幂函数(基础+复习+习题+练习).docx

合集下载

高中数学(必修一)第三章 函数的概念与性质幂函数 练习题

高中数学(必修一)第三章 函数的概念与性质幂函数 练习题

高中数学(必修一)第三章 函数的概念与性质幂函数 练习题(含答案解析)学校:___________姓名:___________班级:_____________一、单选题1.下列幂函数中,定义域为R 的是( ) A .1y x -= B .12y x -=C .13y x =D .12y x = 2.已知幂函数n y x =在第一象限内的图像如图所示,若112,2,,22n ⎧⎫∈--⎨⎬⎩⎭则与曲线1C 、2C 、3C、4C 对应的n 的值依次为( )A .12-、2-、2、12B .2、12、2-、12-C .2、12、12-、2-D .12-、2-、12、23.四个幂函数在同一平面直角坐标系中第一象限内的图象如图所示,则幂函数12y x =的图象是( )A .①B .①C .①D .①4.下列函数中,既是偶函数,又满足值域为R 的是( ) A .y =x 2B .1||||y x x =+C .y =tan|x |D .y =|sin x |5.如下图所示曲线是幂函数y =xα在第一象限内的图象,已知α取±2,±12四个值,则对应于曲线C 1,C 2,C 3,C 4的指数α依次为( )A .-2,-12,12,2B .2,12,-12,-2C .-12,-2,2,12 D ..2,12,-2,-126.若幂函数()f x 经过点,且()8f a =,则=a ( )A .2B .3C .128D .5127.函数()0a y x x =≥和函数()0xy a x =≥在同一坐标系下的图像可能是( )A .B .C .D .8.式子)A .1633- B .1633--C .1633+D .1633-+9.对,a b ∈R ,记{},max ,,a a ba b b a b ≥⎧=⎨<⎩,函数()}2maxf x x -=的图象可能是( )A .B .C .D .二、解答题10.设函数()222f x x x =-+,[],1,x t t t R ∈+∈(1)求实数t 的取值范围,使()y f x =在区间[],1t t +上是单调函数; (2)求函数()f x 的最小值. 11.已知幂函数()223m m y x m --=∈Z 的图像与x 、y 轴都无交点,且关于y 轴对称,求m 的值,并画出它的草图.12.已知幂函数()()25mf x m m x =+-在()0,∞+上单调递增.(1)求()f x 的解析式;(2)若()31f x x k >+-在[1,1]-上恒成立,求实数k 的取值范围. 13.设函数()f x 是定义在R 上的奇函数,且()21x ax b f x x +=++.(1)求实数a ,b 的值;(2)当x ∈⎤⎦,不等式()()22f x mx x ≥-有解,求实数m 的取值范围.三、填空题14.若点(2,4)P ,0(3,)Q y 均在幂函数()y f x =的图象上,则实数0y =_____.15.已知实数a ,b 满足等式a 12=b 13,下列五个关系式:①0<b<a<1;①-1<a<b<0;①1<a<b ;①-1<b<a<0;①a =b.其中可能成立的式子有________.(填上所有可能成立式子的序号) 16.函数3223125y x x x =--+在[0,3]上的最大值等于__________.17.定义{}()max ,()a ab a b b a b ≥⎧=⎨<⎩,则{}2max 1,2x x x +--的最小值为_________.参考答案:1.C【分析】直接根据幂函数的定义域可直接判断,偶次根式被开方式必须大于等于0才有意义,分式则必须分母不为0【详解】对选项A,则有:0x≠对选项B,则有:0x>对选项C,定义域为:R对选项D,则有:0x≥故答案选:C2.C【解析】本题可根据幂函数的图像与性质并结合题目中的图像即可得出结果.【详解】由幂函数的图像与性质可知:在第一象限内,在1x=的右侧部分的图像,图像由下至上,幂的指数依次增大,故曲线1C、2C、3C、4C对应的n的值依次为:2、12、12-、2-,故选:C.【点睛】本题考查幂函数的图像与性质,在第一象限内,幂函数在1x=的右侧部分的图像,图像由下至上,幂的指数依次增大,考查数形结合思想,是简单题.3.D【解析】由幂函数12y x=为增函数,且增加的速度比较缓慢作答.【详解】幂函数12y x=为增函数,且增加的速度比较缓慢,只有①符合.故选:D.【点睛】本题考查幂函数的图象与性质,属于基础题.4.C【分析】由函数的值域首先排除ABD,对C进行检验可得.【详解】选项A,B中函数值不能为负,值域不能R,故AB错误,选项D值域为[]0,1,故D也错误,那么选项C为偶函数,当3(,)22xππ∈时,tan tany x x==,值域是R,因此在定义域内函数值域为R,故选:C5.B【分析】在图象中,作出直线1x m =>,根据直线x m =和曲线交点的纵坐标的大小,可得曲线1C ,2C ,3C ,4C 相应的α应是从大到小排列.【详解】在图象中,作出直线1x m =>,直线x m =和曲线的交点依次为,,,A B C D , 所以A B C D y y y y >>>,所以C A B D m m m m αααα>>>, 所以A B C D αααα>>>,所以可得曲线1C ,2C ,3C ,4C 相应的α依次为 2,12,-12,-2 故选:B【点睛】本题主要考查幂函数的图象和性质,意在考查学生对这些知识的理解掌握水平. 6.A【解析】设幂函数()f x x α=,代入点求出3α=,即可求解.【详解】设()f x x α=,因为幂函数()f x 经过点,所以f α==, 解得3α=,所以()38f a a ==,解得2a =, 故选:A 7.C【分析】按照x y a =和a y x =的图像特征依次判断4个选项即可.【详解】()0a y x x =≥必过(0,0),()0xy a x =≥必过(0,1),D 错误;A 选项:由x y a =图像知1a >,由a y x =图像可知01a <<,A 错误;B 选项:由x y a =图像知01a <<,由a y x =图像可知1a >,B 错误;C 选项:由x y a =图像知01a <<,由a y x =图像可知01a <<,C 正确. 故选:C. 8.A【分析】利用根式与分数指数幂互化和指数幂运算求解.【详解】231322333⎛⎫=-÷ ⎪⎝⎭, 21131326223333--=-=-,故选:A 9.A【分析】由()}2maxf x x -=2x -的较大者,在同一平面直角坐标系中作出两个函数的图象,取图象较高者即可得()f x 的图象.【详解】y =2y x 都是偶函数,当0x >时,12y x =在()0,∞+上单调递增,2yx 在()0,∞+上单调递减,当1x =2x -=在同一平面直角坐标系中作出y =和2yx 的图象,如图:()}2maxf x x -=2x -的较大者,所以()f x 图象是两个图象较高的,故选:A.10.(1)(][),01,-∞⋃+∞;(2)()2min21,01,0122,1t t f x t t t t ⎧+≤⎪=<<⎨⎪-+≥⎩【解析】(1)由题可得11t +≤或1t ≥,解出即可;(2)讨论对称轴在区间[],1t t +的位置,根据单调性即可求出. 【详解】(1)()f x 的对称轴为1x =,要使()y f x =在区间[],1t t +上是单调函数, 则11t +≤或1t ≥,解得0t ≤或1t ≥, 即t 的取值范围为(][),01,-∞⋃+∞;(2)()f x 的对称轴为1x =,开口向上,则当1t ≥时,()f x 在[],1t t +单调递增,()()2min 22f x f t t t ∴==-+,当11t t <<+,即01t <<时,()()min 11f x f ==,当11t +≤,即0t ≤时,()f x 在[],1t t +单调递减,()()2min 11f x f t t ∴=+=+,综上,()2min21,01,0122,1t t f x t t t t ⎧+≤⎪=<<⎨⎪-+≥⎩. 11.1m = ;草图见祥解【分析】根据幂函数的性质,可得到2230m m --<,再有图像关于y 对称,即可求得m 的值. 【详解】因为幂函数223()m m y x m Z --=∈的图像与坐标轴无交点,所以2230m m --<,解得13m -<<,又因为m Z ∈,所以0,1,2m =,因为图像关于y 对称,所以幂函数为偶函数, 当0m =时,则3y x -=为奇函数,不满足题意; 当1m =时,则4y x -= 为偶函数,满足题意; 当2m =时,则3y x -=为奇函数,不满足题意; 综上所述:1m = 草图(如下)【点睛】本题考查幂函数的性质和图像,需熟练掌握幂函数的性质和图像. 12.(1)2()f x x = (2)(),1-∞-【分析】(1)根据幂函数的定义和()f x 的单调性,求出m 得值; (2)结合第一问求出的2()f x x =,利用函数的单调性,解决恒成立问题. (1)()f x 是幂函数,则251m m +-=,2m ∴=或-3,()f x 在(0,)+∞上单调递增,则2m =所以2()f x x =; (2)()31f x x k >+-即2310x x k -+->,要使此不等式在[1,1]-上恒成立,只需使函数()231g x x x k =-+-在[1,1]-上的最小值大于0即可.①()231g x x x k =-+-在[1,1]-上单调递减,①()()11min g x g k ==--, 由10k -->,得1k <-.因此满足条件的实数k 的取值范围是(),1-∞-. 13.(1)0a =,0b = (2)1,4⎛⎤-∞ ⎥⎝⎦【分析】(1)根据定义在R 上的奇函数的性质以及定义即可解出;(2)由(1)可知,()21x f x x =+,根据分离参数法可得()()22112m x x ≤+-,再求出()()22112x x +-的最大值,即得解. (1)因为函数()f x 是定义在R 上的奇函数,所以()00f a ==,()()1111022f f b b-+-=+=+-,解得0b =,检验可知函数()21xf x x =+为奇函数,故0a =,0b =. (2)由(1)可知,()21x f x x =+,而x ∈⎤⎦,所以 ()()22f x mx x ≥-可化为()()22112m x x ≤+-,设[]23,4t x =∈,则()()()()[]222219121224,1024x x t t t t t ⎛⎫+-=+-=--=--∈ ⎪⎝⎭,而不等式()()22f x mx x ≥-有解等价于()()22max11412m x x ⎡⎤⎢⎥≤=+-⎢⎥⎣⎦,故实数m 的取值范围为1,4⎛⎤-∞ ⎥⎝⎦.14.9【分析】设出幂函数的解析式,代入P 点坐标求得这个解析式,然后令3x =求得0y 的值.【详解】设幂函数为()f x x α=,将()2,4P 代入得24,2αα==,所以()2f x x =,令3x =,求得2039y ==.【点睛】本小题主要考查幂函数解析式的求法,考查幂函数上点的坐标,属于基础题. 15.①①①【分析】在同一坐标系中画出函数121y x =,132y x =的图象,结合函数图象,进行动态分析可得,当01b a <<<时,当1a b <<时,当1a b ==时,1132a b =可能成立,10b a -<<<、10a b -<<<时,12a 没意义,进而即可得到结论【详解】10b a -<<<、10a b -<<<时,12a 没意义,①①不可能成立;’画出121y x =与132y x =的图象(如图), 已知1132x x m ==,作直线y m =, 若0m =或1,则a b =,①能成立; 若01m <<,则01b a <<<,①能成立;若1m ,则1a b <<,①能成立,所以可能成立的式子有①①①,故答案为①①①.【点睛】本题主要考查幂函数的图象与性质,意在考查灵活应用所学知识解答问题的能力,以及数形结合思想的应用,属于中档题. 数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,.函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质.16.5【分析】对3223125y x x x =--+求导,根据单调性求最大值.【详解】3223125y x x x =--+,则266126(2)(1)y x x x x '=--=-+当2x >时,0y '>,此时函数3223125y x x x =--+单调递增;当12x -<<时,0y '<,此时函数3223125y x x x =--+单调递减;当1x <-时,0y '>,此时函数3223125y x x x =--+单调递增.则函数3223125y x x x =--+在区间[0,2]内单调递减,在区间[2,3]内单调递增当0x =时,5y =,当3x =时,4y =-所以函数3223125y x x x =--+在0x =处取到最大值5所以函数3223125y x x x =--+在区间[0,3]上的最大值是5.故答案为:5.17.1【分析】根据题干中max 函数的定义,可以得到所求函数为分段函数,求出每一段的最小值,取其中的最小值即可 【详解】令212x x x +-=-得:3x =-或1x =,由题意可得:{}2221,3max 1,22,311,1x x x x x x x x x x x ⎧+-≤-⎪+--=--<<⎨⎪+-≥⎩,画出函数对应的图像如下:由图可得:当1x =时,{}2max 1,2x x x +--最小,代入解析式可得:最小值为1故答案为:1。

