实验报告三-虚拟内存页面置换算法

合集下载

理解操作系统中的虚拟内存和页面置换算法

理解操作系统中的虚拟内存和页面置换算法

理解操作系统中的虚拟内存和页面置换算法虚拟内存是现代操作系统中的重要概念,它扩展了计算机的内存容量,允许运行更多的程序和处理更大的数据量。

虚拟内存通过将物理内存与磁盘上的某个存储区域进行映射,使得计算机能够在不使用全部物理内存的情况下运行更多的程序。

具体来说,操作系统将物理内存划分为大小相等的页面(page),同时将磁盘上的一部分空间划分为大小相等的页面框(page frame)。

每个页面框对应一个物理内存页面,而每个页面则对应一段虚拟内存空间。

当程序需要使用某个虚拟内存地址时,操作系统会将其映射到一个物理内存页面上。

如果所需页面已经在物理内存中,则直接访问该物理页面;如果所需页面不在内存中,则操作系统会选择一个页面进行置换,将其放入磁盘上的页面框中,然后将所需页面从磁盘加载到物理内存中。

页面置换算法是一种选择页面进行置换的策略。

常见的页面置换算法包括最佳置换算法(OPT)、先进先出算法(FIFO)、最近最少使用算法(LRU)等。

最佳置换算法是一种理想情况下的算法,即在置换页面时选择未来最长时间不再使用的页面进行置换。

然而,最佳置换算法需要未来的信息,因此在实际应用中很难实现。

FIFO算法则是一种最简单的页面置换算法,它选择最早被加载到物理内存的页面进行置换。

LRU算法是一种较为常用的页面置换算法,它根据页面的最近访问时间来选择置换页面。

页面置换算法的选择会影响系统的性能。

最佳置换算法理论上具有最佳的置换效果,但是在实际情况下很难实现。

FIFO算法简单易实现,但是无法适应程序运行时的不同访问模式。

LRU算法则考虑了最近访问时间,可以适应不同的访问模式,但是其实现相对复杂。

因此,选择合适的页面置换算法需要根据具体应用场景进行权衡和选择。

虚拟内存和页面置换算法为计算机的运行提供了更大的灵活性和效率。

它们通过将磁盘空间用作扩展内存,使得计算机能够处理更多的数据和运行更多的程序。

通过页面置换算法,操作系统可以根据程序的访问模式动态地调整物理内存的使用,提高系统的性能和响应速度。

页面置换算法实验报告实验心得

页面置换算法实验报告实验心得

页面置换算法实验报告实验心得
页面置换算法是操作系统中用来管理内存的一种重要算法。

在本次实验中,我们通过模拟内存的分配和释放过程,探索了三种典型的页面置换算法:FIFO(先进先出)、LRU(最近最少使用)和OPT(最优置换)。

在实验过程中,我发现FIFO算法虽然简单易懂,但容易产生“抖动”现象,即容易出现频繁的页面置换,导致系统效率低下。

LRU算法则能够有效避免抖动现象,但需要记录每个页面最近一次的使用时间,算法实现较为复杂。

OPT算法是一种理论上的最优算法,但由于需要预测未来的页面使用情况,实际中难以实现。

通过对三种算法的实验数据分析,我发现在不同的内存使用情况下,不同的页面置换算法表现也不同。

例如在内存使用较少的情况下,FIFO算法的效率可能会更高,但在内存使用较多的情况下,LRU算法则能够更好地发挥作用。

因此,在实际应用中,需要根据实际情况选择合适的页面置换算法。

总之,本次页面置换算法的实验让我更加深入地了解了操作系统中内存管理的相关知识,也加深了我对算法选择的理解和实际应用的思考。

页面置换算法实验报告

页面置换算法实验报告

页面置换算法实验报告
一、实验内容
本次实验主要围绕页面置换算法进行,以实验课本的实例介绍,采用FIFO页面置换算法对后面提到的参数进行置换,最终得出页面置换的结果和比较所得结果。

二、实验步骤
(一) 熟悉FIFO算法
首先是要了解FIFO页面置换算法,FIFO全称(First In First Out),按页面进入内存的顺序来替换相应内存页面,先进先出,将先进入内存的页面先替换出去。

(二) 阅读实验课本
在阅读实验课本之前要先熟悉实验书上所介绍的FIFO算法,然后在实验书上找出需要做的实验,并对实验环境和表格进行观察,掌握实验的基本内容。

(三) 开始页面置换
在开始实验之前,熟悉实验环境,根据实验书上的参数,首先模拟进程分配内存,根据FIFO算法去进行计算,根据上表中的参数去比较,最后得出最终结果。

