二元一次方程组的应用-行程问题(可编辑修改word版)

合集下载

二元一次方程组——行程问题

二元一次方程组——行程问题

二元一次方程组的应用——行程问题一、知识回顾1、与路程问题有关的等量关系:路程=速度×时间速度=路程÷时间时间=路程÷速度2、列方程解决问题的一般步骤:设 列 解 验 答二、新知导入1、甲乙两人相距30千米,甲速度为x 千米/小时,乙速度为y 千米/小时,若两人同时出发相向而行,经过3小时相遇,则甲走的路程为 千米,乙走的路程为 千米,两人的路程关系是 。

2、甲乙两人相距30千米,甲速度为x 千米/小时,乙速度y 为千米/小时,若两人同时同向出发,甲速度比乙快,经过3小时甲追上乙,则甲走的路程为 千米,乙走的路程为 千米,两人的路程关系是 。

点评:做题技巧:画线段图,找等量关系。

三、例题分析:例1、A 、B 两码头相距140千米,一艘轮船在其间航行,顺流用了7小时,逆流用了10小时,求这艘轮船在静水中的速度和水流速。

自学指导:1、题中的已知量有__________ ,未知量有___________。

2、顺流船的航速:______________________________,逆流船的航速:______________________________。

3、本题中的等量关系有哪些?巩固练习1:1、A 市至B 市的航线长1200千米,一架飞机从A 市顺风飞往B 市需2小时30分,从B 市逆风飞往A 市需3小时20分,求飞机的速度与风速。

2、一船顺水航行45千米需3小时,逆水航行65千米需要5小时,求船在静水中的速度与水流速。

例2、甲、乙两车从相距60KM 的A 、B 两地同时出发,相向而行,1小时相遇;同向而行,甲在后,乙在前,3小时后甲可追上乙,求甲、乙两车的速度分别是多少?例3 甲、乙两人从相距36千米的两地相向而行。

如果甲比乙先走2小时,那么他们在乙出发后经2.5小时相遇;如果乙比甲先走2小时,那么他们在甲出发后经3小时相遇;求甲、乙两人每小时各走多少千米?B甲 遇遇60KM巩固练习2:1 、某站有甲、乙两辆汽车,若甲车先出发1h后乙车出发,则乙车出发后5h追上甲车;若甲车先开出20km后乙车出发,则乙车出发4h后追上甲车.求两车速度.2、甲、乙两人在周长为400m的环形跑道上练跑,如果同时、同地①相向②同向出发,经过80秒相遇;已知乙的速度是甲速度的2/3 ,求甲、乙两人的速度.四、板书设计(略)五、课堂小结今天学了有关路程问题的应用题,我们发现了解决这类问题的一些规律,同学们能在总结一下吗?甲乙遇设甲每小时走x 千米,乙每小时走y 千米1、第一次甲一共走了 千米,乙一共走了 千米,他们走的路程与总路程之间的关系是 ;36千米甲遇 如果乙比甲先走2小时,那么他们在甲出发后经3小时相遇 2、第二次甲一共走了 千米,乙一共走了 千米,他们走的路程与总路程之间的关系是 。

二元一次方程组---行程问题

二元一次方程组---行程问题

列方程解应用题——行程问题【知识要点】行程类应用题基本关系:路程=速度×时间相遇问题:甲、乙相向而行,则:甲走的路程+乙走的路程=总路程追及问题:甲、乙同向不同地,则:追者走的路程=前者走的路程+两地间的距离环形跑道问题:①甲、乙两人在环形跑道上同时同地同向出发:快的必须多跑一圈才能追上慢的。

②甲、乙两人在环形跑道上同时同地反向出发:两人第一次相遇时的总路程为环形跑道一圈的长度。

飞行问题,基本等量关系:顺风速度=无风速度+风速逆风速度=无风速度-风速∴ 顺风速度-逆风速度=2×风速航行问题,基本等量关系:顺水速度=静水速度+水速逆水速度=静水速度-水速∴ 顺水速度-逆水速度=2×水速【典型例题】例1、 某队伍长450m ,以s m 5.1的速度行进,一个通讯兵从排尾赶到排头,并立即返回排尾,他的速度是s m 3,那么往返需要多少时间?例2、在一直形的长河中有甲、乙船,现同时由A 城顺流而下,乙船到B 地时接到通知,需立即返回到C 地执行任务,甲船继续顺流航行。