幂函数练习题及答案解析

幂函数练习题及答案解析

3.3幂函数1.给出四个说法:①当n=0时,y=x n的图象是一个点;②幂函数的图象都经过点(0,0),(1,1);③幂函数的图象不可能出现在第四象限;④幂函数y=x n在第一象限为减函数,则n<0.其中正确的说法个数是()A.1 B.2C.3 D.42.在函数y=2x3,y=x2,y=x2+x,y=x0中,幂函数有() A.1个B.2个C.3个D.4个3.下列结论中,正确的是()①幂函数的图象不可能在第四象限②α=0时,幂函数y=xα的图象过点(1,1)和(0,0)③幂函数y=xα,当α≥0时是增函数④幂函数y=xα,当α<0时,在第一象限内,随x的增大而减小A.①②B.③④C.②③D.①④4.幂函数f(x)=xα满足x>1时f(x)>1,则α满足条件() A.α>1 B.0<α<1C.α>0 D.α>0且α≠15.已知幂函数f(x)的图象经过点(2,22),则f(4)的值为()A.16 B.1 16C.12D.26.函数f(x)=(m2-m-1)x m2-2m-3是幂函数,且在x∈(0,+∞)上是减函数,则实数m=()A.2 B.3C.4 D.57.下列幂函数为偶函数的是()A .y =x 12 B .y =3xC .y =x 2D .y =x -18.若a <0,则0.5a,5a,5-a 的大小关系是( )A .5-a <5a <0.5aB .5a <0.5a <5-aC .0.5a <5-a <5aD .5a <5-a <0.5a9.设α∈{-1,1,12,3},则使函数y =x α的定义域为R ,且为奇函数的所有α值为( )A .1,3B .-1,1C .-1,3D .-1,1,310.已知n ∈{-2,-1,0,1,2,3},若(-12)n >(-13)n ,则n =________. 11.幂函数的图象过点(2,14),则它的单调递增区间是( ) A .(0,+∞) B .[0,+∞)C .(-∞,0)D .(-∞,+∞)12.设α∈{-2,-1,-12,13,12,1,2,3},则使f (x )=x α为奇函数且在(0,+∞)上单调递减的α的值的个数是( )A .1B .2C .3D .4 13.使(3-2x -x 2)-34有意义的x 的取值范围是( )A .RB .x ≠1且x ≠3C .-3<x <1D .x <-3或x >114.关于x 的函数y =(x -1)α(其中α的取值范围可以是1,2,3,-1,12)的图象恒过点________.15.已知2.4α>2.5α,则α的取值范围是________.16.把(23)-13,(35)12,(25)12,(76)0按从小到大的顺序排列____________________.17.已知(m +4)-12<(3-2m )-12,求m 的取值范围.18.如图,图中曲线是幂函数y =x α在第一象限的大致图象.已知α取-2,-12,12,2四个值,则相应于曲线C 1,C 2,C 3,C 4的α的值依次为( )A .-2,-12,12,2B .2,12,-12,-2C .-12,-2,2,12D .2,12,-2,-1219.以下关于函数y =x α当α=0时的图象的说法正确的是( )A .一条直线B .一条射线C .除点(0,1)以外的一条直线D .以上皆错20.函数f (x )=(1-x )0+(1-x )12的定义域为________.21.下列幂函数中,定义域为{x |x >0}的是( ) A .y =x 23 B .y =x 32 C .y =x -13 D .y =x -34 22.设x ∈(0,1)时,y =x p (p ∈R )的图象在直线y =x 的上方,则p 的取值范围是________.23.已知函数f (x )=(m 2+2m )·x m 2+m -1,m 为何值时,f (x )是:(1)正比例函数;(2)反比例函数;(3)二次函数;(4)幂函数? ,参考答案:1.解析:选B.显然①错误;②中如y =x -12的图象就不过点(0,0).根据幂函数的图象可知③、④正确,故选B.2.解析:选B.y =x 2与y =x 0是幂函数.3.解析:选D.y =x α,当α=0时,x ≠0;③中“增函数”相对某个区间,如y =x 2在(-∞,0)上为减函数,①④正确.4.解析:选A.当x >1时f (x )>1,即f (x )>f (1),f (x )=x α为增函数,且α>1.5.解析:选C.设f (x )=x n ,则有2n =22,解得n =-12,即f (x )=x -12,所以f (4)=4-12=12.6.解析:选A.m 2-m -1=1,得m =-1或m =2,再把m =-1和m =2分别代入m 2-2m -3<0,经检验得m =2.7.解析:选C.y =x 2,定义域为R ,f (-x )=f (x )=x 2.8.解析:选B.5-a =(15)a ,因为a <0时y =x a 单调递减,且15<0.5<5,所以5a <0.5a <5-a .9.解析:选A.在函数y =x -1,y =x ,y =x 12,y =x 3中,只有函数y =x 和y =x 3的定义域是R ,且是奇函数,故α=1,3.10.解析:∵-12<-13,且(-12)n >(-13)n ,∴y =x n 在(-∞,0)上为减函数.又n ∈{-2,-1,0,1,2,3},∴n =-1或n =2.答案:-1或211.解析:选C.幂函数为y =x -2=1x 2,偶函数图象如图.12.解析:选A.∵f (x )=x α为奇函数, ∴α=-1,13,1,3.又∵f (x )在(0,+∞)上为减函数,∴α=-1.13.解析:选C.(3-2x -x 2)-34=14(3-2x -x 2)3, ∴要使上式有意义,需3-2x -x 2>0,解得-3<x <1.14.解析:当x -1=1,即x =2时,无论α取何值,均有1α=1,∴函数y =(x -1)α恒过点(2,1).答案:(2,1)15.解析:∵0<2.4<2.5,而2.4α>2.5α,∴y =x α在(0,+∞)为减函数.答案:α<016.解析:(76)0=1,(23)-13>(23)0=1, (35)12<1,(25)12<1,∵y =x 12为增函数,∴(25)12<(35)12<(76)0<(23)-13.答案:(25)12<(35)12<(76)0<(23)-1317.解:∵y =x -12的定义域为(0,+∞),且为减函数.∴原不等式化为⎩⎪⎨⎪⎧m +4>03-2m >0m +4>3-2m, 解得-13<m <32. ∴m 的取值范围是(-13,32).18.解析:选B.当x =2时,22>212>2-12>2-2, 即C 1:y =x 2,C 2:y =x 12,C 3:y =x -12,C 4:y =x -2. 19.解析:选C.∵y =x 0,可知x ≠0,∴y =x 0的图象是直线y =1挖去(0,1)点.20.解析:⎩⎪⎨⎪⎧1-x ≠01-x ≥0,∴x <1. 答案:(-∞,1) 21.解析:选D.A.y =x 23=3x 2,x ∈R ;B.y =x 32=x 3,x ≥0;C.y =x -13=13x ,x ≠0;D.y =x -34=14x3,x >0.22.解析:结合幂函数的图象性质可知p <1.答案:p <1 23.解:根据幂函数的定义得:m 2-m -5=1,解得m =3或m =-2,当m =3时,f (x )=x 2在(0,+∞)上是增函数;当m =-2时,f (x )=x -3在(0,+∞)上是减函数,不符合要求.故m =3.则⎩⎪⎨⎪⎧m 2+m -1=-1m 2+2m ≠0⇒m =-1. (3)若f (x )为二次函数,则⎩⎪⎨⎪⎧m 2+m -1=2m 2+2m ≠0⇒m =-1±132. (4)若f (x )为幂函数,则m 2+2m =1,∴m=-1±2.。

