ,2f x x x x ax b a b =+--+∈R 在1x =处的切线经过坐标原点.(1)求b 的值; (2)若()0f x ≤,求a 的取值范围. 【答案】(1)32b = (2)[)1,+∞【解析】 【分析】(1)利用导数的几何意义可求得()f x 在1x =处的切线方程,代入坐标原点即可求得b ;(2)采用分离变量的方式可得()1131ln 22a g x x x x x ⎛⎫≥=+-+ ⎪⎝⎭,利用导数可求得()g x 单调性,由此可得()max 1g x =,进而得到a 的取值范围.(1)()1ln x f x x x a x+'=+--,()11f a '∴=-,又()112f a b =--+,()f x ∴在1x =处的切线为:()()1112y a b a x ++-=--,又该切线过原点,112a b a ∴+-=-+,解得:32b =.(2)由(1)得:()()2131ln 22f x x x x ax =+--+,()f x 定义域为()0,∞+;若()0f x ≤恒成立,则1131ln 22a x x x x ⎛⎫≥+-+ ⎪⎝⎭;令()1131ln 22g x x x x x ⎛⎫=+-+ ⎪⎝⎭,则()222ln 212x x x g x x--+-'=; 令()22ln 21h x x x x =--+-,则()()221x x h x x-+'=-;210x x -+>恒成立,()0h x '∴<,()h x ∴在()0,∞+上单调递减,又()10h =,∴当()0,1x ∈时,()0h x '>;当()1,x ∈+∞时,()0h x '<;()g x ∴在()0,1上单调递增,在()1,+∞上单调递减,()()max 131122g x g ∴==-+=,1a ∴≥,即a 的取值范围为[)1,+∞.22.(2020·北京·高考真题)已知函数2()12f x x =-.(Ⅰ)求曲线()y f x =的斜率等于2-的切线方程; (Ⅱ)设曲线()y f x =在点(,())t f t 处的切线与坐标轴围成的三角形的面积为()S t ,求()S t 的最小值. 【答案】(Ⅰ)2130x y +-=,(Ⅱ)32. 【解析】 【分析】(Ⅰ)根据导数的几何意义可得切点的坐标,然后由点斜式可得结果;(Ⅱ)根据导数的几何意义求出切线方程,再得到切线在坐标轴上的截距,进一步得到三角形的面积,最后利用导数可求得最值. 【详解】(Ⅰ)因为()212f x x =-,所以()2f x x '=-,设切点为()00,12x x -,则022x -=-,即01x =,所以切点为()1,11, 由点斜式可得切线方程为:()1121y x -=--,即2130x y +-=. (Ⅱ)[方法一]:导数法显然0t ≠,因为()y f x =在点()2,12t t -处的切线方程为:()()2122y t t x t --=--, 令0x =,得212y t =+,令0y =,得2122t x t+=,所以()S t =()221121222||t t t +⨯+⋅,不妨设0t >(0t <时,结果一样),则()423241441144(24)44t t S t t t t t++==++,所以()S t '=4222211443(848)(324)44t t t t t+-+-= 222223(4)(12)3(2)(2)(12)44t t t t t t t -+-++==, 由()0S t '>,得2t >,由()0S t '<,得02t <<, 所以()S t 在()0,2上递减,在()2,+∞上递增, 所以2t =时,()S t 取得极小值, 也是最小值为()16162328S ⨯==. [方法二]【最优解】:换元加导数法 ()()2222121121()12(0)2|2|4||t t S t t t t t ++=⋅⋅+=⋅≠.因为()S t 为偶函数,不妨设0t >,221()4S t =⋅,令a =2,0t a a =>.令412()a g a a +=,则面积为21[()]4S g a =,只需求出412()a g a a+=的最小值.34422412312()a a a a g a a a ⋅---='=()()()222223223(2a a a a a a a-++==.因为0a >,所以令()0g a '=,得a = 随着a 的变化,(),()g a g a '的变化情况如下表:所以min [()]g a g ===所以当a =2t =时,2min 1[()]324S t =⨯=. 因为[()]S t 为偶函数,当0t <时,min [()](2)(2)32S t S S =-==. 