统计学数据分布特征描述

合集下载

统计学测量数据分布的测度描述

统计学测量数据分布的测度描述

统计学测量数据分布的测度描述包括以下几种常见的描述方法:
1.平均数:也称为均值,是指一组数据中所有数值的总和除以数
据个数的结果。

平均数可以用来描述一组数据的集中趋势。

2.中位数:也称为中值,是指一组数据中所有数值按大小排序后,
位于中间的那个数值,如果数据个数为偶数,则中位数为中间两个数的平均数。

中位数可以用来描述一组数据的集中趋势。

3.众数:也称为模数,是指一组数据中出现次数最多的数值。


数可以用来描述一组数据的集中趋势,特别是对于呈现多峰分布的数据。

4.极差:是指一组数据中最大值与最小值的差值。

极差可以用来
描述一组数据的离散程度。

5.方差:是指一组数据中每个数值与平均数的差的平方和除以数
据个数的结果。

方差可以用来描述一组数据的离散程度。

6.标准差:是指方差的正平方根。

标准差可以用来描述一组数据
的离散程度,同时也可以用来进行数据的比较。

7.百分位数:是指一组数据中某个百分比的数值。

例如,50%的百
分位数就是中位数。

百分位数可以用来描述一组数据的分布情况,比如数据的偏态和尾重程度。

这些测度描述可以帮助我们更好地理解和分析一组数据的特征和分布情况。

数据分布特征的描述

数据分布特征的描述
邋 ( x -x )= 0 或 者 ( x -x )f= 0
2019/9/1
版权所有 BY 统计学课程组
15
算术平均数的性质
2019/9/1
版权所有 BY 统计学课程组
16
算术平均数(均值)特征:
1. 集中趋势的最常用测度值; 2. 一组数据的均衡点所在; 3. 易受极端值的影响; 4. 由组距分组资料计算的均值有近似值性质; 5、用于数值型数据,不能用于分类数据和顺
(CM) (人)
152
1
154
2
155
2
156
4
157
1
158
2
159
2
160 12
161
7
162
8
163
4
2019/9/1
身高 人数
(CM) (人)
164
3
165
8
166
5
167
3
168
7
169
1
170
5
171
2
172
3
174
1
总计 83
版权所有 BY 统计学课程组
STAT
众数
32
注意:
众数不仅适用于测度顺序数据和 数值型数据的集中趋势,而且适用 于测度不能计算平均数的分类数据 的集中趋势。
2019/9/1
版权所有 BY 统计学课程组
3
数据分布的特征:
一、集中趋势:反映数据向其中心靠拢或 聚集

程度;
二、离中趋势;数据远离中心的趋势(又称离散
程度);
三、偏态和峰态;偏态是对数据分布对称性的度
量;峰度是指数据分布的平峰或尖峰程度

概率与数理统计第3章 数据分布特征的描述

概率与数理统计第3章  数据分布特征的描述

第3章数据分布特征的描述[引例]根据国家统计局对全国31个省(自治区、直辖市)7.4万户农村居民家庭和6.6万户城镇居民家庭的抽样调查,2011年城乡居民收入增长情况如下1:2011年全国农村居民人均纯收入6977元,比上年增加1058元,增长17.9%。

剔除价格因素影响,实际增长11.4%,增速同比提高0.5个百分点。

其中,人均工资性收入2963元,同比增加532元,增长21.9%。

工资性收入对全年农村居民增收的贡献率达50.3%。

工资性收入占农村居民纯收入的比重达42.5%,同比提高1.4个百分点。

2011年农村居民人均纯收入中位数为6194元,比上年增加995元,增长19.1%。

农村居民人均纯收入中位数比人均纯收入低783元,但增速高1.2个百分点。

2011年城镇居民人均总收入23979元,其中,人均可支配收入21810元,比上年增加2701元,增长14.1%。

剔除价格因素影响,城镇居民人均可支配收入实际增长8.4%,增速同比提高0.6个百分点。

2011年城镇居民人均可支配收入中位数为19118元,比上年增加2279元,增长13.5%。

城镇居民人均可支配收入中位数比人均可支配收入低2692元,增速低0.6个百分点。

主要是受最低工资标准、城镇居民基本养老金和离退休金以及最低生活保障标准提高影响,城镇低收入户收入增速较高;同时高收入户也保持了较快的增长速度,所以中等收入户增速相对较慢。