幂函数练习题目

幂函数练习题目

幂函数专题练习复习题1:求证在R 上为奇函数且为增函数.复习题2:1992年底世界人口达到54.8亿,若人口年平均增长率为x %,2008年底世界人口数为y (亿),写出:(1)1993年底、1994年底、2000年底世界人口数; (2)2008年底的世界人口数y 与x 的函数解析式.复习题3:分析以下五个函数,它们有什么共同特征? (1)边长为的正方形面积,是的函数;(2)面积为的正方形边长,是的函数; (3)边长为的立方体体积,是的函数;(4)某人内骑车行进了1,则他骑车的平均速度,这里是的函数; (5)购买每本1元的练习本本,则需支付元,这里是的函数.复习题4:判断下列函数哪些是幂函数.①;②;③;④.复习题5:作出下列函数的图象:(1);(2);(3);(4);(5).从图象分析出幂函数所具有的性质3y x =a 2S a =S a S 12a S =a S a 3V a =V a ts km 1/v t km s -=v t w p w =p w 1y x =22y x =3y x x =-1y =y x =12y x =2y x =1y x -=3y x =典型例题例题1讨论在的单调性.例题2讨论的单调性.例题3比较大小: (1)与; (2)与;(3)与.例题4. 讨论函数的定义域、奇偶性,作出它的图象,并根据图象说明函数的单调性.()f x x =[0,)+∞3()f x x =1.5(1)a + 1.5(0)a a >223(2)a -+232-121.1-120.9-23y x =例题5. 比大小:(1)与; (2)与; (3)与.知识拓展幂函数的图象,在第一象限内,直线的右侧,图象由下至上,指数由小到大. 轴和直线之间,图象由上至下,指数由小到大. 1. 若幂函数在上是增函数,则( ). A .>0 B .<0 C .=0 D .不能确定 2. 函数的图象是( ).A. B. C. D.3. 若,那么下列不等式成立的是( ). A .<l< B .1<< C .<l< D .1<<4. 比大小:(1); (2).5. 已知幂函数的图象过点,则它的解析式为 .6. 已知幂函数f (x )=(p ∈Z )在上是增函数,且在其定义域内是偶函数,求p 的值,并写出相应的函数f (x ).7. 在固定压力差(压力差为常数)下,当气体通过圆形管道时,其流量速率R 与管道半径r 的四次方成正比. (1)写出函数解析式;(2)若气体在半径为3cm 的管道中,流量速率为400cm 3/s ,求该气体通过半径为r 的管道时,其流量速率R 的表达式;(3)已知(2)中的气体通过的管道半径为5cm ,计算该气体的流量速率.342.3342.4650.31650.3532-32-y x α=1x =αy 1x =α()f x x α=(0,)+∞ααα43y x=11221.1,0.9a b -==a b a b b a b a 11221.3_____1.5225.1______5.09--()y f x=13222p p x -++(0,)+∞。

幂函数练习题

幂函数练习题

幂函数练习一一、 选择题1、使x 2>x 3成立的x 的取值范围是 ( )A 、x <1且x ≠0B 、0<x <1C 、x >1D 、x <1 2、若四个幂函数y =a x ,y =b x ,y =c x ,y =d x 在同一坐标系中的图象如右图,则a 、b 、c 、d 的大小关系是 ( )A 、d >c >b >aB 、a >b >c >dC 、d >c >a >bD 、a >b >d >c3、在函数y =21x ,y =2x 3,y =x 2+x ,y =1中,幂函数有 ( ) A 、0个B 、1个C 、2个D 、3个 4、若0a >,且,m n 为整数,则下列各式中正确的是 ( )A 、m m n n a a a ÷=B 、n m n m aa a ⋅=⋅ C 、()n m m n a a += D 、01n n a a -÷= 5、设 1.50.90.4812314,8,2y y y -⎛⎫=== ⎪⎝⎭,则 ( )A 、312y y y >>B 、213y y y >>C 、132y y y >>D 、123y y y >>6、.若集合M={y|y=2—x}, P={y|y=1x -}, M ∩P= ( )A 、{y|y>1}B 、{y|y ≥1}C 、{y|y>0 }D 、{y|y ≥0} 7、设f(x)=22x -5×2x -1+1它的最小值是 ( )A 、-0.5B 、-3C 、-169D 、08、 如果a >1,b <-1,那么函数f(x)=a x +b 的图象在 ( )A 第一、二、三象限B 第一、三、四象限C 第二、三、四象限D 第一、二、四象限 二、填空题9、已知0<a <b <1,设a a , a b , b a , b b中的最大值是M ,最小值是m ,则M = ,m = .10、已知f (x )=x 5+ax 3+bx -8,f (-2)=10,则f (2)=____、11、函数y =(x 2-2x)2-9的图象与轴交点的个数是_________。

幂函数知识点练习

幂函数知识点练习

幂函数练习 例、函数f(x)=(m2-m-1)xm2+m-3是幂函数,且当x∈(0,+∞)时,f(x)是增函数, 求f(x)的解析式. 分析 解答本题可严格根据幂函数的定义形式列方程求出m,再由单调性确定m. 解 根据幂函数定义得 m2-m-1=1,解得m=2或m=-1,

当m=2时,f(x)=x3在(0,+∞)上是增函数; 当m=-1时,f(x)=x-3在(0,+∞)上是减函数,不符合要求.故f(x)=x3. 点评 幂函数y=xα (α∈R),其中α为常数, 其本质特征是以幂的底x为自变量,指数α为常数(也可以为0). 这是判断一个函数是否为幂函数的重要依据和唯一标准. 对本例来说,还要根据单调性验根,以免增根. 例3、如图是幂函数y=xm与y=xn在第一象限内的图象,则( ) A.-11 D.n<-1,m>1 解析 在(0,1)内取同一值x0,作直线x=x0,与各图象有交点,则“点低指数大”. 如图,0例4、已知x2>x13,求x的取值范围. 错解 由于x2≥0,x13∈R,则由x2>x13,可得x∈R.

错因分析 上述错解原因是没有掌握幂函数的图象特征, 尤其是y=xα在α>1和0正解

作出函数y=x2和y=3

1

x的图象(如右图所示),易得x<0或x>1. 分析:底数分别不同而指数相同,可以看作是和。 两个幂函数,利用幂函数的单调性质去理解。

解:(1)(0,+∞)是递增的 又∵1.1<1.4 ∴

利用幂函数的性质比较数的大小。 例3.比较的大小。 分析:三个量比较大小,先考虑取值的符号。

启示:当直接比较大小难以进行时,可以考虑借助一些中间量特殊值,如0,1或其他数来解决。 例6、比较下列各组中两个数的大小: (1)535.1,537.1;(2)0.71.5,0.61.5;(3)32)2.1(--,32)25.1(--. 解析:(1)考查幂函数y=53x的单调性,在第一象限内函数单调递增, ∵1.5<1.7,∴535.1<537.1, (2)考查幂函数y=23x的单调性,同理0.71.5>0.61.5. (3)先将负指数幂化为正指数幂可知它是偶函数,