综上,当2t =±时,()S t 的最小值为32. [方法三]:多元均值不等式法同方法二,只需求出412()(0)a g a a a +=>的最小值.令4312444()a g a a a a a a +==+++≥=当且仅当34a a=,即a =所以当a =2t =时,2min 1[()]324S t =⨯=.因为()S t 为偶函数,当0t <时,min [()](2)(2)32S t S S =-==.综上,当2t =±时,()S t 的最小值为32. [方法四]:两次使用基本不等式法同方法一得到()()()()()22222222222121241646464()41616324||444tt t t S t t t t t t ++++++=≥==+++≥=+++ ,下同方法一. 【整体点评】(Ⅱ)的方法一直接对面积函数求导数,方法二利用换元方法,简化了运算,确定为最优解;方法三在方法二换元的基础上,利用多元均值不等式求得最小值,运算较为简洁;方法四两次使用基本不等式,所有知识最少,配凑巧妙,技巧性较高.60。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. 求双曲线
y 1在点 x
1 2
,
2
处的切线的斜率,并写出曲
线在该点处的切线方程和法线方程。
解 根据导数的几何意义,所求切线的斜率为
k1
y
x1 2
1 x2
x1 4 2
所以,所求切线方程为 y 2 4(x 1) 即 4x y 4 0 2
所求法线的斜率为
k2
1 k1
1 4
所求法线方程为 y 2 1 (x 1) 即 2x 8y 15 0 42
思考题解答
由导数的定义知, f ( x0 )是一个具体的 数值, f ( x)是由于 f ( x) 在某区间I 上每一 点都可导而定义在I 上的一个新函数,即 x I ,有唯一值 f ( x) 与之对应,所以两
者的区别是:一个是数值,另一个是函数.两
者的联系是:在某点x0 处的导数 f ( x0 )即是导 函数 f ( x)在x0 处的函数值.
此时对x D,有唯一的f (x)与之对应,从而形成了函数关系,
称此函数为f (x)在D上的导函数,简称为导数,记作
f (x), y, df (x) , dy
dx
dx
根据导数定义有
f (x) lim f (x x) f (x) lim f (x h) f (x)
x0
x
h0
h
f (x0 ) f (x) xx0
f (x0 ) x0
0
当x x0时,有f (x) f (x0 ) 0,即f (x) f (x0 )
当x x0时,有f (x) f (x0 ) 0,即f (x) f (x0 )
导数的概念练习题
1. 已知
f
(x)
sin
x
tan x
( x 0)
2
, 求 f (0).
(0 x )
dy xx0 , dx
x x0
根据定义,上述引例中的问题均可归结为导数,即
v(t0 )
lim
t 0
s(t0
t) t
s(t0 )
s(t0 )
k切线
lim
x0
f
( x0
x) x
f
(x0 )
f
(x0 )
若上述极限不存在,在称f (x)在x0处不可导
3、导函数
若y f (x)在D上每一点都可导,则称f (x)为D上的可导函数,
ax lim ax 1 x0 x
ax 1 ~ x ln a(x 0) ax ln a
(4)(sin x) lim sin(x x) sin x
x0
x
2sin x cos(x x)
lim
2
2
sin x ~ x (x 0) 22
cos x
x0
x
(5)(cos x) lim cos(x x) cos x
x
x
lim
lim lim 1
x0 x 0
x x x0
x0
f(0) f(0)
因此f (x) x 在x 0点不可导
3、性质2 可导与连续的关系
可导
连续
即连续是可导的必要而不充分的条件,可导一定连续,连续不一定可导
证明:
Q lim x x0
f (x) f (x0 ) x x0
f (x0 ),
x0
x
1 1
lim x x x
x0
x
1 lim
x0 x(x x)
1 x2
,
x (,0) U(0, )
例5 求下列函数的导函数
(1) y C(C为常数)
(2) y x ( 0为常数)
(3) y ax (a 0, a 1为常数) (4) y sin x
(5) y cos x
解:(1)
(2)右导数
若f
( x)在[ x0 ,
x0
)有定义,且 lim x0
y x
lim x0
f (x0 x) x
f (x0 )
存在,则称f (x)在x0右可导,极限值称为右导数,记作 f(x0 )
左右导数统称为单侧导数