2011年城镇居民人均可支配收入与农村居民人均纯收入之比为3.13:1,2010年该收入比为3.23:1。

本章小结1.总量指标是说明现象总规模和总水平的数值,又称为绝对数。

绝对数的计量单位有实物单位和价值量单位。

按反映总体内容不同,总量指标可分为总体单位总量和总体标志总量;按反映的时间状况不同,总量指标可分为时期指标和时点指标。

2.将两个有联系的数值对比得到的比率称为相对数。

相对数既有无名数形式也有复名数形式。

根据研究目的和对比基础的不同,有结构相对数、比例相对数、计划完成程度相对数、比较相对数、动态相对数和强度相对数等。

数据的分布特征及统计指标

数据的分布特征及统计指标

相关分析
定义:衡量两个变量之间相关程度的统计方法 目的:探究两个变量之间的关联程度和方向 方法:计算相关系数,如Pearson相关系数、Spearman秩相关系数等 应用场景:研究两个变量之间的关联性,如市场调查、医学研究等
回归分析
定义:回归分析是一种统计学方法,用于研究自变量和因变量之间的相关关系 目的:通过回归分析,可以预测因变量的取值,并了解自变量对因变量的影响程度 类型:线性回归、多项式回归、逻辑回归等 步骤:确定自变量和因变量、建立回归模型、进行模型检验、应用模型进行预测
注意事项:样本的 代表性、检验方法 的适用性、结果的 解释与报告
方差分析
定义:方差分析是一种统计方法,用于比较不同组数据的变异程度 目的:确定各组数据之间是否存在显著差异 应用场景:多因素或多水平的设计,例如不同地区、不同时间或不同处理条件下的数据比较 前提条件:数据需要满足独立性、正态性和方差齐性
特点:泊松分布具有离散性、无偏性、 稳定性等特点,能够描述随机事件发 生的次数,并给出相应的概率估计。
指数分布
添加标题
定义:指数分布是一种连续概率分布,其概率密度函 数为f(x)=λe^(-λx),其中λ>0。
添加标题
特性:指数分布具有无记忆性,即如果一个随机变量X服 从指数分布,那么对于任意实数t,X在区间(0,t)内发生事 件的概率与X在(0,∞)内发生事件的概率相等。
对比和层次感:使用颜 色、大小、形状等元素 来增加对比度和层次感, 使数据更易于识别。
可交互性:如果可 能,提供交互功能, 使用户能够探索数 据和自定义视图。
数据可视化工具介绍
Excel:常用的电子表格软件,可用于数据整理和可视化 Power BI:基于云的商业智能工具,支持数据可视化、分析和共享 Ta b l e a u : 数 据 可 视 化 工 具 , 提 供 拖 放 式 界 面 和 多 种 图 表 类 型 D3.js:用于制作数据驱动的文档的JavaScript库,支持高度自定义的可视化效果

统计学-数据分布特征

统计学-数据分布特征

2
描述集中趋势的统计
一、平均数
平均数:
集中趋势的测度值之一
最常用的测度值
一组数据的均衡点所在 易受极端值的影响
用于数值型数据,不能用于品质型数据
4
一、平均数
5
平均数的计算公式
6
二、中位数和分位数
(一)中位数 集中趋势的测度值之一 排序后处于中间位置上的值 不受极端值的影响

14
15
例:某城市居民关注广告类型的频数分布
16
例:甲城市家庭对住房状况评价的分布频数
17
四、各度量值的比较
18
四、各度量值的比较
19
四、各度量值的比较
20
各度量值适用的数据类型
21
4.2离散程度的度量
22
4.2离散程度的度量
离散程度 数据分布的另一个重要特征 离中趋势的各测度值是对数据离散程度所作的描述 反映各变量值远离其中心值的程度,因此也称为离 中趋势 从另一个侧面说明了集中趋势测度值的代表程度 不同类型的数据有不同的离散程度测度值
50
51
一、偏态及其测度
52
二、峰态及其测度
53
例:
54
55
56
57
用Excel计算描述统计量
58
用Excel计算描述统计量 72页习题2
59
60
61
62
63
作业1:
64
65
作业2:
66
答案:
67
68

对某一个值在一组数据中相对位置的度量 可用于判断一组数据是否有离群点 用于对变量的标准化处理
40
标准分数的性质
41
例:

第3章统计学数据分布特征的描述

第3章统计学数据分布特征的描述

第3章统计学数据分布特征的描述统计学是一门研究收集、分析和解释数据的学科。

在统计学中,数据分布特征的描述是指通过一系列统计量和图表来描述数据的集中趋势、离散程度和分布形态等特征。

数据的集中趋势描述了数据的平均水平或中心。

常用的统计量有平均值、中位数和众数。

平均值是将所有观测值相加然后除以观测值的总数,它能够反映数据的总体平均水平。

然而,当数据包含异常值时,平均值的计算结果可能会受到影响。

因此,中位数和众数在这种情况下被认为是更稳健的集中趋势度量。

中位数是将数据按大小排序,然后找出中间位置的观测值。

众数是数据中出现次数最多的观测值。

数据的离散程度描述了数据的变异程度或分散程度。

常用的统计量有方差、标准差和四分位差。

方差是观测值与均值之间差异的平方的平均值,它反映了数据的总体离散程度。

标准差是方差的平方根,用于衡量数据的波动性。

四分位差是数据的上四分位数和下四分位数之差,它描述了数据的中间50%的变异程度。

数据的分布形态描述了数据的形状和对称性。

常用的分布形态有正态分布、偏态分布和峰态分布。

正态分布是最常见的分布形态,其特点是对称、钟形曲线。

偏态分布是指数据分布不对称的情况,主要分为正偏态和负偏态。

正偏态分布意味着数据的尾部偏向右侧,负偏态分布则意味着数据的尾部偏向左侧。

峰态分布用于描述数据的峰值的尖锐程度,主要分为正态分布、高峰态和低峰态。

除了统计量,还可以使用图表来对数据分布特征进行描述。

常用的图表包括直方图、箱线图和散点图。

直方图是通过将数据分组并在坐标轴上绘制各组的频率或相对频率来展示数据的分布形态。

箱线图通过绘制数据的分位数和异常值来展示数据的中位数、四分位数和离群观测值。

散点图用于展示两个变量之间的关系,特别适用于发现变量之间的相关性和异常值。

综上所述,统计学中的数据分布特征描述是通过一系列统计量和图表来描述数据的集中趋势、离散程度和分布形态等特征。

这些描述能够帮助我们更好地理解数据,并对数据进行分析和解释。

数据分布特征的描述讲解

数据分布特征的描述讲解

数据分布特征的描述讲解数据分布特征描述是统计学中对一组数据进行概括和描述的过程。

我们通常使用中心趋势和离散程度来描述数据分布的特征。

中心趋势是指数据集中的一个值,代表数据的代表性,常用的中心趋势措施包括均值、中位数和众数。

离散程度则是指数据的变异程度,包括范围、方差、标准差和四分位距等。

首先,均值是一组数据的中心趋势的一个常用度量。

它是所有数据值的总和除以数据的个数。

均值具有很强的代表性,尤其对于正态分布的数据而言。

均值的计算公式为:mean = (x1 + x2 + ... + xn) / n。

其次,中位数是数据集中的一个特殊值,将数据按照大小排列后,处于中间位置的数即为中位数。

中位数不受极端值的影响,能够更好地反映数据的集中趋势。

对于偶数个数据,中位数为中间两个数的平均值;对于奇数个数据,中位数为中间一个数。

中位数的计算可以通过将数据按照大小排列,然后找到中间位置的数来得出。

此外,众数是数据集中出现频率最高的值,可以是一个或多个。

众数对于描述数据的集中趋势也具有一定的代表性。

众数的计算可以通过建立频数分布表,然后找到出现次数最多的数来得出。

除了中心趋势,离散程度也是描述数据分布特征的重要度量。

范围是测量数据分布范围的最简单方式,它是一组数据中的最大值减去最小值。

范围对于描述数据的离散程度有一定的指示作用,但它受极端值的影响较大,不能完全反映整体数据的变异程度。

方差是衡量数据分布离散程度的一种指标,它表示数据偏离均值的程度。

方差的计算公式为:variance = Σ(xi - mean)² / n,其中xi为每个数据值,mean为均值,n为数据个数。

方差越大,数据的离散程度也越大。

标准差是方差的正平方根,它具有和原始数据单位一致的度量标准,常用于度量数据的波动性。

标准差的计算公式为:standard deviation = √variance。

四分位距是一种度量数据分布离散程度的方法,它是数据按从小到大排列后,第25%分位数和第75%分位数之间的差值。

统计学练习题及答案

统计学练习题及答案

第三章数据分布特征的描述1.下面是我国人口和国土面积资料:────────┬───────────────│根据第四人次人口普查调整数指标├──────┬────────│1982年│1990年────────┼──────┼────────人口总数│101654 │114333男│52352 │58904女│49302 │55429────────┴──────┴────────国土面积960万平方公里。