(四) 在本次实验的补充
这次实验中,可以把FIFO的概念应用到实际应用中,也可以模拟不同情况,例如改变页面的大小,观察不同页面置换算法的结果,实验出最合适的结果。

三、实验结论
本次实验是为了了解FIFO页面置换算法,实验出最终的结果,最后得出页面置换的结果及比较结果。

虚拟内存的页面置换算法

虚拟内存的页面置换算法

虚拟内存的页面置换算法一、引言虚拟内存是计算机系统中的一种技术,它将计算机内存的管理从物理内存中分离出来,扩大了可用的内存空间。

而虚拟内存的页面置换算法则是虚拟内存管理中的重要组成部分。

本文将对虚拟内存的页面置换算法进行详细介绍。

二、页面置换算法的作用在计算机系统中,虚拟内存的大小远远大于物理内存的大小。

当系统运行的程序需要的内存超过物理内存的容量时,就需要将一部分数据从内存中置换出来,以腾出空间给新的数据。

而页面置换算法就是决定哪些页面被置换出去的方法。

三、常见的页面置换算法1. 最佳(OPT)页面置换算法最佳算法是一种理想化的算法,它总是选择未来最长时间内不会被访问的页面进行置换。

然而,由于无法预测未来的访问模式,最佳算法无法在实际系统中使用。

2. 先进先出(FIFO)页面置换算法FIFO算法是一种简单的页面置换算法,它总是选择最早进入内存的页面进行置换。

这种算法容易实现,但是它没有考虑到页面的访问模式,可能会导致较高的缺页率。

3. 最近最久未使用(LRU)页面置换算法LRU算法是一种基于页面访问历史的页面置换算法,它总是选择最近最久未使用的页面进行置换。

这种算法通常能够较好地预测未来的访问模式,但是实现起来较为复杂,需要维护一个访问历史记录。

4. 时钟(Clock)页面置换算法时钟算法是一种基于页面访问位的页面置换算法,它使用一个指针来指向内存中的页面,当需要置换页面时,检查指针指向的页面的访问位。

如果访问位为0,则选择该页面进行置换;如果访问位为1,则将访问位置为0,并将指针移动到下一个页面。

这种算法相对简单,并且能够较好地预测未来的访问模式。

5. 最不经常使用(LFU)页面置换算法LFU算法是一种基于页面访问频率的页面置换算法,它总是选择访问频率最低的页面进行置换。

这种算法能够较好地预测未来的访问模式,并且对于访问频率较低的页面有较好的效果。

四、页面置换算法的评价指标评价一个页面置换算法的好坏通常使用缺页率来衡量。

实验报告三 内存页面置换算法的设计

实验报告三 内存页面置换算法的设计

实验报告三——内存页面置换算法的设计姓名:丛菲学号:20100830205 班级:信息安全二班一、实习内容•实现最近最久未使用(LRU)置换算法二、实习目的•LINUX中,为了提高内存利用率,提供了内外存进程对换机制,内存空间的分配和回收均以页为单位进行,一个进程只需将其一部分调入内存便可运行,还支持请求调页的存储管理方式。

•本实习要求学生通过请求页式存储管理中页面置换算法模拟设计,了解虚拟存储技术的特点,掌握请求页式存储管理的页面置换算法。

三、实习题目1. 最近最久未使用(LRU)置换算法原理就是:当需要淘汰某页面时,选择当前一段时间内最久未使用过的页先淘汰,即淘汰距当前最远的上次使用的页。

•例如: 分配给该进程的页块数为3,一个20位长的页面访问序列为:12560,36536,56042,70435,则缺页次数和缺页率按下图给出:2. 假定分配给该进程的页块数为3,页面访问序列长度为20。