2、性质1 左右导数与导数关系结论 f (x)在x0可导 f (x)在x0既左可导,又右可导,且有f(x0 ) f(x0 ) f (x0 )
f
(x) x
f (x0) x0
f
(x0) o(1)(x
x0 )
f (x) f (x0 ) f (x0 )(x x0 ) o(x x0 )(x x0 )
lim xx0
f
(x)
f
(x0 ),即f
(x)在x0连续
而如例7所示, f (x) x 在x 0连续,但不可导
注:称式 f (x) f (x0 ) f (x0 )(x x0 ) o(x x0 )(x x0 )
设点Q的坐标为Q(x0 x, f (x0 x)), x 0,则有
割线斜率kPQ
y x
f (x0 x) x
f (x0 )
而Q P x 0
Y
k切线
lim
x0
kPQ
P
y f (x)
QT
lim f (x0 x) f (x0 )
X
x0
x
O
x0 x0 x
总结:上述两个问题虽然是不同性质的问题,但最终均归结为函数 值的差与自变量的差商的极限,即简称为差商极限,这就是我们要定义 的导数。
2
解
因为
f(0)
lim
x0
f (x) f (0) x0
sin x sin 0 lim
x0 x 0
sin x lim 1
x x0
f(0)
lim
x0
f (x) f (0) x0
lim x0
tan x 0 x0
lim tan x 1 x x0
所以 f(0) f(0) 1 ,从而 f (0) 1
为函数在可导点处的有限增量公式
因此当f (x0 ) 0时, f (x0 )(x x0 )就是f (x) f (x0 )的主部
有f (x) f (x0 ) ~ f (x0 )(x x0 )(x x0 )
上述结论说明y f (x)在点x0附近的性质与
y f (x0 ) f (x0 )(x x0 )很接近
t
t
v(t0 )
lim v
t 0
lim
t 0
s t
lim
t 0
s(t0
t) t
s(t0 )
如教材中的自由落体运动,其位移函数为 s(t) 1 gt 2 ,则有 2
s
1 2
g (t0
t )2
1 2
gtLeabharlann 2 01 2g (2t0 t
t2 )
v(t0 )
lim v
t 0
lim s t0 t
lim 1 2 t 0
3. 讨论函数 f (x)= |x| 在点 x=0 的连续性和可导性。
解 lim f (x) lim x 0
y
x0
x0
lim f (x) lim(x) 0
y x
x0
x0
f (0) 0 即 f (0 0) f (0 0) f (0)
O
x
故函数 f (x)= |x| 在点 x=0 连续
4、利用导数定义求有关基本初等函数的导数举例
例3 求y f (x) x的导函数
解: y f (x) (x) lim f (x x) f (x)
x0
x
lim (x x) x 1, x (, )
x0
x
例4 求y f (x) 1 的导函数,并求它在x 2处的值
x
解: y f (x) lim f (x x) f (x)
lim
f (x) f (1) lim
1 3
x
2 3
1
1
x1
x 1
x1 x 1
3
f (x)在x 1处可导,且有f (1) 1 3
例7 判别f (x) x 在x 0点是否可导
解: Q lim f (x) f (0) lim x lim x 1
x0 x 0
x x x0
x0
f (x) f (0)
2、导数定义
若y
f
(
x)在O(
x0
)有定义,
且极限
lim
x0
y x
lim
x0
f (x0 x) f (x0 ) x
lim f (x) f (x0 ) 存在,
x x0
x x0
则称f (x)在x0处可导,并称上述极限值
为f (x)在 x0处的导数,记作
f (x0 ), y
df (x) , xx0 dx
x0
x
2sin x sin(x x)
lim
2
2
x0
x
sin x ~ x (x 0) 22
sin x
上述例题的结论均是公式,要记住!
二、函数在可导点的局部性质
1、单侧导数的概念
(1)左导数
若f
(x)在(x0
,
x0
]有定义,
且
lim
x0
y x
lim x0
f (x0 x) x
f (x0 )
存在,则称f (x)在x0左可导,极限值称为左导数,记作 f(x0 )
导数的概念及练习题
一、导数的定义 二、函数在可导点的局部性质
一、导数定义
1、问题引入 牛顿与莱布尼兹的切入点 (1)牛顿的切入点(物理问题) 变速直线运动的瞬时速度
设某质点位移函数为s s(t),求速度v(t0 )
若t在t0处有增量t 0,则有 s s(t0 t) s(t0 )