已知甲、乙两船在静水中的速度都是h km 5.7,水流速度为每小时km 5.2,A 、C 两地间的距离为km 10。

如果乙船由A 地经B 地再到达C 地,共用了4h ,问乙船从B 地到C 地时甲船驶离B 地有多远?例3、甲、乙两人在400m 长的环形跑道上练习百米赛跑,甲的速度是14m ,乙的速度是16m 。

(1)若两人同时同地相向而行,问经过多少秒后两人相遇?(2)若两人同时同地同向而行,问经过多少秒后两人相遇?例4、甲、乙两人从相距36千米的两地相向而行,若甲先出发2小时,则在乙动身2.5小时后两人相遇;若乙先出发2小时,则甲动身3小时后两人相遇.求甲、乙两人的速度.例5、甲、乙两个运动员分别从相距100米的直跑道两端同时相对出发,甲以每秒6.25米,乙以每秒3.75米的速度来回匀速跑步,他们共同跑了8分32秒,在这段时间内两个多次相遇(两人同时到达同一地点).他们最后一次相遇的地点离乙的起点有多少米?甲追上乙多少次?甲与乙迎面相距多少次?例6、两列火车分别行驶在两平行的轨道上,其中快车车长100米,慢车车长150米,当两车相向而行时,快车驶过慢车某个窗口(快车车头到达窗口某一点至车尾离开这一点)所用的时间为5秒。

(完整版)二元一次方程组的运用1(行程问题)

(完整版)二元一次方程组的运用1(行程问题)
等量关系1:火车完全过桥路程=桥的长度+火车的长度
例5、已知一铁路桥长1000米,现有一列火车从桥上通过, 测得火车从开始上桥到车身过完桥共用1分钟,整列火车 完全在桥上的时间为40秒,求火车的速度及火车的长度。
等量关系1:火车完全过桥路程=桥的长度+火车的长度 等量关系2:火车在桥=120 整理,得 X+y=120
3(x-y)=120
x-y=40
解得
x=80 y=40
答:巡逻车的速度是80千米/时,犯 罪团伙的车的速度是40千米/时.
例5、已知一铁路桥长1000米,现有一列火车从桥上通过, 测得火车从开始上桥到车身过完桥共用1分钟,整列火车 完全在桥上的时间为40秒,求火车的速度及火车的长度。
等量关系1: 快车行的路程+慢车行的
客车路程
路程=两列火车的车长和
货车路程
例6:客车和货车分别在两条平行的铁轨上行驶,客车长450米,货车 长600米,如果两车相向而行,那么从两车车头相遇到车尾离开共需21
秒钟;如果客车从后面追赶货车,那么从客车车头追上货车车尾到客车 车尾离开货车车头共需1分45秒,求两车的速度。
作案后同时以相同的速度驾车沿高速公路逃离现场,正在B站待命的两
辆巡逻车接到指挥中心的命令后立即以相同的速度分别往A、C两个加油
站驶去,结果往B站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻
车堵截住,而另一团伙经过3小时后才被另一辆巡逻车追赶上.问巡逻车
和犯罪团伙的车的速度各是多少?
解:设巡逻车、犯罪团伙的车的速度分别为x、y千米/时,
货车路程
客车路程
等量关系1:快车行的路程+慢车行的路程=两列火车的车长和
等量关系2:快车行的路程-慢车行的路程=两列火车的车长和

二元一次方程应用题8种类型

二元一次方程应用题8种类型

二元一次方程应用题8种类型一、行程问题1. 题目- 甲、乙两人相距30千米,甲速度为x千米/小时,乙速度为y千米/小时,若两人同时出发相向而行,3小时后相遇;若两人同时同向而行,甲在乙后面,5小时后甲追上乙。

求甲、乙两人的速度。

2. 解析- 根据相向而行时,路程 = 速度和×时间,可得到方程3(x + y)=30,化简为x + y = 10。

- 根据同向而行时,路程差=速度差×时间,可得到方程5(x - y)=30,化简为x - y=6。

- 联立方程组x + y = 10 x - y = 6,将两式相加,2x=16,解得x = 8。

- 把x = 8代入x + y = 10,得y = 2。

二、工程问题1. 题目- 一项工程,甲队单独做需要x天完成,乙队单独做需要y天完成,两队合作需要6天完成;甲队单独做比乙队单独做少用5天。

求甲、乙两队单独完成这项工程各需要多少天?2. 解析- 把工作总量看作单位“1”,根据工作效率 = 工作总量÷工作时间,两队合作的工作效率为(1)/(6),甲队工作效率为(1)/(x),乙队工作效率为(1)/(y),则(1)/(x)+(1)/(y)=(1)/(6)。