本实验可以采用数组结构实现,首先随机产生页面序列,当发生请求调页时,若内存已满,则需要利用LRU算法,将当前一段时间内最久未使用过的页替换出去。

•模拟程序的算法如下图:四、实现代码为:#include<stdio.h>#define M 3#define N 20#define Myprintf printf("|---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---|\n") /*表格控制*/typedef struct page{int num; /*记录页面号*/int time; /*记录调入内存时间*/}Page; /* 页面逻辑结构,结构为方便算法实现设计*/Page b[M]; /*内存单元数*/int c[M][N]; /*暂保存内存当前的状态:缓冲区*/int queue[100]; /*记录调入队列*/int K; /*调入队列计数变量*//*初始化内存单元、缓冲区*/void Init(Page *b,int c[M][N]){int i,j;for(i=0;i<N;i++){b[i].num=-1;b[i].time=N-i-1;}for(i=0;i<M;i++)for(j=0;j<N;j++)c[i][j]=-1;}/*取得在内存中停留最久的页面,默认状态下为最早调入的页面*/ int GetMax(Page *b){int i;int max=-1;int tag=0;for(i=0;i<M;i++){if(b[i].time>max){max=b[i].time;tag=i;}}return tag;}/*判断页面是否已在内存中*/int Equation(int fold,Page *b){int i;for(i=0;i<M;i++){if (fold==b[i].num)return i;}return -1;}void Lru(int fold,Page *b) /*LRU核心部分*/{int i;int val;val=Equation(fold,b);if (val>=0){b[val].time=0;for(i=0;i<M;i++)if (i!=val)b[i].time++;}else//页面不存在{queue[++K]=fold;/*记录调入页面*/val=GetMax(b);b[val].num=fold;b[val].time=0;for(i=0;i<M;i++)if (i!=val)b[i].time++;}}main()/*主程序*/{int a[N]={1,0,5,1,7,1,0,2,4,1,0,0,8,7,5,4,3,2,3,4};int i,j;start:K=-1;Init(b, c);for(i=0;i<N;i++){Lru(a[i],b);c[0][i]=a[i];/*记录当前的内存单元中的页面*/for(j=0;j<M;j++)c[j][i]=b[j].num;}/*结果输出*/printf("nei cun zhuang tai :\n");Myprintf;for(j=0;j<N;j++)printf("|%2d ",a[j]);printf("|\n");Myprintf;for(i=0;i<M;i++){for(j=0;j<N;j++){if(c[i][j]==-1)printf("|%2c ",32);elseprintf("|%2d ",c[i][j]);}printf("|\n");}Myprintf;printf("\ndiao ru dui lie :");for(i=0;i<K+1;i++)printf("%3d",queue[i]);printf("\nque ye ci shu :%6d\nque ye lv:%16.2f%%\n",K+1,(float)(K+1)/N*100);}五、在虚拟机上的具体操作及结果六、思考题•比较LRU和其他置换算法各自的优缺点,能够实现其他置换算法模拟设计,分析内存页面数的变化对各种置换算法命中率的影响。

实验三页面置换算法模拟实验

实验三页面置换算法模拟实验

计算机科学系实验报告书课程名:《操作系统》题目:虚拟存储器管理页面置换算法模拟实验班级:学号:姓名:一、实验目的与要求1.目的:请求页式虚存管理是常用的虚拟存储管理方案之一。

通过请求页式虚存管理中对页面置换算法的模拟,有助于理解虚拟存储技术的特点,并加深对请求页式虚存管理的页面调度算法的理解。

2.要求:本实验要求使用C语言编程模拟一个拥有若干个虚页的进程在给定的若干个实页中运行、并在缺页中断发生时分别使用FIFO和LRU算法进行页面置换的情形。

其中虚页的个数可以事先给定(例如10个),对这些虚页访问的页地址流(其长度可以事先给定,例如20次虚页访问)可以由程序随机产生,也可以事先保存在文件中。

要求程序运行时屏幕能显示出置换过程中的状态信息并输出访问结束时的页面命中率。

程序应允许通过为该进程分配不同的实页数,来比较两种置换算法的稳定性。

二、实验说明1.设计中虚页和实页的表示本设计利用C语言的结构体来描述虚页和实页的结构。

在虚页结构中,pn代表虚页号,因为共10个虚页,所以pn的取值范围是0—9。

pfn代表实页号,当一虚页未装入实页时,此项值为-1;当该虚页已装入某一实页时,此项值为所装入的实页的实页号pfn。

time项在FIFO算法中不使用,在LRU中用来存放对该虚页的最近访问时间。

在实页结构中中,pn代表虚页号,表示pn所代表的虚页目前正放在此实页中。

pfn代表实页号,取值范围(0—n-1)由动态指派的实页数n所决定。

next是一个指向实页结构体的指针,用于多个实页以链表形式组织起来,关于实页链表的组织详见下面第4点。

2.关于缺页次数的统计为计算命中率,需要统计在20次的虚页访问中命中的次数。

为此,程序应设置一个计数器count,来统计虚页命中发生的次数。

每当所访问的虚页的pfn项值不为-1,表示此虚页已被装入某实页内,此虚页被命中,count加1。

最终命中率=count/20*100%。

3.LRU算法中“最近最久未用”页面的确定为了能找到“最近最久未用”的虚页面,程序中可引入一个时间计数器countime,每当要访问一个虚页面时,countime的值加1,然后将所要访问的虚页的time项值设置为增值后的当前countime值,表示该虚页的最后一次被访问时间。