高考数学专题《幂函数》习题含答案解析

高考数学专题《幂函数》习题含答案解析

专题3.4 幂函数1.(2021·全国高一课时练习)下列命题中,不正确的是( )A .幂函数y =x -1是奇函数B .幂函数y =x 2是偶函数C .幂函数y =x 既是奇函数又是偶函数D .y =12x 既不是奇函数,又不是偶函数【答案】C 【解析】根据奇偶函数的定义依次判断即可.【详解】因为11xx -=,11=--xx ,所以A 正确;因为22()x x -=,所以B 正确;因为x x -=不恒成立,所以C 不正确;因为12y x =定义域为[0,+∞),不关于原点对称,所以D 正确.故选:C.2.(2020·上海高一课时练习)下列函数中,既是偶函数,又在(,0)-∞上单调递增的函数是( )A .2y x -=-B .23y x=-C .13y x=-D .3y x -=【答案】B 【解析】A: 2y x -=-为偶函数,且在()0,∞+上递增,即2y x -=-在(,0)-∞上单调递减,排除;B: 23y x =-为偶函数,在(,0)-∞上单调递增;C: 13y x=-为奇函数,故排除;D: 3y x -=为奇函数,故排除.故选:B.练基础3.(2020·石嘴山市第三中学高二月考(文))幂函数()221()21m f x m m x -=-+在()0,∞上为增函数,则实数m 的值为( )A .0B .1C .1或2D .2【答案】D 【解析】由题意()f x 为幂函数,所以2211m m -+=,解得0m =或2m =.因为()f x 在()0,∞上为增函数,所以210m ->,即12m >,所以2m =.故选D.4.(2020·上海高一课时练习)下面是有关幂函数3()-=f x x 的四种说法,其中错误的叙述是( )A .()f x 的定义域和值域相等B .()f x 的图象关于原点中心对称C .()f x 在定义域上是减函数D .()f x 是奇函数【答案】C 【解析】3()-=f x x ,函数的定义域和值域均为()(),00,-∞⋃+∞,A 正确;3()-=f x x ,()()33()f x x x f x ---=-=-=-,函数为奇函数,故BD 正确;()f x 在(),0-∞和()0,∞+是减函数,但在()(),00,-∞⋃+∞不是减函数,C 错误.故选:C.5.(2020·上海高一课时练习)若幕函数()f x 的图像经过点1,42⎛⎫⎪⎝⎭,则该函数的图像( )A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .关于直线y x =对称【答案】B 【解析】设()f x x α=,依题意可得1(42α=,解得2α=-,所以2()f x x -=,因为22()()()f x x x f x ---=-==,所以()f x 为偶函数,其图象关于y 轴对称.故选:B.6.(2019·延安市第一中学高三月考(文))已知幂函数()f x x α=的图像过点1(2,则方程()2f x =的解是( )A .4BC .2D .12【答案】A 【解析】依题意得1(2α=,解得12α=,所以12()f x x =,由()2f x =得122x =,解得4x =.故选:A.7.(2021·浙江高一期末)幂函数()()22222m f x m m x-=--在()0,∞+为增函数,则m 的值是()A .1-B .3C .1-或3D .1或3-【答案】B 【解析】由幂函数解析式的形式可构造方程求得1m =-或3m =,分别验证两种情况下()f x 在()0,∞+上的单调性即可得到结果.【详解】()f x 为幂函数,2221m m ∴--=,解得:1m =-或3m =;当1m =-时,()1f x x -=,则()f x 在()0,∞+上为减函数,不合题意;当3m =时,()7=f x x ,则()f x 在()0,∞+上为增函数,符合题意;综上所述:3m =.故选:B.8.(2021·全国高一课时练习)下列结论正确的是( )A .幂函数图象一定过原点B .当0α<时,幂函数y x α=是减函数C .当1α>时,幂函数y x α=是增函数D .函数2y x =既是二次函数,也是幂函数【答案】D 【解析】由函数1y x -=的性质,可判定A 、B 不正确;根据函数2y x =可判定C 不正确;根据二次函数和幂函数的定义,可判定D 正确.【详解】由题意,函数1y x -=的图象不过原点,故A 不正确;函数1y x -=在(,0)-∞及(0,)+∞上是减函数,故B 不正确;函数2y x =在(,0)-∞上是减函数,在(0,)+∞上是增函数,故C 不正确;根据幂函数的定义,可得函数2y x =是二次函数,也是幂函数,所以D 正确.故选:D.9.(2021·全国高一课时练习)幂函数的图象过点(3, ),则它的单调递增区间是( )A .[-1,+∞)B .[0,+∞)C .(-∞,+∞)D .(-∞,0)【答案】B 【解析】根据利用待定系数法求出幂函数的解析式,再根据幂函数求出单调增区间即可.【详解】设幂函数为f (x )=x α,因为幂函数的图象过点(3, ),所以f (3)=3α=123,解得α=12,所以f (x )=12x ,所以幂函数的单调递增区间为[0,+∞).故选:B10.(2021·全国高三专题练习)下列关于幂函数图象和性质的描述中,正确的是()A .幂函数的图象都过(1,1)点B .幂函数的图象都不经过第四象限C .幂函数必定是奇函数或偶函数中的一种D .幂函数必定是增函数或减函数中的一种【答案】AB 【解析】举反例结合幂函数的性质判断即可.【详解】因为11α=,所以的幂函数都经过(1,1),故A 正确;当0x >时,0x α>,幂函数的图象都不经过第四象限,故B 正确;12y x =的定义域为[)0,+∞,为非奇非偶函数,故C 错误;1y x=在(),0-∞和()0,∞+上为减函数,但在定义域内不是减函数,故D 错误.故选:AB1.(2020·内蒙古自治区集宁一中高二月考(文))若a =12⎛⎫ ⎪⎝⎭23,b =15⎛⎫ ⎪⎝⎭23,c =12⎛⎫ ⎪⎝⎭13,则a ,b ,c 的大小关系是( )A .a <b <c B .c <a <b C .b <c <a D .b <a <c【答案】D 【解析】∵y =x 23 (x >0)是增函数,∴a =12⎛⎫⎪⎝⎭23>b =15⎛⎫ ⎪⎝⎭23.∵y =12⎛⎫⎪⎝⎭x 是减函数,∴a =12⎛⎫ ⎪⎝⎭23<c =12⎛⎫ ⎪⎝⎭13,∴b <a <c .故本题答案为D.2.(2019·湖北高三高考模拟(理))幂函数f (x )=x m的图象过点(2,4),且a =m 12,b =(13)m,c =―log m 3,则a 、b 、c 的大小关系是( )A .a >c >bB .b >c >aC .a >b >cD .c >a >b 【答案】C练提升【解析】幂函数f (x )=x m 的图象过点(2,4),∴2m =4,m =2;∴a =m 12=2>1,b =(13)m =19∈(0,1),c =―log m 3=﹣log 23<0,∴2>19>―log 23,∴a >b >c .故选:C .3.(2021·全国高三专题练习)已知幂函数()f x x α=满足()()2216f f =,若()4log 2a f =,()ln 2b f =,()125c f -=,则a ,b ,c 的大小关系是()A .a c b >>B .a b c >>C .b a c >>D .b c a>>【答案】C 【解析】由()()2216f f =可求得13α=,得出()f x 单调递增,根据单调性即可得出大小.【详解】由()()2216f f =可得4222αα⋅=,∴14αα+=,∴13α=,即()13f x x =.由此可知函数()f x 在R 上单调递增.而由换底公式可得242log 21log 2log 42==,22log 2ln 2log e =,125-=,∵21log 2e <<,∴2222log 2log 2log 4log e<,于是4log 2ln 2<,12<,∴1245log 2-<,故a ,b ,c 的大小关系是b a c >>.故选:C.4.(2021·安徽高三二模(理))函数()nxf x x a =,其中1a >,1n >,n 为奇数,其图象大致为()A .B .C .D .【答案】B 【解析】分析()f x 在()0,∞+、(),0-∞上的函数值符号,及该函数在()0,∞+上的单调性,结合排除法可得出合适的选项.【详解】对任意x ∈R ,0x a >,由于1n >,n 为奇数,当0x <时,0n x <,此时()0f x <,当0x >时,0n x >,此时()0f x >,排除AC 选项;当0x >时,任取1x 、()20,x ∈+∞且12x x >,则120x x a a >>,120n nx x >>,所以()()12f x f x >,所以,函数()f x 在()0,∞+上为增函数,排除D 选项.故选:B.5.(2021·新疆高三其他模拟(理))若实数m ,n 满足m n >,且0mn ≠,则下列选项正确的是( )A .330m n ->B .1122m n⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭C .()lg 0m n ->D .11m n<【答案】A 【解析】利用幂函数、指数函数单调性和对数的运算可求解.