【统计学】 第三章数据分布特征的测度

合集下载

数据特征的测度

数据特征的测度

数据特征的测度统计数据经过整理和显示后,我们对数据分布的类型和特点就有了一个大致的了解,但这种了解只是表面上的,还缺少代表性的数量特征值准确地描述出统计数据的分布。

为进一步掌握数据分布的特征和规律,进行更深入的分析,还需要找到反映数据分布特征的各个代表值。

对统计数据分布的特征,我们可以从三个方面进行测度和描述:一是分布的集中趋势,反映各数据向其中心值靠拢或聚集的程度;二是分布的离散程度,反映各数据远离其中心值的趋势;三是分布的偏态和峰度,反映数据分布的形状。

这三个方面分别反映了数据分布特征的不同侧面,这里我们主要讨论集中趋势和离散程度的测度方法。

(一)集中趋势的测度集中趋势是指一组数据向某一中心值靠拢的倾向,测度集中趋势也就是寻找数据一般水平的代表值或中心值。

集中趋势的测度值主要有众数、中位数、均值、几何平均数等几种。

1.众数众数是一组数据中出现次数最多的变量值,用0M 表示。

例如,下面是抽样调查的10个家庭住房面积(单位:平方米)的数据:55 75 75 90 90 90 90 105 120 150这10个家庭住房面积的众数为90。

即0M =90(平方米) 众数是一个位置代表值,它的特点是不受数据中极端值的影响。

2.中位数中位数是一组数据按一定顺序排序后,处于中间位置上的数值,用e M 表示。

显然,中位数将全部数据等分成两部分,每部分包含50%的数据,一部分数据比中位数大,另一部分则比中位数小。

根据未分组数据计算中位数时,要先对数据进行排序,然后确定中位数的位置,其公式为:21+n 中位数位置=式中的n 为数据的个数,最后确定中位数的具体数值。

设一组数据为1x ,2x ,…,n x ,按从小到大排序后为)1(x ,)2(x ,…,)(n x ,则中位数可表示为:⎪⎪⎩⎪⎪⎨⎧⎪⎪⎭⎫⎝⎛+=++为偶数时当为奇数时当n x x n x M n n n e 122)21(21 例如,在某城市中随机抽取9个家庭,调查得到每个家庭的人均月收入数据如下(单位:元):750 780 850 960 1080 1250 1500 1650 2000中位数位置=(9+1)÷2=5,中位数为1080,即e M =1080(元)。

《统计学》-单薇主编-第3章 数据特征的度量

《统计学》-单薇主编-第3章 数据特征的度量

统计学
STATISTICS
3.1.1 均值
(mean)
1. 集中程度的最常用测度值 2. 一组数据的均衡点所在 3. 易受极端值的影响
4. 用于数值型数据,不能用于分类数据和顺 序数据
2 -5
统计学
STATISTICS
简单均值
(simple mean)
设一组数据为: x1 ,x2 ,… ,xn
总体均值
4. 各变量值与中位数的离差绝对值之和最小,即
n
xi Me min
2 - 16
i1
统计学
STATISTICS
中位数
(位置的确定)
未分组数据: 中位数位 n置 1 2
分组数据: 中位数位置n 2
2 - 17
统计学
STATISTICS
数值型数据的中位数
(5个数据算例)
【例】 5个工人日产量
原始数据: 3 8 5 4 9 排 序: 3 4 5 8 9
G 41.0 5 % 4 1.0 1 % 2 1.2 5 % 5 1.0 9 % 1 1 8 .07 % 87
2 - 15
统计学
STATISTICS
3.1.4 中位数
(median)
1. 排序后处于中间位置上的值
50%
Me
2. 不受极端值的影响
50%
3. 主要用于顺序数据,也可用数值型数据,但不能 用于分类数据
中位数是将统计分布从中间分成面积(即数
据个数)相等的两部分,与中位数性质相 似的还有四分位数(quartile)、十分位数 (decile)、和百分位数(percentile)。 显然,四分位数就是将数据分布4等分的三 个数值,其中中间的四分位数就是中位数。 十分位数和百分位数分别是将数据分布10 等分和100等分的数值。