页面置换实习报告

页面置换实习报告

页面置换实习报告在计算机系统中,页面置换是一项至关重要的内存管理技术。

为了更深入地理解和掌握这一技术,我进行了相关的实习。

一、实习目的页面置换的目的在于当内存空间不足时,将一些暂时不使用的页面换出到外存,以腾出空间给当前需要的页面。

通过这次实习,我希望能够:1、深入理解页面置换算法的工作原理和特点。

2、掌握不同算法在实际应用中的性能差异。

3、提高自己的编程能力和问题解决能力。

二、实习环境本次实习使用的编程语言为 Python,开发环境为 PyCharm。

操作系统为 Windows 10。

三、页面置换算法简介1、先进先出(FIFO)算法FIFO 算法是最简单的页面置换算法之一。

它总是淘汰最先进入内存的页面。

这种算法实现简单,但可能会导致一些频繁使用的页面被过早置换出去。

2、最近最久未使用(LRU)算法LRU 算法根据页面最近的使用情况来决定置换。

即淘汰最长时间未被使用的页面。

该算法性能较好,但实现相对复杂,需要记录页面的使用时间。

3、最优置换(OPT)算法OPT 算法是一种理论上的最优算法,它淘汰未来最长时间内不会被使用的页面。

然而,由于在实际中无法准确预测未来的页面使用情况,所以该算法更多地用于理论分析。

四、实习过程1、算法实现首先,我使用 Python 实现了上述三种页面置换算法。

在实现过程中,我使用了数据结构来存储页面的相关信息,并通过模拟页面的调入和调出过程来计算缺页次数。

以 FIFO 算法为例,我使用一个队列来存储页面进入内存的顺序。

当需要置换页面时,将队首的页面淘汰。

2、性能测试为了比较不同算法的性能,我设计了一系列的测试用例。

测试用例包括不同的页面访问序列和不同的内存大小。

通过运行测试用例,我记录了每种算法在不同情况下的缺页次数。

3、结果分析对测试结果进行分析是实习的重要环节。

我发现,在不同的页面访问模式下,不同算法的表现差异较大。

例如,当页面访问序列具有局部性时,LRU 算法的表现通常优于FIFO 算法。

操作系统中的虚拟内存与页面置换算法

操作系统中的虚拟内存与页面置换算法

操作系统中的虚拟内存与页面置换算法操作系统是计算机系统中最核心的组成部分之一,负责管理和协调计算机系统的各种资源。

虚拟内存和页面置换算法是操作系统中的重要概念和技术,用于提高系统的性能和资源利用率。

本文将详细介绍操作系统中的虚拟内存和页面置换算法的原理及其应用。

一、虚拟内存的概念和原理虚拟内存是一种操作系统技术,它可以扩展计算机的实际物理内存大小,使得应用程序能够访问比实际物理内存更大的虚拟地址空间。

虚拟内存的实现原理是将进程的虚拟地址空间映射到物理内存或磁盘上,实现了从逻辑地址到物理地址的转换。

虚拟内存的主要功能包括内存保护、内存共享和内存扩充。

通过内存保护,操作系统可以为每个进程分配独立的虚拟地址空间,防止不同进程之间的内存相互干扰;通过内存共享,操作系统可以将相同的虚拟页面映射到不同的进程,实现进程间的数据共享;通过内存扩充,操作系统可以将虚拟内存中的部分内容映射到磁盘上,从而将物理内存中的数据暂时存储在磁盘上,释放出更多的物理内存供其他进程使用。

二、页面置换算法的概念和分类页面置换算法是虚拟内存管理中的核心算法,用于根据内存访问的特点和目标来选择被置换出去的页面,以便为新的页面腾出空间。

常用的页面置换算法有FIFO(First In First Out)、LRU(Least Recently Used)、LFU(Least Frequently Used)和OPT(Optimal)等。