【详解】解:∵函数3y x =,在R x ∈时单调递增,且m n >,∴330m n ->,故A 正确;∵函数1(2x y =,在R x ∈时单调递减,且m n >,∴11()()22mn<,故B 错误;当11,2m n ==时,()1lg lg 02m n -=<,故C 错误;当,11m n ==-时,1111m n=>=-,故D 错误;故选:A.6.【多选题】(2020·新泰市第二中学高二月考)已知函数图像经过点(4,2),则下列命题正确的有( )A .函数为增函数B .函数为偶函数C .若,则D .若,则.【答案】ACD 【解析】将点(4,2)代入函数得:,则.所以,显然在定义域上为增函数,所以A 正确.的定义域为,所以不具有奇偶性,所以B 不正确.当,即,所以C 正确.当若时,=..=.即成立,所以D 正确.()f x x α=1x >()1f x >120x x <<()()121222f x f x x x f ++⎛⎫< ⎪⎝⎭()f x x α=2=4α1=2α12()f x x =()f x [0,)+∞()f x [0,)+∞()f x 1x >1>()1f x >120x x <<()()122212(()22f x f x x x f ++-22-122x x +-0<()()121222f x f x x x f ++⎛⎫< ⎪⎝⎭故选:ACD.7.【多选题】(2021·湖南高三月考)已知函数1,0(),0x x e x f x xe x -⎧>⎪=⎨≤⎪⎩,若关于x 的方程()f x a =有且仅有一个实数解,且幂函数()a g x x =在()0,∞+上单调递增,则实数a 的取值可能是( )A .1B .1eC .2D .e【答案】AD 【解析】作出()f x 的图象,根据方程根的个数判断参数a 的取值,再结合函数()a g x x =在()0,∞+上单调递增,即可求解出结果.【详解】当0x ≤时,()x f x xe =,()()1xf x e x '=+,当1x <-时()0f x '<,当10x -<<时()0f x '>所以()x f x xe =在(),1-∞-上单调递减,在()1,0-上单调递增,最小值为1(1)f e --=-;所以()f x 的图象如图所示,因为()f x a =有且仅有一个实数解,即()y f x =的图象与y a =有且只有一个交点,所以[)1,1,0,a e e ⎧⎫∈+∞-⎨⎬⎩⎭,又因为()a g x x =在()0,∞+上单调递增,所以0a >,所以[){},1a e ∈+∞ .故选:AD8.(2019·上海高考模拟)设α∈12,―1,―2,3,若f (x )=x α为偶函数,则α=______.【答案】―2【解析】由题可知,α=―2时,f (x )=x ―2,满足f(-x)=f(x),所以是偶函数;α=13,12,―1,3时,不满足f(-x)=f(x), ∴α=―2.故答案为:―2.9.(2021·全国高三专题练习(理))已知幂函数()39*N m y x m -=∈的图像关于y 轴对称,且在()0,∞+上函数值随着x 的增大而减小.(1)求m 值.(2)若满足()()22132mma a +<-,求a 的取值范围.【答案】(1)1m =;(2)()2,4,3⎛⎫-∞⋃+∞ ⎪⎝⎭.【解析】(1)由题意可知39m -为负偶数,且*N m ∈,即可求得m 值;(2)将所求不等式化为()()22132a a +<-,求解,即可得出结果.【详解】(1)因为函数39*()m y x m N -=∈在()0,∞+上单调递减,所以390m -<,解得3m <.又因为*m N ∈,所以1m =,2;因为函数的图象关于y 轴对称,所以39m -为偶数,故1m =.(2)由(1)可知,1m =,所以得()()22132a a +<-,解得4a >或23<a ,即a 的取值范围为()2,4,3⎛⎫-∞⋃+∞ ⎪⎝⎭.10.(2021·浙江高一期末)已知幂函数2242()(1)mm f x m x -+=-在(0,)+∞上单调递增,函数()2g x x k =-.(1)求m 的值;(2)当[1,2)x ∈时,记(),()f x g x 的值域分别为集合A ,B ,设:,:p x A q x B ∈∈,若p 是q 成立的必要条件,求实数k 的取值范围.(3)设2()()1F x f x kx k =-+-,且|()|F x 在[0,1]上单调递增,求实数k 的取值范围.【答案】(1)0m =;(2)01k ≤≤;(3)[][)1,02,-+∞ 【解析】(1)由幂函数的定义2(1)1m -=,再结合单调性即得解.(2)求解()f x ,()g x 的值域,得到集合A ,B ,转化命题p 是q 成立的必要条件为B A ⊆,列出不等关系,即得解.(3)由(1)可得22()1F x x kx k =-+-,根据二次函数的性质,分类讨论02k ≤和12k ≥两种情况,取并集即可得解.【详解】(1)由幂函数的定义得:2(1)1m -=,0m ⇒=或2m =,当2m =时,2()f x x -=在(0,)+∞上单调递减,与题设矛盾,舍去;当0m =时,2()f x x =在(0,)+∞上单调递增,符合题意;综上可知:0m =.(2)由(1)得:2()f x x =,当[1,2)x ∈时,[)()1,4f x ∈,即[)1,4A =,当[1,2)x ∈时,[)()2,4g x k k ∈--,即[)2,4B k k =--,由命题p 是q 成立的必要条件,则B A ⊆,显然B ≠∅,则2144k k -≥⎧⎨-≤⎩,即10k k ≤⎧⎨≥⎩,所以实数k 的取值范围为:01k ≤≤.(3)由(1)可得22()1F x x kx k =-+-,二次函数的开口向上,对称轴为2k x =,要使|()|F x 在[0,1]上单调递增,如图所示:或即02(0)0k F ⎧≤⎪⎨⎪≥⎩或12(0)0k F ⎧≥⎪⎨⎪≤⎩,解得:10k -≤≤或2k ≥.所以实数k 的取值范围为:[][)1,02,-+∞ 1.(2019·全国高考真题(理))若a >b ,则( )A .ln(a −b )>0B .3a <3bC .a 3−b 3>0D .│a │>│b │【答案】C【解析】取,满足,,知A 错,排除A ;因为,知B 错,排除B ;取,满足,,知D 错,排除D ,因为幂函数是增函数,,所以,故选C .2.(2020·天津高考真题)已知函数3,0,(),0.x x f x x x ⎧=⎨-<⎩…若函数2()()2()g x f x kx x k =--∈R 恰有4个零点,则k 的取值范围是()A.1,)2⎛⎫-∞-+∞ ⎪⎝⎭ B.1,(0,2⎛⎫-∞- ⎪⎝⎭C.(,0)(0,-∞ D.(,0))-∞+∞ 【答案】D 【解析】2,1a b ==a b >ln()0a b -=9333a b =>=1,2a b ==-a b >12a b =<=3y x =a b >33a b >练真题注意到(0)0g =,所以要使()g x 恰有4个零点,只需方程()|2|||f x kx x -=恰有3个实根即可,令()h x =()||f x x ,即|2|y kx =-与()()||f x h x x =的图象有3个不同交点.因为2,0()()1,0x x f x h x x x ⎧>==⎨<⎩,当0k =时,此时2y =,如图1,2y =与()()||f x h x x =有2个不同交点,不满足题意;当k 0<时,如图2,此时|2|y kx =-与()()||f x h x x =恒有3个不同交点,满足题意;当0k >时,如图3,当2y kx =-与2y x =相切时,联立方程得220x kx -+=,令0∆=得280k -=,解得k =,所以k >综上,k 的取值范围为(,0))-∞+∞ .故选:D.3.(2020·江苏高考真题)已知y =f (x )是奇函数,当x ≥0时,()23f x x = ,则f (-8)的值是____.【答案】4-【解析】先求(8)f ,再根据奇函数求(8)f -【详解】23(8)84f ==,因为()f x 为奇函数,所以(8)(8)4f f -=-=-故答案为:4-4. (2018·上海卷)已知α∈{-2,-1,-12,12,1,2,3}.若幂函数f (x )=x α为奇函数,且在(0,+∞)上递减,则α= .【答案】-1【解析】∵幂函数f (x )=x α为奇函数,∴α可取-1,1,3,又f (x )=x α在(0,+∞)上递减,∴α<0,故α=-1.5.(浙江省高考真题(文))已知函数()2,1{ 66,1x x f x x x x≤=+->,则()2f f ⎡⎤-=⎣⎦ , ()f x 的最小值是 .【答案】162-【解析】如图根据所给函数解析式结合其单调性作出其图像如图所示,易知()()min 12,62f f f x f ⎡⎤-=-==⎣⎦.6.(江苏省高考真题)在平面直角坐标系xOy 中,设定点A (a ,a ),P 是函数y =1x(x >0)图象上一动点.若点P ,A 之间的最短距离为,则满足条件的实数a 的所有值为________.【答案】-1【解析】试题分析:设点1,P x x ⎛⎫ ⎪⎝⎭()0x >,则PA ===令1,0,2t x x t x=+>∴≥ 令()()22222222g t t at a t a a =-+-=-+-(1)当2a ≥时,t a =时()g t 取得最小值()22g a a =-,=,解得a =(2)当2a <时,()g t 在区间[)2,+∞上单调递增,所以当2t =时,()g t 取得最小值()22242g a a =-+=1a =-综上可知:1a =-或a =所以答案应填:-1.。