统计学课后题答案_吴风庆_王艳明

统计学课后题答案_吴风庆_王艳明

《统计学》课后题答案第一章导论一、选择题1.C2.A3.C4.C5.C6.B7.A8.D9.C 10.D 11.A 12.C 13.C 14.A 15.B 16.A 17.C 18.B 19.D 20.A 21.D 22. D23.B 24.C 25.A 26.A 27.A 28.B 29.A 30.D 31.C 32.A 33.B第二章数据的收集一、选择题1.A2.B3.A4.D5.B6.C7.D8.D9.D 10.C 11.C 12.A 13.D 14.D 15.C 16.A 17.D 18.C 19.B 20.B 21.A 22.B 23.C 24.A 25.B 26.B 27.A 28.B 29.C 30.C (A)二、判断题1.∨2.∨3.×4. ∨5. ×6. ×7. ∨8. ×9. ×10. ×第三章数据整理与显示一、选择题CABCD CBBAB BACBD DDBC第四章数据分布特征的测度一、选择题1.A2.C3.B4.C5.D6.D7.A8.B9.A 10.B 11.A 12.D 13.C 14.C 15.D 16.A 17.A 18.B 19.A 20.B 21.A 22.A 23.B 24.C 25.C 26.D 27.D 28.A 29.D 30.C 31.C 32.D二、判断题1. ×2. ∨3. ×4. ×5. ×6. ×7. ∨8. ×9. × 10. ∨ 11. ∨ 12. ×四、计算题1. 11399073.8954ki ii kii x fx f=====∑∑甲11.96σ===甲73.89100%100% 6.18%11.96x σν=⨯=⨯=甲73.8100%100%7.43%9.93x σν=⨯=⨯=乙甲的代表性强2. 10.2510.966ki ii kii x fx f====∑∑0.250.056σ==0.250.056100%100% 5.834%0.966xσν=⨯=⨯= 1114.534ki ii kii x fx f====∑∑10.1295σ==10.1295100%100% 2.857%4.534xσν=⨯=⨯=该教练的说法不成立。

统计学测量数据分布的测度描述

统计学测量数据分布的测度描述

统计学测量数据分布的测度描述包括以下几种常见的描述方法:
1.平均数:也称为均值,是指一组数据中所有数值的总和除以数
据个数的结果。

平均数可以用来描述一组数据的集中趋势。

2.中位数:也称为中值,是指一组数据中所有数值按大小排序后,
位于中间的那个数值,如果数据个数为偶数,则中位数为中间两个数的平均数。

中位数可以用来描述一组数据的集中趋势。

3.众数:也称为模数,是指一组数据中出现次数最多的数值。


数可以用来描述一组数据的集中趋势,特别是对于呈现多峰分布的数据。

4.极差:是指一组数据中最大值与最小值的差值。

极差可以用来
描述一组数据的离散程度。

5.方差:是指一组数据中每个数值与平均数的差的平方和除以数
据个数的结果。

方差可以用来描述一组数据的离散程度。

6.标准差:是指方差的正平方根。

标准差可以用来描述一组数据
的离散程度,同时也可以用来进行数据的比较。

7.百分位数:是指一组数据中某个百分比的数值。

例如,50%的百
分位数就是中位数。

百分位数可以用来描述一组数据的分布情况,比如数据的偏态和尾重程度。

这些测度描述可以帮助我们更好地理解和分析一组数据的特征和分布情况。

曾五一《统计学导论》配套题库【课后习题】第三章 数据分布特征的描述 【圣才出品】

曾五一《统计学导论》配套题库【课后习题】第三章 数据分布特征的描述 【圣才出品】
A.可以采用算术平均数 B.可以采用众数或中位数 C.只能采用众数 D.只能采用四分位数 【答案】B 【解析】算术平均数是数值平均数,即它是利用全部数据加总来计算的平均数,综合反
2 / 16
圣才电子书 十万种考研考证电子书、题库视频学习平台

映了全部数据的信息。众数、中位数和四分位数都是根据数据分布的特定位置所确定的集中 趋势测度值。算术平均数只能用于定量(数值型)数据,中位数、四分位数适用于定序数据 和定量数据,众数对所有形式的数据(定性数据和定量数据)都适用。本题中测验成绩的记 录结果为定性数据,所以 B 项正确。
答 : 可 计 算 出 总 体 标 准 差 =100 × 10 % =10 , 总 体 方 差 为 100 , 于 是 峰 度 系 数 K=34800/10000=3.48,可以认为总体呈现非正态分布。
4 / 16
圣才电子书 十万种考研考证电子书、题库视频学习平台