FIFO算法是最简单的页面置换算法,它按照页面进入内存的顺序选择被置换出去的页面。

尽管FIFO算法实现简单,但是由于没有考虑到页面的使用频率和重要性,可能会导致被频繁访问的页面被置换出去,降低系统的性能。

LRU算法是最常用的页面置换算法之一,它根据页面最近的访问时间来选择被置换出去的页面。

LRU算法认为,最长时间没有被访问的页面很可能在未来也不会被访问,因此选择该页面来置换可以最大程度上减少页面置换的次数,提高系统的性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验报告三-虚拟内存页面置换算法实验报告三虚拟内存页面置换算法班级学号姓名一、实验目的通过这次实验,加深对虚拟内存页面置换概念的理解,进一步掌握先进先出FIFO,最佳置换OPI和最近最久未使用LRU页面置换算法的实现方法。

二、实验的开发环境1. 硬件设备:PC机一台2. 软件环境:安装Windows操作系统或者Linux 操作系统,并安装相关的程序开发环境,如 C \C++\Java 等编程语言环境。

三、实验设计思路问题描述:设计程序模拟先进先出FIFO,最佳置换OPI 和最近最久未使用LRU页面置换算法的工作过程。

假设内存中分配给每个进程的最小物理块数为m,在进程运行过程中要访问的页面个数为n,页面访问序列为P1, … ,Pn,分别利用不同的页面置换算法调度进程的页面访问序列,给出页面访问序列的置换过程,计算每种算法缺页次数和缺页率。