- 又因为甲队单独做比乙队单独做少用5天,所以y - x=5,即y=x + 5。

- 将y=x + 5代入(1)/(x)+(1)/(y)=(1)/(6)中,得到(1)/(x)+(1)/(x + 5)=(1)/(6)。

- 去分母得6(x+5)+ 6x=x(x + 5),展开6x+30+6x=x^2+5x,移项化为一元二次方程x^2-7x - 30 = 0,因式分解(x - 10)(x+3)=0,解得x = 10或x=-3(天数不能为负舍去)。

- 当x = 10时,y=10 + 5=15。

三、利润问题1. 题目- 某商店购进甲、乙两种商品,甲商品进价为x元/件,乙商品进价为y元/件。

已知购进5件甲商品和4件乙商品共花费300元;甲商品每件售价20元,乙商品每件售价30元,全部售出后利润为100元。

二元一次方程组的应用——行程问题

二元一次方程组的应用——行程问题

二元一次方程组的应用——行程问题行程问题是数学中常见的应用问题之一。

我们可以利用等量关系路程=速度×时间,速度=路程÷时间,时间=路程÷速度来解决问题。

列方程是解决问题的一般步骤,需要设列解验答。

例1:某车站有甲、乙两辆汽车,若甲车先出发1小时后乙车出发,则乙车出发后5小时追上甲车;若甲车先开出20km后乙车出发,则乙车出发4小时后追上甲车,求甲乙两车的速度。

设甲车每小时走x千米,乙车每小时走y千米,根据题意列出方程组,解得甲车速度为x=40km/h,乙车速度为y=50km/h。

例2:甲、乙两人在周长为400m的环形跑道上练跑,如果同时、同地相向、同向出发,经过80秒相遇;已知乙的速度是甲速度的2/3,求甲、乙两人的速度。

设甲的速度为x米/秒,乙的速度为y米/秒,根据题意列出方程组,解得甲的速度为3米/秒,乙的速度为2米/秒。

例3:甲、乙两人从相距36千米的两地相向而行。

如果甲比乙先走2小时,那么他们在乙出发后经2.5小时相遇;如果XXX比甲先走2小时,那么他们在甲出发后经3小时相遇;求甲、乙两人每小时各走多少千米。

设甲每小时走x千米,乙每小时走y千米,根据题意列出方程组,解得甲每小时走12千米,乙每小时走24千米。

本题中需要求解飞机的速度和风速,可以利用等量关系进行计算。

首先,假设飞机在顺风飞行时的速度为v1,逆风飞行时的速度为v2,风速为w,则根据题意可以列出以下两个等式:1200 = v1 × 2.5 + (v1 + w) × 3.331200 = v2 × 3.33 + (v2 - w) × 2.67将两个等式联立,消去v1和v2,得到:w = 75v1 = 450v2 = 300因此,飞机的速度为450千米/小时,风速为75千米/小时。

课后拓展:1、如果飞机的速度不变,风速变为150千米/小时,从A市飞往B市需要多长时间?2、如果飞机的速度变为500千米/小时,风速仍为75千米/小时,从A市飞往B市需要多长时间?。

二元一次方程组的12种应用题型归纳(可编辑修改word版)

二元一次方程组的12种应用题型归纳(可编辑修改word版)

二元一次方程组的 12 种应用题型归纳类型一:行程问题【例 1】甲、乙两人相距 36 千米,相向而行,如果甲比乙先走 2 小时,那么他们在乙出发2.5 小时后相遇;如果乙比甲先走 2 小时,那么他们在甲出发 3 小时后相遇,甲、乙两人每小时各走多少千米?解:设甲的速度为 x 千米/时,乙的速度为 y 千米/时。

(2.5 + 2)x + 2.5y = 36 3x + (3 + 2)y = 36 x = 6 y = 3.6答:甲的速度为 6 千米/时,乙的速度为 3.6 千米/时。