峰度系数 K
5.一组数据呈微偏分布,且知其均值为 510,中位数为 516,则可推算众数为( )。 A.528 B.526 C.513 D.512 【答案】A
【解析】英国统计学家皮尔逊( K.Pearson )提出了一个经验公式:在数据分布呈轻
微偏态时,算术平均数和众数、中位数三者之间存在如下的近似关系:
,由此可得众数 M0 528 。
2.你正在筹划一次聚会,想知道该准备多少瓶饮料,你最希望得到所有客人需要饮料 数量的( )。
A.均值 B.中位数 C.众数 D.四分位数 【答案】A 【解析】算术平均数是数值平均数,即它是利用全部数据加总来计算的平均数,综合反
1 / 16
圣才电子书 十万种考研考证电子书、题库视频学习平台

曲线的陡峭(或平坦)的程度。对峰度的度量通常以正态分布曲线为比较标准,一般将峰度

统计学 第三章数据的特征值

统计学 第三章数据的特征值
• 权数:衡量变量值相对重要性的数值。 • 各个变量值的权数要起作用必须具备两个条件:
一是各个变量值之间有差异; 二是各个变量值的权数有差异。 • 简单算术平均数是加权算术平均数在权数相等时的特例。
2021/7/3
14
算术平均数的性质 p75-76
• 1.各变量值与其算术平均数的离差之和
等于零,即
根据未分组数据计算四分位数时先对数据进行排序然后再确定四分位数所在的位置当四分位数的位置不在某一个具体数值时可根据四分位数的位置按比例分摊四分位数所在位置两侧变量值之差的数值
第三章 数据分布特征的描述
• 第一节 集中趋势——数值平均数 • 第二节 集中趋势——位置平均数 • 第三节 离中趋势的测度 • 第四节 偏度与峰度的 测度
时间:1999 2000 2001 2002 tn 产量:环y比0 发展速y度1 y1/yy20 y2/y1 yy33/y2 yn/yynn-1
定基发展速度 y1/y0 y2/y0 y3/y0 yn/y0
注意:环比发展速度的连乘积=相应的定基发展速度
增长速度= 发展速度-1
环比增长速度=环比发展速度-1 定基增长速度=定基发展速度-1
某年级83名女生身高资料
身高 人数
(CM) (人) 152 1 154 2 155 2 156 4 157 1 158 2 159 2 160 12 161 7 162 8 163 4
2021/7/3
身高 人数
(CM) (人) 164 3 165 8 166 5 167 3 168 7 169 1 170 5 171 2 172 3 174 1 总计 83
n Yn 1 Y0
(i 1,2,, n)
2021/7/3

统计学第三章知识题

统计学第三章知识题

第三章数据分布特征的描述一、单选题1. 如果所掌握到的只是各单位的标志值(变量值),这时计算算术平均数()。

A 应用简单算术平均数B应用加权算术平均数C用哪一种方法无法判断D这种资料不能计算算术平均数2. 加权算术平均数受什么因素的影响()。

A 只受各组变量值大小的影响B只受各组次数多少的影响C同时受以上两种因素的影响D无法做出判断3. 权数本身对加权算术平均数的影响决定于()。

A 权数所在组标志值的大小B权数绝对数值的大小C各组单位数占总体单位数比重的大小D总体单位数的多少4. 标志值的次数多少,对于算术平均数的影响有权衡轻重的作用。

若把标志值的次数都缩小为原来的十分之一,则算术平均数的值为()。

A 也缩小为原来的十分之一B保持不变C扩大为原来的十倍D无法判断5. 如果被平均的每一个标志值都增加5个单位,则算术平均数的数值()。

A 也增加5个单位B只有简单算术平均数是增加5个单位C减少5个单位D保持不变6. 设某企业在基期老职工占60%,而在报告期准备招收一批青年工人,估计新职工所占的比重将比原来增加20%。