四、实验内容及结果程序要求如下:1)利用先进先出FIFO,最佳置换OPI和最近最久未使用LRU三种页面置换算法模拟页面访问过程。

2)模拟三种算法的页面置换过程,给出每个页面访问时的内存分配情况。

3)输入:最小物理块数m,页面个数n,页面访问序列P1, …,Pn,算法选择1-FIFO,2-OPI,3-LRU。

4)输出:每种算法的缺页次数和缺页率。

程序源码如下:#include "iostream.h"const int DataMax=100;const int BlockNum = 10;int DataShow[BlockNum][DataMax]; // 用于存储要显示的数组bool DataShowEnable[BlockNum][DataMax]; // 用于存储数组中的数据是否需要显示//int Data[DataMax]={4,3,2,1,4,3,5,4,3,2,1,5,6,2,3,7,1,2,6,1}; // 测试数据//int N = 20; // 输入页面个数int Data[DataMax]; // 保存数据int Block[BlockNum]; // 物理块int count[BlockNum]; // 计数器int N ; // 页面个数int M;//最小物理块数int ChangeTimes;void DataInput(); // 输入数据的函数void DataOutput();void FIFO(); // FIFO 函数void Optimal(); // Optimal函数void LRU(); // LRU函数///*int main(int argc, char* argv[]){DataInput();// DataInput();// FIFO();// Optimal();// LRU();// return 0;int menu;while(true){cout<<endl;cout<<"* 菜单选择*"<<endl;cout<<"*******************************************************"<<endl;cout<<"* 1-FIFO *"<<endl;cout<<"* 2-Optimal *"<<endl;cout<<"* 3-LRU *"<<endl;cout<<"* 0-EXIT *"<<endl;cout<<"*******************************************************"<<endl;cin>>menu;switch(menu){case 1: FIFO();break;case 2: Optimal();break;case 3: LRU();break;default: break;}if(menu!=1&&menu!=2&&menu!=3) break;}}//*/void DataInput(){cout<<"请输入最小物理块数:";cin>>M;while(M > BlockNum) // 大于数据个数{cout<<"物理块数超过预定值,请重新输入:";cin>>M;}cout<<"请输入页面的个数:";cin>>N;while(N > DataMax) // 大于数据个数{cout<<"页面个数超过预定值,请重新输入:";cin>>N;}cout<<"请输入页面访问序列:"<<endl;for(int i=0;i<N;i++)cin>>Data[i];}void DataOutput(){int i,j;for(i=0;i<N;i++) // 对所有数据操作{cout<<Data[i]<<" ";}cout<<endl;for(j=0;j<M;j++){cout<<" ";for(i=0;i<N;i++) // 对所有数据操作{if( DataShowEnable[j][i] )cout<<DataShow[j][i]<<" ";elsecout<<" ";}cout<<endl;}cout<<"缺页次数: "<<ChangeTimes<<endl;cout<<"缺页率: "<<ChangeTimes*100/N<<"%"<<endl;}void FIFO(){int i,j;bool find;int point;int temp; // 临时变量ChangeTimes = 0;for(j=0;j<M;j++)for(i=0;i<N;i++)DataShowEnable[j][i] = false; // 初始化为false,表示没有要显示的数据for(i=0;i<M;i++){count[i] = 0; // 大于等于BlockNum,表示块中没有数据,或需被替换掉// 所以经这样初始化(3 2 1),每次替换>=3的块,替换后计数值置1,// 同时其它的块计数值加1 ,成了(1 3 2 ),见下面先进先出程序段}for(i=0;i<N;i++) // 对有所数据操作{// 增加countfor(j=0;j<M;j++)count[j]++;find = false; // 表示块中有没有该数据for(j=0;j<M;j++){if( Block[j] == Data[i] ){find = true;}}if( find ) continue; // 块中有该数据,判断下一个数据// 块中没有该数据ChangeTimes++; // 缺页次数++if( (i+1) > M ) // 因为i是从0开始记,而M指的是个数,从1开始,所以i+1 {//获得要替换的块指针temp = 0;for(j=0;j<M;j++){if( temp < count[j] ){temp = count[j];point = j; // 获得离的最远的指针}}}else point = i;// 替换Block[point] = Data[i];count[point] = 0; // 更新计数值// 保存要显示的数据for(j=0;j<M;j++){DataShow[j][i] = Block[j];DataShowEnable[i<M?(j<=i?j:i):j][i] = true; // 设置显示数据}}// 输出信息cout<< endl;cout<<"FIFO => "<< endl;DataOutput();}void Optimal(){int i,j,k;bool find;int point;int temp; // 临时变量,比较离的最远的时候用ChangeTimes = 0;for(j=0;j<M;j++)for(i=0;i<N;i++)DataShowEnable[j][i] = false; // 初始化为false,表示没有要显示的数据// for(i=0;i<M;i++)// {// count[i] = 0 ; //// }for(i=0;i<N;i++) // 对有所数据操作{find = false; // 表示块中有没有该数据for(j=0;j<M;j++){if( Block[j] == Data[i] )find = true;}if( find ) continue; // 块中有该数据,判断下一个数据// 块中没有该数据,最优算法ChangeTimes++; // 缺页次数++for(j=0;j<M;j++){// 找到下一个值的位置find = false;for( k =i;k<N;k++){if( Block[j] == Data[k] ){find = true;count[j] = k;break;}}if( !find ) count[j] = N;}if( (i+1) > M ) // 因为i是从0开始记,而BlockNum指的是个数,从1开始,所以i+1 {//获得要替换的块指针temp = 0;for(j=0;j<M;j++){if( temp < count[j] ){temp = count[j];point = j; // 获得离的最远的指针}}}else point = i;// 替换Block[point] = Data[i];// 保存要显示的数据for(j=0;j<M;j++){DataShow[j][i] = Block[j];DataShowEnable[i<M?(j<=i?j:i):j][i] = true; // 设置显示数据}}// 输出信息cout<< endl;cout<<"Optimal => "<< endl;DataOutput();}void LRU(){int i,j;bool find;int point;int temp; // 临时变量ChangeTimes = 0;for(j=0;j<M;j++)for(i=0;i<N;i++)DataShowEnable[j][i] = false; // 初始化为false,表示没有要显示的数据for(i=0;i<M;i++){count[i] = 0 ;}for(i=0;i<N;i++) // 对有所数据操作{// 增加countfor(j=0;j<M;j++)count[j]++;find = false; // 表示块中有没有该数据for(j=0;j<M;j++){if( Block[j] == Data[i] ){count[j] = 0;find = true;}}if( find ) continue; // 块中有该数据,判断下一个数据// 块中没有该数据ChangeTimes++; // 缺页次数++if( (i+1) > M ) // 因为i是从0开始记,而BlockNum指的是个数,从1开始,所以i+1 {//获得要替换的块指针temp = 0;for(j=0;j<M;j++){if( temp < count[j] ){temp = count[j];point = j; // 获得离的最远的指针}}}else point = i;// 替换Block[point] = Data[i];count[point] = 0;// 保存要显示的数据for(j=0;j<M;j++){DataShow[j][i] = Block[j];DataShowEnable[i<M?(j<=i?j:i):j][i] = true; // 设置显示数据}}// 输出信息cout<< endl;cout<<"LRU => "<< endl;DataOutput();}五、实验效果六、实验总结通过这次实验我对先进先出FIFO,最佳置换OPI和最近最久未使用LRU页面置换算法的实现方法。

相关文档
最新文档