幂函数的性质专题练习题含答案

幂函数的性质专题练习题含答案

幂函数的性质专题练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 幂函数f(x)=(a2−2a−2)x1−a在(0, +∞)上是减函数,则a=()A.−3B.−1C.1D.32. 已知幂函数f(x)=(k∈N∗),则使得f(x)为奇函数,且在(0, +∞)上单调递增的k的个数为()A.0B.1C.2D.无数个3. 已知(5−2m)12<(m−1)12,则m的取值范围是()A.(2, +∞)B.(2,52] C.(−∞, 2) D.[1, 2)4. 已知幂函数f(x)=(m2−m−1)x m2+m−2在(0, +∞)上是减函数,则f(m)的值为()A.3B.−3C.1D.−15. 函数f(x)=(m2−m−1)x m2+m−1是幂函数,且在(0,+∞)上是减函数,则实数m的值为( )A.1B.−1C.2D.−1或26. 幂函数f(x)=(m2+5m−5)x(m∈Z)是偶函数,且在(0, +∞)上是减函数,则m的值为()A.−6B.1C.6D.1或−67. 已知幂函数(n∈Z)在(0, +∞)上是增函数,则n的值为()A.−1B.1C.−3D.1和−38. 已知幂函数f(x)=(m2−2m−2)x在(0, +∞)上是减函数,则f(m)的值为()A.3B.−3C.1D.−19. 已知幂函数f(x)=(t 2−4t −4)x t−2在(0, +∞)上单调递减,则f(4)=( ) A.132 B.164C.32D.6410. 若幂函数在(0, +∞)上是增函数,且在定义域上是偶函数,则p +q =( ) A.0 B.1 C.2D.311. 已知函数f(x)=−x 3,若f(m −2)>f(2m),则m 的取值范围是( ) A.(−1, 1) B.(−2, +∞) C.(−3, 3) D.(−∞, −2)12. 已知函数y =−ax a +b −1是幂函数,直线mx −ny +2=0(m >0,n >0)过点(a,b ),则n+1m+1的取值范围是( )A.(−∞,13)∪(13,3) B.(1,3) C.[13,3]D.(13,3)13. 已知点 P(2,14) 在幂函数 f(x)=x n 的图象上,设 a =f(ln 2),b =f(log 2e), c =f(e 2), d =f(2e ),则a ,b ,c ,d 的大小关系为( ) A.d >c >b >a B.a >b >d >c C.c >d >b >a D.a >b >c >d14. 设12<(12)b <(12)a <1 ,那么( ) A. a a <a b <b a B. a a <b a <a b C.a b <a a <b a D.a b <b a <a a15. 幂函数f (x )=(m 2−3m +3)x m 的图象关于y 轴对称,则实数m =________.16. 若幂函数y =(m 2−3m +3)x m−2的图象关于原点对称,则m 的取值为________.17. 若幂函数在上是减函数,则实数的值为________.18. 幂函数y =(m 2−m −1)⋅x −5m−3在(0, +∞)上为减函数,则实数m 的值为________.19. 已知幂函数f(x)过点(2,√2),若f(10−2a)<f(a+1),则实数a的取值范围是________.20. 给出下列说法:①幂函数的图象一定不过第四象限;②奇函数图象一定过坐标原点;③y=x2−2|x|−3的递增区间为[1, +∞);>0成立,则f(x)在④定义在R上的函数f(x)对任意两个不等实数a、b,总有f(a)−f(b)a−bR上是增函数;的单调减区间是(−∞, 0)∪(0, +∞).⑤f(x)=1x正确的有________.21. 关于函数y=xα(α为常数),下列说法:①当α=√2时,y=xα不是幂函数;②幂函数y=xα的图象都经过点(1, 1);③当α=0或α=1时,幂函数y=xα图象都是直线;④存在幂函数的图象经过第四象限.其中正确的是________.(把你认为正确的序号都填上)22. 已知幂函数g(x)=(m2−3)x m(m∈R)在(0, +∞)为减函数,且对数函数f(x)满足f(−m+1)+f(−m−1)=12(1)求g(x)、f(x)的解析式(2)若实数a满足f(2a−1)<f(5−a),求实数a的取值范围.23. 已知函数y=(a2−3a+2)x a2−5a+5(a为常数).问:(1)a为何值时此函数为幂函数?(2)a为何值时此函数为正比例函数?24. 已知(m2+m)35≤(3−m)35,求实数m的取值范围.25. 已知幂函数f(x)=(m2−5m+7)x m−1为偶函数.(1)求f(x)的解析式;(2)若g(x)=f(x)−ax−3在[1, 3]上不是单调函数,求实数a的取值范围.26. 已知幂函数f(x)=x m2+4m+3(m∈Z)在(0,+∞)上是单调递减函数.(1)求m的值;(2)若g(x)=(x2+a)f(x)≥2在区间[2,3]上恒成立,求实数a的取值范围.27. 若幂函数f(x)=(2m2+m−2)x2m+1在其定义域上是增函数.(1)求f(x)的解析式;(2)若f(2−a)<f(a2−4),求a的取值范围.28. 已知幂函数y=f(x)=x−3m+7,其中m∈N+.①在区间(0,+∞)上是增函数;②对任意x∈R,都有f(−x)=f(x).(1)求同时满足①、②两个条件的幂函数f(x)的解析式;(2)求x∈[0,2]时,f(x)的值域.29. 已知幂函数f(x)=(m−1)2x m2−4m+2在(0,+∞)上单调递增,函数g(x)=2x−k.(1)求m的值;(2)当x∈[1,2)时,记f(x),g(x)的值域分别为集合A,B,且A∩B=B,求实数k的取值范围.30. 已知幂函数f(x)=x m2−2m−3(m∈z)为偶函数,且在区间(0, +∞)上是单调递减函数.(1)求函数f(x)的解析式;的奇偶性.(2)讨论F(x)=a√f(x)−bxf(x)参考答案与试题解析幂函数的性质专题练习题含答案一、选择题(本题共计 14 小题,每题 3 分,共计42分)1.【答案】D【考点】幂函数的概念、解析式、定义域、值域幂函数的性质【解析】此题暂无解析【解答】此题暂无解答2.【答案】B【考点】幂函数的概念、解析式、定义域、值域幂函数的性质【解析】此题暂无解析【解答】此题暂无解答3.【答案】B【考点】幂函数的性质【解析】根据幂函数的单调性得到关于m的不等式组,解出即可.【解答】对于y=x 12是增函数,∵(5−2m)12<(m−1)12,∴{5−2m≥0m−1≥05−2m<m−1,解得:2<m≤52,4.【答案】C【考点】幂函数的性质【解析】由题意利用幂函数的定义和性质可得m2−m−1=1,且m2+m−2<0,由此求得m的值,可得f(x)的解析式,从而求得f(m)的值.【解答】∵幂函数f(x)=(m2−m−1)x m2+m−2在(0, +∞)上是减函数,则m2−m−1=1,且m2+m−2<0,求得m=−1,故f(x)=x−2,故f(m)=f(−1)=1,5.【答案】B【考点】幂函数的性质幂函数的概念、解析式、定义域、值域【解析】此题暂无解析【解答】解:根据题意,要使函数f(x)=(m2−m−1)x m2+m−1是幂函数,则m2−m−1=1,解得m=2或m=−1.当m=2时,m2+m−1=5,y=x5在(0, +∞)上是增函数,不满足题意;当m=−1时,m2+m−1=−1,y=x−1在(0, +∞)上是减函数,满足题意.故选B.6.【答案】B【考点】幂函数的概念、解析式、定义域、值域幂函数的性质【解析】此题暂无解析【解答】此题暂无解答7.【答案】C【考点】幂函数的概念、解析式、定义域、值域幂函数的性质【解析】首先利用幂函数的系数为1求出n的值,进一步利用函数的单调性的应用求出结果.【解答】由于幂函数(n∈Z)所以n2+2n−2=1,解得n=1或−3.当n=1时,f(x)=x−2在(0, +∞)单调递减.当n=−3时,f(x)=x18在(0, +∞)单调递增.8.【答案】C【考点】幂函数的概念、解析式、定义域、值域幂函数的性质【解析】此题暂无解析【解答】此题暂无解答9.【答案】B【考点】幂函数的性质【解析】先利用幂函数的定义得到t2−4t−4=1,求出t的值后,再利用幂函数的单调性进行判断,即可得到答案.【解答】由f(x)=(t2−4t−4)x t−2是幂函数,可知t2−4t−4=1,即t2−4t−5=0,解得t=−1或t=5,所以f(x)=x−3或f(x)=x3,又幂函数f(x)在(0, +∞)上单调递减,所以f(x)=x−3,所以f(4)=4−3=1.6410.【答案】C【考点】幂函数的性质【解析】由题意利用幂函数的定义和性质,求出p、q的值,可得结论.【解答】∵幂函数在(0,且在定义域上是偶函数,∴q=1,且−p6+2p+3为正的偶数,∴p=3.∴p+q=2,11.【答案】B【考点】幂函数的性质【解析】此题暂无解析【解答】此题暂无解答12.【答案】D【考点】幂函数的性质幂函数的概念、解析式、定义域、值域【解析】【解答】解:由y=−ax a+b−1是幂函数,知:a=−1,b=1,又(a,b)在mx−ny+2=0上,∴m+n=2,即n=2−m>0,则n+1m+1=3−mm+1=4m+1−1,且0<m<2,∴n+1m+1∈(13,3) .故选D.13.【答案】B【考点】幂函数的性质【解析】此题暂无解析【解答】解:由于点P(2,14)在f(x)=x n的图象上,解得n=−2,即f(x)=x−2,f(x)在(0,+∞)上单调递减,ln2<log2e<2e<e2,所以a>b>d>c.故选B.14.【答案】C【考点】幂函数的性质指数函数单调性的应用【解析】此题暂无解析【解答】解:由12<(12)b<(12)a<1,得0<a<b<1,由幂函数的性质可知a a<b a,a b<a a<b a.故选C.二、填空题(本题共计 7 小题,每题 3 分,共计21分)15.【答案】2【考点】幂函数的性质【解析】利用幂函数的定义得到m2−3m+3=1,由图象关于y轴对称,可知函数为偶函数,可知m为偶数,求解即可.【解答】解:∵幂函数f(x)=(m2−3m+3)x m的图象关于y轴对称,∴m2−3m+3=1且m为偶数,∴m=2.故答案为:2.16.【答案】1【考点】幂函数的性质【解析】根据幂函数的定义列方程求出m的值,再判断函数的图象是否关于原点对称.【解答】幂函数y=(m2−3m+5)x m−2中,令m2−2m+3=1,解得m=5或m=2;当m=1时,f(x)=x−2,图象关于原点对称;当m=2时,f(x)=x0,图象不关于原点对称;所以m的取值为8.17.【答案】m=2【考点】幂函数的概念、解析式、定义域、值域幂函数的单调性、奇偶性及其应用幂函数的性质【解析】试题分析:由题意得:m2−m−1=1,m2−2m−3<0⇒m=2【解答】此题暂无解答18.【答案】2【考点】幂函数的性质幂函数的概念、解析式、定义域、值域【解析】利用幂函数的定义及幂函数的性质列出不等式组,求出m的值.【解答】解:由题意知{m2−m−1=1,−5m−3<0,∴m=2.故答案为:2.19.【答案】(3, 5]【考点】幂函数的概念、解析式、定义域、值域幂函数的性质【解析】求出函数f(x)的解析式,根据函数的单调性和定义域得到关于a的不等式组,解出即可.【解答】设幂函数的解析式为f(x)=xα,由题意得:2α=√2=212,故α=12,故f(x)=√x,f(x)在[0, +∞)递增,若f(10−2a)<f(a+1),所以{a+1≥010−2a≥010−2a<a+1,解得{a≥−1a≤5a>3,所以3<a≤5,20.