【例 2】两地相距 280 千米,一艘船在其间航行,顺流用 14 小时,逆流用 20 小时,求这艘船在静水中的速度和水流速度。

解:设这艘船在静水中的速度为 x 千米/时,水流速度为 y 千米/时。

14(x + y ) = 280 20(x ‒ y ) = 280 x = 17 y = 3答:这艘船在静水中的速度为 17 千米/时,水流速度为 3 千米/时。

类型二:工程问题【例】小明家准备装修一套新住房,若甲、乙两个装饰公司合作 6 周完成,需工钱 5.2 万元;若甲公司单独做 4 周后,剩下的由乙公司来做,还需 9 周完成,需工钱 4.8 万元。

若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由。

{解得{ {解得{{ y = { b = 解:设甲公司每周的工作效率为 x ,乙公司每周的工作效率为 y 。

x = 1 6x + 6y = 1 4x + 9y = 110 1 解得 151 1 ∴1÷10=10(周) 1÷15=15(周)∴甲公司单独完成这项工程需 10 周,乙公司单独完成这项工程需 15 周。

设甲公司每周的工钱为 a 万元,乙公司每周的工钱为 b 万元。

a = 3 6a + 6b = 5.2 4a + 9b = 4.8 5 4 解得 15此时 10a=6(万元) 15b=4(万元) 6>4答:从节约开支的角度考虑,小明家应选择乙公司。

二元一次方程组的应用——行程问题 (解析版)

二元一次方程组的应用——行程问题 (解析版)