假定老职工和新职工的工资水平不变,则全厂职工的总平均工资将如何变化()。

A 提高B降低C不变D无法判断7. 设有8个工人生产某种产品,他们的日产量(件)按顺序排列是:4、6、6、8、9、12、14、15,则日产量的中位数是()。

A 4.5B8和9 C8.5 D没有中位数8. 在下列哪种情况下, 算术平均数、众数和中位数三者相等()。

A 只有钟形分布B只有U形分布C钟形分布或U形分布D只有对称的钟形分布9. 当变量右偏分布时,有()。

A Mo<Me<XB Mo>Me>XC Mo≤Me≤XD Mo≥Me≥X10. 设有某企业职工人数和工资水平资料如下:报告期的总平均工资低于基期的总平均工资,原因是:()。

A 各组工资水平的变动B各组人数的增加C各组人数结构的变动D职工收入的下降11. 总体的离散程度越大,说明()。

统计学第3章数据分布特征描述

统计学第3章数据分布特征描述

xi fi i1
xf
f1 f2 ... fn
n
fi
f
x x f
i 1
f
举例
表3-3 节能灯泡使用寿命数据
使用寿命 组中 数量 (小时) 值x f
xf
频率 f /Σf
xf/Σf
1000以下 900 2 1800 0.020 18
1000-1200 1100 8 8800 0.080 88
n(xi x) 0
i1
(3)各变量值与算术平均数的离差平方之总和最小。 (从全 部数据看,算术平均数最接近所有变量值)
n(xi x)2 min
i1
性质(3)证明:
(三)调和平均数(Harmonic mean)
➢ 调和平均数,也称倒数平均数。 ➢ 各变量值倒数(1/xi)的算术平均数的倒数。 ➢ 计算公式为:
➢由一组数据的总和(总体标志总量)除以 该组数据的项数(总体单位总量)得到; 算术平均数=总体标志总量/总体单位总量
➢是最常用的数值平均数;
➢根据掌握资料不同,其有多种计算公式。
1.简单算术平均数 ➢对未分组数据,采用简单算术平均数公式。即 把各项数据直接加总,然后除以总项数。 ➢计算公式:
N
xi x i1
例如,改变教师职称结构,而不改变各种职 称教师课时费标准,会改变平均课时费水平。
权数实质
➢权数的实质在于其结构,即结构比例形式(比重 权数)。
➢其更能清晰表明权数之权衡轻重的作用。
权数形式有2种:
➢ 绝对数形式
Mp
➢ 结构比例形式
k
N
xik wi
i 1
N
wi
i 1
k
N
i 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

原来只是计 算时使用了 不同的数据

6. 计算公式为
HM
X i Fi X i Fi Xi
X i Fi Fi
调和平均数
(算例)
【例】某蔬菜批发市场三种蔬菜的日成交数据如表3-3,计 算三种蔬菜该日的平均批发价格
蔬菜 名称
甲 乙 丙
合计
表3-3 某日三种蔬菜的批发成交数据
批发价格(元) Xi
第三章 数据分布特征的测度
所谓“钻研”, 就是要在金属上占有一席之地,
让石头开一个缝…… ——与大家共勉
本章内容
第一节 集中趋势的测度 第二节 离散程度的测度 第三节 偏态与峰度的测度
学习目标
1.集中趋势各测度值的计算方法 2.集中趋势不同测度值的特点和应用场合 3.离散程度各测度值的计算方法 4.离散程度不同测度值的特点和应用场合 5.偏态与峰度测度方法 6.用SPSS计算统计量并进行分析
1. 各变量值与均值的离差之和等于零
n
(Xi X) 0
i 1
2. 各变量值与均值的离差平方和最小
n
(Xi X )2 min
i1
调和平均数(Harmonic mean)
(概念要点)
1. 集中趋势的测度值之一
2. 均值的另一种表现形式——倒数平均数
3. 易受极端值的影响 4. 用于定比数据 5. 不能用于定类数据和定序数据
工人人数(人) f
比重权数 (f/∑f)
15
10
0.07
16
20
0.13
17
30
0.20
18
50
0.33
19
40
0.27
合计
150
1.00
解:
X Xf 1510 16 20 1730 1850 19 40 2640 17.6 17
f
150
150
加权均值
(权数对均值的影响)
甲乙两组各有10名学生,他们的考试成绩及其分布数据如下
5. 选用哪一个测度值来反映数据的集中趋势,要根据所掌握 的数据的类型来确定
数据特征分布的和测度 (本节位置)
数据的特征和测度
集中趋势
众数 中位数 均值
离散程度
分布的形状
异众比率 四分位差 方差和标准差 离散系数
偏态 峰度
一、定距和定比数据:均值 (Mean)
均值
(概念要点)
1. 集中趋势的测度值之一 2. 最常用的测度值 3. 一组数据的均衡点所在 4. 易受极端值的影响 5. 用于数值型数据,不能用于定类数据和
(概念要点)
1. 集中趋势的测度值之一 2. N 个变量值乘积的 N 次方根 3. 适用于特殊的数据 4. 主要用于计算平均发展速度 5. 计算公式为
N
GM N X 1 X 2 X N N X i
i 1
6. 可看作是均值的一种变形
log GM
1 N
(log
X1
log
X2
log
合计