【答案】①④【考点】幂函数的性质函数单调性的判断与证明奇函数【解析】根据幂函数的图象的性质,可判断①正确,根据奇函数的定义,可判断②的正误;根据对折变换的图象变化及二次函数的单调性,可判断③的真假;根据单调性的定义,可判断④是正确的;根据单调区间的定义,可以判断⑤的对错.【解答】解:由幂函数的图象的性质,易得幂函数的图象一定不过第四象限,故①正确;若奇函数在x=0时有意义,则图象一定过坐标原点,但奇函数在x=0时无意义时,则图象不过坐标原点,故②错误;y=x2−2|x|−3的递增区间有两个:[−1, 0]和[1, +∞)故③错误;若f(a)−f(b)a−b>0,则f(x)在R上是增函数,故④正确;f(x)=1x 的单调减区间有两个:(−∞, 0)和(0, +∞),但函数f(x)=1x在区间(−∞, 0)∪(0, +∞)上不具备单调性,故⑤错误;故答案为:①④21.【答案】②【考点】幂函数的性质幂函数图象及其与指数的关系【解析】根据幂函数的定义和性质,对各个选项的正确性进行判断,从而得出结论.【解答】解:①当α=√2时,函数y=xα是幂函数,故①不正确;②所有幂函数y=xα的图象都经过点(1, 1),故②正确;③当α=0,幂函数y=xα图象都是直线y=1上去掉了点(0, 1),故③不正确;④对于所有的幂函数y=xα,由于当x>0时,xα>0,故它们的图象都不会经过第四象限,故④不正确.故答案为②.三、解答题(本题共计 9 小题,每题 10 分,共计90分)22.【答案】解:(1)幂函数g(x)=(m2−3)x m(m∈R)在(0, +∞)为减函数,∴{m2−3=1m<0,解得m=−2,∴g(x)=x2;又∵f(x)是对数函数,且f(−m+1)+f(−m−1)=12,∴设f(x)=logax(a>0且a≠1),∴loga (−m+1)+loga(−m−1)=12,即loga (m2−1)=loga3=12,解得a=9,∴f(x)=log9x;(2)∵实数a满足f(2a−1)<f(5−a),且f(x)=log9x在(0, +∞)上单调递增,∴ {2a −1>05−a >02a −1<5−a,解得{a >12a <5a <2;即12<a <2,∴ 实数a 的取值范围是(12, 2).【考点】幂函数的性质【解析】(1)根据幂函数的定义与性质,列出不等式组{m 2−3=1m <0,求出m 的值,得g(x)解析式;由f(x)是对数函数,且f(−m +1)+f(−m −1)=12,利用m 的值求出f(x)的解析式;(2)根据f(x)的单调性,把f(2a −1)<f(5−a)转化,求出解集即可.【解答】解:(1)幂函数g(x)=(m 2−3)x m (m ∈R)在(0, +∞)为减函数,∴ {m 2−3=1m <0, 解得m =−2,∴ g(x)=x 2;又∵ f(x)是对数函数,且f(−m +1)+f(−m −1)=12, ∴ 设f(x)=log a x(a >0且a ≠1),∴ log a (−m +1)+log a (−m −1)=12,即log a (m 2−1)=log a 3=12, 解得a =9,∴ f(x)=log 9x ;(2)∵ 实数a 满足f(2a −1)<f(5−a),且f(x)=log 9x 在(0, +∞)上单调递增,∴ {2a −1>05−a >02a −1<5−a,解得{a >12a <5a <2;即12<a <2,∴ 实数a 的取值范围是(12, 2).23.【答案】∵函数为幂函数,∴a2−3a+2=1,∴解之得a=3±√52,∵函数为正比例函数,∴a2−3a+2≠0或a2−5a+5=1,解得a=4.【考点】幂函数的性质【解析】根据题意知参数的取值.【解答】∵函数为幂函数,∴a2−3a+2=1,∴解之得a=3±√52,∵函数为正比例函数,∴a2−3a+2≠0或a2−5a+5=1,解得a=4.24.【答案】解:(1)设函数y=x 3 5,函数为R上的单调递增函数…得,m2+m≤−m+3…即,m2+2m−3≤0…得,(m−1)(m+3)≤0所以,m的取值范围为:m∈[−3, 1]…【考点】幂函数的性质【解析】根据函数的单调性得到关于m的不等式,解出即可.【解答】解:(1)设函数y=x 3 5,函数为R上的单调递增函数…得,m2+m≤−m+3…即,m2+2m−3≤0…得,(m−1)(m+3)≤0所以,m的取值范围为:m∈[−3, 1]…25.【答案】解:(1)由f(x)为幂函数知m2−5m+7=1,得m=2或m=3,当m=3时,f(x)=x2,符合题意;当m=2时,f(x)=x,不合题意,舍去.∴f(x)=x2.(2)g(x)=f(x)−ax−3=x2−ax−3,g(x)的对称轴是x=a,2若g(x)在[1,3]上不是单调函数,<3,则1<a2解得2<a<6.【考点】幂函数的性质函数奇偶性的性质函数单调性的性质【解析】(1)根据幂函数的性质即可求f(x)的解析式;(2)根据函数y=f(x)−2(a−1)x+1在区间(2, 3)上为单调函数,利用二次函数对称轴和区间之间的关系即可,求实数a的取值范围.【解答】解:(1)由f(x)为幂函数知m2−5m+7=1,得m=2或m=3,当m=3时,f(x)=x2,符合题意;当m=2时,f(x)=x,不合题意,舍去.∴f(x)=x2.(2)g(x)=f(x)−ax−3=x2−ax−3,g(x)的对称轴是x=a,2若g(x)在[1,3]上不是单调函数,<3,则1<a2解得2<a<6.26.【答案】解:(1)f(x)=x m2+4m+3在区间(0,+∞)上是单调递减函数,则m2+4m+3<0,解得−3<m<−1.又m∈Z,所以m=−2 .(2)由(1)知f(x)=x−1,则g(x)=x+a,x≥2在x∈[2,3]上恒成立.所以x+ax则a≥2x−x2=−(x−1)2+1,可知当x=2时,a≥(2x−x2)max=0,所以实数a的取值范围是[0,+∞) .【考点】幂函数的性质一元二次不等式的解法函数恒成立问题二次函数在闭区间上的最值【解析】【解答】解:(1)f(x)=x m2+4m+3在区间(0,+∞)上是单调递减函数,则m2+4m+3<0,解得−3<m<−1.又m∈Z,所以m=−2 .(2)由(1)知f(x)=x−1,则g(x)=x+a,x≥2在x∈[2,3]上恒成立.所以x+ax则a≥2x−x2=−(x−1)2+1,可知当x=2时,a≥(2x−x2)max=0,所以实数a的取值范围是[0,+∞) .27.【答案】由函数f(x)=(2m2+m−2)x2m+1是幂函数,所以2m2+m−2=1,解得m=1或m=-;当m=1时,f(x)=x3,在定义域R上是增函数,满足题意;当m=-时,f(x)=x−2,在定义域(−∞, 0)∪(0, +∞)上不是增函数,不满足题意;所以m=1,f(x)=x3.由f(x)=x3,在定义域R上是增函数,所以不等式f(2−a)<f(a2−4)等价于2−a<a2−4,化简得a2+a−6>0,解得a<−3或a>2,所以a的取值范围是(−∞, −3)∪(2, +∞).【考点】幂函数的性质【解析】(1)根据幂函数的定义列方程求出m的值,再判断m的值是否满足题意;(2)由f(x)在定义域R上是增函数,把不等式f(2−a)<f(a2−4)化为2−a<a2−4,求出解集即可.【解答】由函数f(x)=(2m2+m−2)x2m+1是幂函数,所以2m2+m−2=1,解得m=1或m=-;当m=1时,f(x)=x3,在定义域R上是增函数,满足题意;当m=-时,f(x)=x−2,在定义域(−∞, 0)∪(0, +∞)上不是增函数,不满足题意;所以m=1,f(x)=x3.由f(x)=x3,在定义域R上是增函数,所以不等式f(2−a)<f(a2−4)等价于2−a<a2−4,化简得a2+a−6>0,解得a<−3或a>2,所以a的取值范围是(−∞, −3)∪(2, +∞).28.【答案】解:(1)∵f(x)=x−3m+7 在(0,+∞)上单调递增,∴−3m+7>0,∴m<7.3又∵m∈N+,∴m=1或m=2,当m=1时,y=f(x)=x4,此时符合f(−x)=f(x);当m=2时,y=f(x)=x,此时f(x)为奇函数,f(−x)=−f(x),不合题意,舍去,∴f(x)=x4.(2)∵f(x)在(0,+∞)上单调递增,∴ f(x)在[0,2]上单调递增,∴f(x)min=f(0)=0,f(x)max=f(2)=24=16,∴ f(x)在[0,2]的值域为[0,16].【考点】幂函数的概念、解析式、定义域、值域幂函数的性质【解析】(1)由题意可知,幂函数为偶函数,且在(0,+∞)上单调递增,进而得到−3m+7>0且−3m+7为偶数,结合m∈N+,即可得到答案;(2)f(x)在[0,2]上单调递增,利用函数的单调性求值域即可.【解答】解:(1)∵f(x)=x−3m+7 在(0,+∞)上单调递增,∴−3m+7>0,∴m<7.3又∵m∈N+,∴m=1或m=2,当m =1时, y =f (x )=x 4,此时符合f (−x )=f (x );当m =2时,y =f (x )=x ,此时f (x )为奇函数, f (−x )=−f (x ),不合题意,舍去, ∴ f (x )=x 4.(2)∵ f (x )在(0,+∞)上单调递增,∴ f (x )在[0,2]上单调递增,∴ f (x )min =f (0)=0,f (x )max =f (2)=24=16,∴ f (x )在[0,2]的值域为[0,16].29.【答案】解:(1)由题可得:{(m −1)2=1,m 2−4m +2>0,解得m =0.(2)由(1)得f (x )=x 2对称轴为x =0,又x ∈[1,2),∴ f(x)值域A =[1,4).∵ g (x )=2x −k 在x ∈[1,2)单调递增,∴ g(x)值域B =[2−k,4−k).∵ A ∩B =B ,∴ B ⊆A ,∴ {2−k ≥1,4−k ≤4,解得:0≤k ≤1.【考点】幂函数的性质幂函数的概念、解析式、定义域、值域指数函数的定义、解析式、定义域和值域集合的包含关系判断及应用【解析】【解答】解:(1)由题可得:{(m −1)2=1,m 2−4m +2>0,解得m =0.(2)由(1)得f (x )=x 2对称轴为x =0,又x ∈[1,2),∴ f(x)值域A =[1,4).∵ g (x )=2x −k 在x ∈[1,2)单调递增,∴ g(x)值域B =[2−k,4−k).∵ A ∩B =B ,∴ B ⊆A ,∴{2−k≥1,4−k≤4,解得:0≤k≤1.30.【答案】f(x)=x m2−2m−3=x m(m−2)−3,由题意知m(m−2)为奇数又m∈z 且f(x)在(0, +∞)上递减,∴m=1,f(x)=x−4F(x)=a√x−4−bx⋅x−4=a⋅x−2−b⋅x3(x≠0)∵y=x−2是偶函数,y=x3是奇函数①a≠0且b≠0时,F(x)为非奇非偶函数;②a=0且b≠0时,F(x)为奇函数;③a≠0且b=0时,F(x)为偶函数;④a=b=0时,F(x)为奇且偶函数【考点】幂函数的性质奇偶性与单调性的综合【解析】(1)由幂函数f(x)为(0, +∞)上递减,推知m2−2m−3<0,解得−1<m<3因为m 为整数故m=0,1或2,又通过函数为偶函数,推知m2−2m−3为偶数,进而推知m2−2m为奇数,进而推知m只能是1,把m代入函数,即可得到f(x)的解析式.(2)把f(x)的解析式代入F(x),得到F(x)的解析式.然后分别讨论a≠0且b≠0时,a=0且b≠0时,a≠0且b=0时,a=b=0时,函数的奇偶性.【解答】f(x)=x m2−2m−3=x m(m−2)−3,由题意知m(m−2)为奇数又m∈z且f(x)在(0, +∞)上递减,∴m=1,f(x)=x−4F(x)=a√x−4−bx⋅x−4=a⋅x−2−b⋅x3(x≠0)∵y=x−2是偶函数,y=x3是奇函数①a≠0且b≠0时,F(x)为非奇非偶函数;②a=0且b≠0时,F(x)为奇函数;③a≠0且b=0时,F(x)为偶函数;④a=b=0时,F(x)为奇且偶函数。