二元一次方程组的应用——行程问题一、追及、相遇问题1、小蕾、大洋两人匀速在400米环形跑道上跑步,同时同地出发,如果相向而行,每隔1分钟相遇一次;如果同向而行,每隔5分钟相遇一次,已知小蕾比大洋的速度快.设小蕾每分钟跑x 米,大洋每分钟跑y 米,根据题意,列出方程组正确的是( ).A. 6060400300300400x y x y +=⎧⎨-=⎩B. 40055400x y x y +=⎧⎨-=⎩C. 6060400300300400x y x y +=⎧⎨-+=⎩D. 40055400x y x y +=⎧⎨-+=⎩2、《九章算术》是我国古代第一部数学专著,其中有这样一道名题:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,问几步及之?”意思是说:走路快的人走100步的时候,走路慢的才走了60步,走路慢的人先走100步,然后走路快的人去追赶,问走路快的人要走多少部才能追上?若设走路快的人要走x 步才能追上走路慢的人,此时走路慢的人又走了y 步,根据题意可列方程组为( ).A. 10060100xy x y ⎧=⎪⎨⎪-=⎩B. 60100100xy x y ⎧=⎪⎨⎪-=⎩C. 10060100xy x y ⎧=⎪⎨⎪+=⎩D. 60100100xy x y ⎧=⎪⎨⎪+=⎩3、两人在400m 环形跑道上练习赛跑,方向相反时,每32s 相遇一次;方向相同时,每3分钟相遇一次,若设两人的速度分别为x 米/秒、y 米/秒,依题意可列方程组为________.4、小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是______分钟.5、某车站有甲、乙两辆汽车.若甲车先出发1h 后乙车出发,则乙车出发后5h 追上甲车;若甲车先开出20 km 后乙车出发,则乙车出发4h 后追上甲车,求甲乙两车的速度.6、小方、小程两人相距6千米,两人同时相向而行,1小时相遇.两人同时出发同向而行,小方3小时可追上小程,两人的平均速度各是多少?7、列方程或方程组解应用题:A、B两地之间的路程是36 km,小丽从A地骑自行车到B地,小明从B地骑自行车到A 地,两人同时出发,相向而行,经过1h后两人相遇;再过0.5h,小丽余下的路程是小明余下路程的2倍.小明和小丽骑车的速度各是多少?8、甲乙二人分别从相距20千米的A,B两地出发,相向而行.如果甲比乙早出发半小时,那么在乙出发后2小时,他们相遇;如果他们同时出发,那么1小时后两人还相距11千米,求甲乙二人每小时各走多少千米?9、甲、乙两人从相距36千米的两地相向而行.如果甲比乙先走2小时,那么他们在乙出发后经2.5小时相遇;如果乙比甲先走2小时,那么他们在甲出发后经3小时相遇.求甲、乙两人每小时各走多少千米?10、A,B两地相距20 km,甲从A地向B地前进,同时乙从B地向A地前进,2h后二人在途中相遇.相遇后,甲返回A地,乙仍然向A地前进,甲回到A地时,乙离A地还有2 km,求甲、乙二人的速度.11、甲、乙两人在400米的环形跑道上同一起点同时背向起跑,40秒后相遇,若甲先从起跑点出发,半分钟后,乙也从该点同向出发追赶甲,再过3分钟后乙追上甲,求甲、乙两人的速度.12、利用二元一次方程组解应用题:甲、乙两地相距160 km,一辆汽车和一辆拖拉机同时由两地以各自的速度匀速相向而行,113小时后相遇,相遇后,拖拉机已其原速继续前进,汽车在相遇处停留1小时后掉转头以其原速返回,在汽车再次出发半小时追上拖拉机,这时,汽车、拖拉机各自走了多少路程?二、多种路段问题13、甲乙两地相距100千米,一艘轮船往返两地,顺流用4小时,逆流用5小时,那么这艘轮船在静水中的船速与水流速度分别是().A. 24 km/h,8 km/hB. 22.5 km/h,2.5 km/hC. 18 km/h,24 km/hD. 12.5 km/h,1.5 km/h14、甲乙两地相距360千米,一轮船往返于甲、乙两地之间,顺水行船用18小时,逆水行船用24小时,若设船在静水中的速度为x千米/时,水流速度为y千米/时,则下列方程组中正确的是().A.()()1836024360x yx y⎧+=⎪⎨-=⎪⎩B.()()1836024360x yx y⎧+=⎪⎨+=⎪⎩C.()()1836024360x yx y⎧-=⎪⎨-=⎪⎩D.()()1836024360x yx y⎧-=⎪⎨+=⎪⎩15、小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路,她去学校共用了16分钟,假设小颖上坡路的平均速度是3千米/时,下坡路的平均速度是5千米/时,若设小颖上坡用了x分钟,下坡用了y分钟,根据题意可列方程组为().A.35120016x yx y+=⎧⎨+=⎩B.351.2606016x yx y⎧+=⎪⎨⎪+=⎩C.35 1.216x yx y+=⎧⎨+=⎩D.351200606016x yx y⎧+=⎪⎨⎪+=⎩16、从甲地到乙地有一段上坡与一段平路.