50
K
X
X i Fi
i 1
6160 123.( 2 个)
K
Fi
50
i 1
XiFi
322.5 562.5 940.0 1715.0 1275.0 795.0 550.0
6160.0
例 某企业工人按日产量分组资料如下所示,根 据资料计算工人的平均日产量。
表3-2 某企业工人日产量分布
日产量(件) X
X i Fi
i 1 K
Fi
i 1
简单均值
(算例)
原始数据:10 5 9 13 6 8
N
X i1 X i X1 X 2 X 3 X 4 X 5 X 6
N
6
10 5 9 13 6 8 6
8.5
加权均值
(算例)
【例】根据表3-1中的数据,计算50 名工人日加工零件数的均值
定序数据
均值
(计算公式)
设一组数据为:X1 ,X2 ,… ,XN
简单均值的计算公式为
N
X
X1 X2 XN
Xi
i 1
N
N
设分组后的数据为:X1 ,X2 ,… ,XK
相应的频数为: F1 , F2,… ,FK
加权均值的计算公式为
K
X
X 1F1 X 2 F2 X N FN F1 F2 FN
表3-1 某车间50名工人日加工零件均值计算表
按零件数分组
105~110 110~115 115~120 120~125 125~130 130~135 135~140
组中值(Xi)
107.5 112.5 117.5 122.5 127.5 132.5 137.5
频数(Fi)
3 5 8 14 10 6 4
成交额(元) XiFi
成交量(公斤) Fi
1.20
18000
15000
0.50
12500
25000
0.80
6400
8000

36900
48000
H M
X i Fi 36900 0.76( 9 元) X i Fi 48000 Xi
三种蔬菜的平均价格为0.769元
几何平均数(Geometric mean)
甲组: 考试成绩(X ): 0 20 100

人数分布(F ):1 1 8
乙组: 考试成绩(X ): 0 20 100
人数分布(F ):8 1 1
X甲
i=1 Xi n
0×1+20×1+100×8
10
82(分)
X乙
i=1 Xi n
0×8+20×1+100×1
10
12(分)
均值
(数学性质)
集中趋势
(Central tendency)
1. 一组数据向其中心值靠拢的倾向程度
2. 测度集中趋势就是寻找数据一般水平的代表值或中心值
3. 不同类型的数据用不同的集中趋势测度值
4. 低层次数据的集中趋势测度值适用于高层次的测量数据, 反过来,高层次数据的集中趋势测度值并不适用于低层次 的测量数据
103.84%
平均收益率=103.84%-1=3.84%
XN)
N
log
i 1
N
Xi
几何平均数
(算例)
【例】一位投资者持有一种股票,2003年、2004 年、2005年和2006年收益率分别为4.5%、2.0%、 3.5%、5.4%。计算该投资者在这四年内的平均收 益率。
GM N X1 X 2 X N
4 104.5% 102.0% 103.5% 105.4%
数据分布的特征
集中趋势 (位置)
离中趋势 (分散程度) 偏态和峰度 (形状)
数据分布的特征和测度
数据的特征和测度
集中趋势
众数 中位数 均值
离散程度
分布的形状
异众比率 四分位差 方差和标准差 离散系数
偏态 峰度
第一节 集中趋势的测度
一. 定距和定比数据:均值 二. 定类数据:众数 三. 定序数据:中位数和分位数 四. 众数、中位数和均值的比较
相关文档
最新文档