幂函数练习题及解析

幂函数练习题及解析

幂函数练习题及解析幂函数是数学中一种重要的函数类型,它可以表示为f(x) = a * x^b的形式,其中a和b是实数常数。

在本篇文章中,我们将提供一些幂函数的练习题,并对解答进行详细的解析。

练习题1:考虑函数f(x) = 2 * x^3,请回答以下问题:1. 当x = 2时,f(x)的值是多少?2. 当f(x) = 16时,x的值是多少?解析1:在函数f(x) = 2 * x^3中,我们只需要将x = 2代入函数中计算即可得到f(x)的值。

f(2) = 2 * 2^3 = 2 * 8 = 16因此,当x = 2时,f(x)的值为16。

解析2:当f(x) = 16时,我们需要求解方程2 * x^3 = 16,即2 * x^3 - 16 = 0。

首先,我们可以将方程进行简化,除以2得到x^3 - 8 = 0。

然后,我们注意到8可以表示为2的立方,因此我们可以将方程进一步简化为(x - 2) * (x^2 + 2x + 4) = 0。

根据因式定理,我们得到两个解:x - 2 = 0和x^2 + 2x + 4 = 0。

对于x - 2 = 0,解得x = 2。

对于x^2 + 2x + 4 = 0,由于判别式小于零,方程没有实数解。

因此,当f(x) = 16时,x的值为2。

练习题2:考虑函数f(x) = 5 * (1/2)^x,请回答以下问题:1. 当x = 3时,f(x)的值是多少?2. 当f(x) = 1/8时,x的值是多少?解析1:在函数f(x) = 5 * (1/2)^x中,我们只需要将x = 3代入函数中计算即可得到f(x)的值。

f(3) = 5 * (1/2)^3 = 5 * (1/8) = 5/8因此,当x = 3时,f(x)的值为5/8。

解析2:当f(x) = 1/8时,我们需要求解方程5 * (1/2)^x = 1/8,即5 * (1/2)^x - 1/8 = 0。

首先,我们可以将方程进行简化,乘以8得到40 * (1/2)^x - 1 = 0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考纲要求:①了解彖函数的概念.
a 1 1
② 结合函y = x, y = x2,y = x3,y = — ,y = x2的图像,了解它们的变化情况.
x
教材复习
1.形如的函数叫做幕函数,其中是自变量,是常数,如
MB MM MM MM MM MM MM MM •MM MM MM ■
y = x x, y = x?,y =,,y = 2",y = A,y = 2,其中是離函数的有_________________________ ・2
函数
y = x
9
y = x^
3 y = x1
y =
y = x'1
图像
L r r r L
0 0
定义域
值域
奇偶性
单调性
定点
.同一坐标系中五种幕函数的图像(右下图):
4.幕函数的特点:
①幕函数的图像一定会出现在第一象限,一定不会出现在第
四象限,是否出现在第二、三象限,要看函数的奇偶性;
②幕函数的图像最多只能出现在两个象限内;
® 如果幕函数的图像与坐标轴相交,则交点一定是坐标原点.
④仅的正负:G〉0时,图像过(0,0)和(1,1),在第一象限
的图像上升;&<0时,图像不过原点,盘第一象限的图像下
降;
⑤曲线在第一象限的凹凸性:Q>1时,曲线下凹;0<a< 1
时,曲线上凸;a<0时,曲线下凹.
5.在比较幕值大小时,必须结合幕值的特点,选择适当的函数,借助单调性进行比较.
典例今析:
题型一:幕函数的概念及解析式
问軀7,⑴下列函数是幕函数的序号是___________
® y = 2X;②)'=2才;③ y =(兀+ 2『;④ y = ;⑤ y =
/ ]、I /n"(2)已知離函数y = /(x)的图像经过点4丄,则f⑵=A.- B.4C.与 D.迈
I 2 丿 4 2
题型二:幕函数图像与解析式的对应
问龜三,(1)如图给出4个幕函数的图像,则图像与函数大致对应的是
D. c <a<b
(4)幕函数),=#宀2心(加wz)的图像如图所示,则加的值是
A. -1 < /?? < 3
B. 0
C. 1
D. 2
(5)若幕函数y =(加—3加+ 3)兀宀”一2的图像不经过原点,求实数加的值.
(6)当兀w(l,+oc)时,函数y = x"的图象恒在直线y = x的下方,则°的取值范围是
A. 0 <(2 < 1
B. a <0
C. a <\
D. a > 1
题型三:幕函数的性质及应用
问M 3.(1)下列说法正确的是
A.幕函数一定是奇函数或偶函数
任意两个舉函数的图像都有两个以上交点;
C.如果两个簇函数的图像有三个公共点,那么这两个幕函数相同
D图像不经过(-1,1)的幕函数一定不是偶函数
(2)已知舉函数/(x)的图象过点(Q2),舉函数g(兀)的图象过点I 2,-求它们的解析式,并比较它们的大小.
问軀乳(1)幕函数的图象过A (3,V3),则它的单调增区间是
A. [l,+oo)
B. [0,+co)
C. (-oo,+oo)
D. (-oo,0)
B. a> h> c C ・ c> a> h D.h> c> a
(3)已知幕函数f(x) = x ,,,2'2,n -3 (m w N*)的图像关于y 轴对称,且在(0,+x)是减函数, 求满
足(a + 1)一亍<(3-2^p 的Q 的取值范围.
‘3
5
"2
,b =
则a.b.c 的大小关系是
A. a> c> h
(2)设
裸后作如
1. ( 2013黄冈中学月考)右图为幕函数y 二兀"在第一象限 的图像,则C ]、c 2 > C3、C4的大小为 ____________
A. m = -\
B. m — 3
C.加=—1 或加=2
D. m 1 + V3
4•设a = 0.2°3
, b = O.303 , c = 0.3°\ 则 a,b y c 的大小关系是
B. a <b <c
C. a <c <b
D.b <a <c
2.幕函数y = (m 2-2m-2)严心
当x w (0, +oo )时为减函
数,
则实数m 的值为
1 <1
b
<1
a
3•设一v
<
<1, 2 迈
B. a a <b a <a h
C.a h <a a <b a
D. a h <h a <a a
A. a> b> c 则下列不等式成立的是
A. a a
< a < b a

_丄
5. (2012杭州模拟)若(a + lp <(3-2ap,求a 的取值范围.
走向魚老:
1. (07广东)若函数/(x ) = x 3 (x G /?),则函数y = /(—兀)在其定义域
上是
A.单调递减的偶函数
B.单调递减的奇函数
C.单调递增的偶函数 D 单调递增的奇函数
2. ( 2012陕西文)下列函数中,既是奇函数又是增函数的为 . 1
4. y = x + l
B. y = -x^
C. y = —
x
1 1
3 ( 2012P 东文)下列函数为偶函数的是
A. y = sin x
B.
C. y = e x
D. y = In \lx 2 +1
D ・ y = x\x\
A.① y = 0, ®y = x2t③y = x2r④ y =
i
B.① y = x3, ®y = x2r③y = x2t④y = x~}
I
C.® y = x2,② y = F, ®y = x2 ,④y = x~l
i i
D.® y = X3 ,② y = 2, (3)y = x2 ,④y = x~l
(2)函数y = x a,y = x b,y = x c的图像如右上图所示, 则实数a,b,c的大小是
A. c <b <a
B. a <b <c
C. b <c <a
I
(3)(2013J1海春)函数f(x) = x~^的大致图像是。

相关文档
最新文档