如果保持上坡每小时走3 km,平路每小时走4 km,下坡每小时走5 km,那么从甲地到乙地需54 min,从乙地到甲地需42 min.设从甲地到乙地上坡与平路分别为x km,y km,依题意,所列方程组正确的是().A.543460425460x yx y⎧+=⎪⎪⎨⎪+=⎪⎩B.543460424560x yx y⎧+=⎪⎪⎨⎪+=⎪⎩C.54344245x yx y⎧+=⎪⎪⎨⎪+=⎪⎩D.54344254x yx y⎧+=⎪⎪⎨⎪+=⎪⎩17、小明新买了一辆“和谐”牌自行车,说明书中关于轮胎的使用说明如下:小明看了说明书后,和爸爸讨论:小明经过计算,得出这对轮胎能行驶的最长路程是().A. 9.5千公里B. 千公里C. 9.9千公里D. 10千公里18、一条船顺流航行每小时行40 km,逆流航行每小时行32 km,设该船在静水中的速度为每小时x km,水流速度为每小时y km,则可列方程组为________________________.19、某人步行5小时,先沿平坦道路走,然后上山,再沿来的路线返回,若在平坦道路上每小时走4千米,上山每小时走3千米,下山每小时走6千米,那么这5小时共走了多少______千米.20、为响应“低碳出行”的号召,某初中决定举行周日徒步郊游活动,打算从A地前往B地,已知前13路段为山路,其余路段为平地.已知队伍在山路上的行进速度为6 km/h,在平地上行进的速度为10 km/h,队伍从A地到B地一共行进了2.2h.队伍在山路和平路上各行进多少小时?若设队伍在山路上行进x小时,在平路上行进y小时,根据题意,可列出二元一次方程组________________________.21、某校组织学生乘汽车去自然保护区野营,先以60 km/h的速度走平路,后又以30 km/h 的速度爬坡,共用了6.5h;汽车以40 km/h的速度下坡,又以50 km/h的速度走平路,共用了6h,平路有______m,坡路有______m.(汽车以原路返回)22、一船顺水航行48 km需要3h,逆水航行70 km需要5h,求船在静水中的速度和水流的速度各是多少?23、青岛和大连相距360千米,一轮船往返于两地之间,顺水行船用18小时,逆水行船用24小时,那么船在静水中的速度是多少?水流速度是多少?24、小张从家里到学校的路是一段平路和一段下坡路,如果他始终保持平路的速度为60m/ min,下坡路的速度为80m/ min,上坡的速度为40m/ min,那么他从家里到学校需10 min,从学校到家需15 min,请问小张家离学校有多远?25、从甲地到乙地有一段上坡与一段平路,如果保持上坡每小时走3 km,平路每小时走4 km,下坡每小时走5 km,那么从甲地到乙地需54分钟,从乙地到甲地需42分钟,甲地到乙地全程是多少km?参考答案一、追及、相遇问题 1、答案:B解答:根据题意列出方程组为40055400x y x y +=⎧⎨-=⎩.2、答案:A解答:设走路快的人要走x 步才能追上走路慢的人,此时走路慢的人又走了y 步,根据题意,得10060100xy x y ⎧=⎪⎨⎪-=⎩.3、答案:()()32400180400x y x y ⎧+⨯=⎪⎨-⨯=⎪⎩.解答:设两人的速度分别为x 米/秒、y 米/秒,由题意得:()()32400180400x y x y ⎧+⨯=⎪⎨-⨯=⎪⎩, 故答案为:()()32400180400x y x y ⎧+⨯=⎪⎨-⨯=⎪⎩.4、答案:4解答:设18路公交车的速度是x 米/分,小王行走的速度是y 米/分,同向行驶的相邻两车的间距为s 米.每隔6分钟从背后开过一辆18路公交车,则 6x -6y =s .①每隔3分钟从迎面驶来一辆18路公交车,则 3x +3y =s .②由①②得,s =4x ,所以sx=4.即18路公交车总站发车间隔的时间是4分钟. 5、答案:25 km/h ,30 km/h .解答:设甲的速度为x km/h ,乙的速度为y km/h , 根据题意可得:564204y x y x =⎧⎨=+⎩,解得2530x y =⎧⎨=⎩.甲的速度为25 km/h ,乙的速度为30 km/h .6、答案:小方和小程的平均速度分别为为4千米/时和2千米/时. 解答:设小方平均速度为V 1千米/时, 小程平均速度为V 2千米/时,由题意知,()()12121636V V V V ⎧+⨯=⎪⎨-⨯=⎪⎩,解得:1242V V =⎧⎨=⎩,答:小方平均速度为4千米/时, 小程平均速度为2千米/时.7、答案:小明骑车的速度是20 km/h ,小丽骑车的速度是16 km/h . 解答:设小明骑车的速度为x km/h ,小丽骑车的速度为y km/h ,()36236 1.536 1.5x y x y+=⎧⎨-=-⎩,解得2016x y =⎧⎨=⎩. 答:小明骑车的速度是20 km/h ,小丽骑车的速度是16 km/h . 8、答案:甲每小时各走4千米,乙每小时各走5千米. 解答:设甲每小时各走x 千米,乙每小时各走y 千米,由题意得:522021120y x x y ⎧+=⎪⎨⎪++=⎩,解得:45x y =⎧⎨=⎩.答:甲每小时各走4千米,乙每小时各走5千米. 9、答案:甲每小时走6千米,乙每小时走3.6千米.解答:设甲每小时走x 千米,乙每小时走y 千米.根据题意,列方程组2 2.5 2.53632336x x y x y y ++=⎧⎨++=⎩, 解这个方程组,得63.6x y =⎧⎨=⎩.答:甲每小时走6千米,乙每小时走3.6千米.10、答案:甲的速度为5.5千米/小时,乙的速度为4.5千米/小时. 解答:设甲的速度为x 千米/小时,乙的速度为y 千米/小时,由题意得,()220222x y x y ⎧+=⎨-=⎩,解得: 5.54.5x y =⎧⎨=⎩,答:甲的速度为5.5千米/小时,乙的速度为4.5千米/小时.11、答案:甲的速度为6013m /s ,乙的速度为7013m /s . 解答:设甲、乙二人的速度分别为xm /s 、ym /s ,由题意得:()4040036030360x y x x y ⎧+=⎨⨯+=⨯⎩,解得:60137013x y ⎧=⎪⎪⎨⎪=⎪⎩, 答:甲的速度分别为6013m /s ,乙的速度分别为7013m /s . 12、答案:汽车行驶165千米,拖拉机行驶85千米.解答:设汽车的速度是x 千米每小时,拖拉机速度y 千米每小时,根据题意得:()416031322x y x y⎧=⎪+⎪⎨⎪=⎪⎩,解得:9030x y =⎧⎨=⎩, 则汽车汽车行驶的路程是:(43+12)×90=165(千米),拖拉机行驶的路程是:(43+32)×30=85(千米).答:汽车行驶165千米,拖拉机行驶85千米. 二、多种路段问题 13、答案:B解答:设这艘轮船在静水中的船速为x 千米/小时,水流速度为y 千米/小时, 由题意得,()41005100x y x y ⎧+=⎨-=⎩(),解得:22.52.5x y =⎧⎨=⎩.14、答案:A解答:根据题意可得,顺水速度=x +y ,逆水速度=x -y , ∴根据所走的路程可列方程组为()()1836024360x y x y ⎧+=⎪⎨-=⎪⎩,选A. 15、答案:B解答:设小颖上坡用了x 分钟,下坡用了y 分钟,由题意得:35 1.2606016x y x y ⎧+=⎪⎨⎪+=⎩.选B. 16、答案:A解答:设从甲地到乙地上坡与平路分别为x km ,y km ,根据题意得543460425460x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,∴A 选项正确. 17、答案:C解答:设一只轮胎在前轮用x 千公里,在后轮用y 千公里.根据题意,有111x +19y =111y +19x =1, 解可得,x =y =9920=4.95,则x +y =2x =9.9. 18、答案:4032x y x y +=⎧⎨-=⎩解答:4032x y x y +=⎧⎨-=⎩.19、答案:20解答:设平路有x 千米,上坡路有y 千米,根据题意得:4x +3y +6y +4x =5,即2x +2y=5, 则x +y =10(千米),这5小时共走的路=2×10=20(千米). 故答案为:20.20、答案: 2.22610x y x y +=⎧⎨⨯=⎩解答:略. 21、答案:150;120解答:平路有x 千米,坡路有y 千米,由题意得:6.5603065040x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,解得:150120x y =⎧⎨=⎩, 答:平路和坡路各有150米、120米22、答案:x =15,y =1解答:设静水x ,水流速y .()()348570x y x y ⎧+=⎪⎨-=⎪⎩. x =15,y =1.23、答案:船在静水中的速度是17.5 km/h ,水流速度是2.5 km/h . 解答:设船在静水中的速度是x km/h ,水流速度是y km/h ,由题意得()()1836024360x y x y ⎧+=⎪⎨-=⎪⎩,解得:17.52.5x y =⎧⎨=⎩. 答:船在静水中的速度是17.5 km/h ,水流速度是2.5 km/h .24、答案:小张离学校700米.解答:设小张从家到学校的平路为x 米,下坡路为y 米. ∴106080156040x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩①②,①整理得8x +6y =4800③,②整理得4x +6y =3600④,③-④得4x =1200,x =300.将x =300代入④得4×300+6y =3600,y =400.∴方程组的解为300400x y =⎧⎨=⎩,∴x +y =300+400=700,答:小张离学校700米.25、答案:3110km.解答:设甲地到乙地的上坡路长x km,平路长y km,根据题意得:543460424560x yy x⎧+=⎪⎪⎨⎪+=⎪⎩,解得:3285xy⎧=⎪⎪⎨⎪=⎪⎩,∴x+y=32+85=3110∴甲地到乙地全程是3110km.。

二元一次方程组应用题类型题

二元一次方程组应用题类型题

22名二级工和三级工人准备完 成1400个零件,其中二级工每人 定额完成200个,三级工人每人 定额完成50个,问二级工和三 级工各多少人
现在年龄
甲X
乙y
将来年龄
X+ x-y
61
Y- x-y
4
甲比乙大的岁数
x-y
解:设甲、乙现在的年龄分 从问题情境可以知知道甲
别是x、y岁根据题意,得 的年龄大于乙的年龄
y-(x- y)=4
x=42
X+(x-y)=61 解得 y=23
答:甲、乙现在的年龄分别是42、23岁
5、小明骑摩托车在公路上匀速行驶,12:00时看 到里程碑上的数是一个两位数,它的数字之和是7; 13:00时看里程碑上的两位数与12:00时看到的个 位数和十位数颠倒了;14:00时看到里程碑上的 数比12:00时看到的两位数中间多了个零,小明在 12:00时看到里程碑上的数字是多少
形或六边形要求每两个相邻的图形只有一条公共边,已 知摆放的正方形比六边形多4个,并且一共用了110个小 木棍,问连续摆放了正方形和六边形各多少个


图形 正方形 六边形
关系
连续摆放的个数 (单位:个) x
y
正反方形比六边形多 4 个
使用小木棒的根数 (单位: 根)
4+3(x-1)=3x+1
6+5(y-1)=5y+1
相等关系
30只母牛和15只小牛,1天约需用饲料675kg
42只母牛和20只小牛,1天约需用饲料940kg

30x 15y 675
42x 20y 940
解得: x 20
y
5
答:平均每只母牛1天约需饲料20kg,每只小牛1天约需饲料5kg,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课堂教学设计表
附录:(本节课导学案)

⎩ 七年级(下)数学导学案总第 25 课时 主备人:施扶承 成员:
《二元一次方程组的应用-行程问题》导学案
班级 第
小组 姓名
座号
课时安排:1 课时
第 1 课时
上课时间:2017 年 3 月 16 日
一、学习目标:
1、知识技能:会列出二元一次方程组解决有关高铁列车车长的行程问题。

2、数学思考:会将高铁列车与轿车分别抽象为“线段与点”。

3、问题解决:利用“化动为静”法找出有关高铁列车车长问题等量关系解决行程问题。

4、情感态度:积极参与小组合作探究,从中获得成功的喜悦。

二、预习指导【评价:
分析实际问题(由小组学科代表负责填写并反馈:A 、B 、C 、D )】
小明家、小红家、高铁车站与小东家在同一直线上,位置如图所示。

已知小明家与小红 家相距 10 千米,小明家与小东家相距 60 千米,三个同学买好回家过年的同一班车票,小明乘坐轿车从家里出发,小红与小东乘坐摩托车从家里出发(摩托车的速度相同),他们三人同时出发,0.5 小时后同时在高铁车站相遇。

求轿车的速度和摩托车的速度。

请完成下列问题:
1、小明家与小东家相遇 60 千米,如果摩托车速度为 50 千米/时,那么小东乘坐摩托车到小明家用时 小时;
2、小明家与小东家相遇 60 千米,如果小东乘坐摩托车到小明家用时 1.2 小时,那么摩托车的速度为 千米/时;
3、如果小东乘坐摩托车的速度为 50 千米/时,用时 1 小时到达小红家,那么小东家与小红家相离
千米。

4、小明与小东相向而行,两人在高铁车站相遇,等量关系为: S 小明 + S 小东 = ; 小明与小红同向而行,两人在高铁车站相遇,等量关系为: S 小明- S 小红 = ;
根据以上等量关系完成下列解题过程:
解:设轿车的速度为 x 千米/时,摩托车的速度为 y 千米/时,依题意得:

= ⎨ =
解得: ⎧x = ⎨
y =
经检验,
答:轿车的速度为 千米/时,摩托车的速度为
千米/时。

三、预习反馈:观看《高铁列车与轿车的相遇与追及问题》微课,完成《课前自主学习任务单》中
的课前自主学习检测问题。

小红
在两条平行的铁轨上,
我们乘坐的高铁列车长 400
米,以 70 米/秒的速度与一
列动车相向而行,从两车车
头相遇到两车尾离开共需 5
秒。

如果我们乘坐的高
铁列车与动车同向而
行,那么从高铁列车追
上动车车尾到高铁列
车车尾离开动车车头
共需 65 秒。

小东
四、教学过程:
合作探究:
如果你是小明,你能根据小红和小东所提供的信息,算出动车的速度和车长吗?
分析:等量关系1:;等量关系2:。

解:设动车的速度为米/秒,车长为米,依题意得:
五、归纳总结(主要内容、学习方法等)
分析行程问题中有关“列车车长”等量关系的步骤:①判断是相遇问题或者是追及问题,如果是相遇问题则根据“路程之”列方程;如果是追及问题则根据“路程之”列方程;②利用“化动为静”的方法判断“路程之和”或“路程之差”与列车车长的关系。

六、当堂达标:
一座铁路大桥长 1190 米,一列高铁列车完全开过大桥需 20 秒;高铁列车开过路旁电杆,只需 3 秒。

求高铁列车的速度与车长。

解:
七、学习反思(存在问题/错题记载等)。

相关文档
最新文档