试计算所能计算的全部相对指标。

2.某企业2014年某产品单位成本520元,2015年计划规定在上年的基础上单位成本降低5%,实际降低6%,试确定2015年单位成本的计划数与实际数,并计算2015年单位成本比计划降低多少3.某市共有50万人,其市区人口占85%,郊区人口占15%,为了解该市居民的收入水平,在市区抽查了1500户居民,每人平均收入为1400元;在郊区抽查了1000户居民,每人年平均收入为1380元,若这两个抽样数字具有代表性,则计算该市居民年平均收入应采用哪一种形式的平均数方法进行计算4根据上表资料计算:(1)哪个班级统计学成绩好(2)哪个班级的成绩分布差异大哪个班级的成绩更稳定5.2014年8月份甲、乙两农贸市场资料如下:────┬──────┬─────────┬─────────品种│价格(元/斤)│甲市场成交额(万元)│乙市场成交量(万斤)────┼──────┼─────────┼─────────甲│││2乙│││1丙│││1────┼──────┼─────────┼─────────合计│──││4────┴──────┴─────────┴─────────试问哪一个市场农产品的平均价格较高并说明原因。

6.某车间有甲、乙两个生产组,甲组平均每个工人的日产量36件,标准差件。

乙组工人资料如下:要求:(1)计算乙组平均每个工人的日产量和标准差。

(2)比较甲、乙两个生产小组哪个组的平均日产量更有代表性比较哪组的产量更稳定比较哪组的产量差异大第四章抽样调查检验结果如下:1.某进出口公司出口茶叶,为检查其每包规格的重量,抽取样本100包,(1)确定每包平均重量的抽样平均误差和极限误差;(2)估计这批茶叶每包平均重量的范围,确定是否达到规格要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数据分布特征与测度:概览
集中趋势 (位置)
离中趋势 (分散程度) 偏态和峰态
(形状)
数据分布特征测度
集中趋势
幂平均数 中位数 众数
离散程度
分布形状
极差 平均差 方差、标准差 异众比率 变异系数
偏度 峰度
第一节 统计变量集中趋势测定
一 集中趋势指标及作用 二 数值平均数 三 众数与中位数(位置平均数)
Mp
k
N
xik
i 1
N
特例情况 幂平均数
算术平均数(幂指数 k=1) 调和平均数(幂指数 k=-1) 几何平均数(幂指数 k0) 其他幂平均数
k=1:算术平均数
➢ 加权
➢ 简单
N
xiwi
x
i 1 N
wi
i 1
N
xi x i1
N
k=-1:调和平均数
➢ 加权 ➢ 简单
N
MH
N
i 1
1
几种常见的位置特征数
数据分布的位置特征数实际上也是数据的代表值, 代表了数据的一般水平。
在不同场合,可以适当选用平均数、中位数、众数充 当位置特征数(代表值)
其中平均数不同于中位数、众数的特点在于: ➢平均数是由所研究的全体数据参加计算所得。
平均数的一般形式叫做幂平均数。常见的有算 术平均数、几何平均数、调和平均数。
一、集中趋势指标及作用
集中趋势(Central tendency)
➢集中趋势 即一组数据向其中心值聚集或靠
拢的倾向和程度。 用平均指标表示,代表数据的一
般水平。 ➢测定集中趋势是认识数据分布特征的
基本内容。
集中趋势指标有两类:
➢数值平均数 根据全部数据计算得到的代表值。
优点:数学性质良好,可用于统计推断 缺点:易受极端值影响。
➢如用平均工资了解职工工资分布的中心, 反映职工工资的一般水平。
2.比较同一现象在不同空间或不同阶段的发 展水平,反映现象变化特征、趋势和规律性。 ➢能消除总体规模差异造成的不利影响; ➢在一定程度上减弱偶然因素的影响。
3.分析现象之间的依存关系。 ➢如研究劳动者文化程度与收入的关系。
4.(数值)平均指标是推断统计中的重要 统计量,是进行统计推断的基础。
二、数值平均数
(一)幂平均数
➢ 幂,power
➢ 变量X取N个值: x1 , x2 , , xN。
➢ 权数为一组正数: w1 , w2 , , wN 。
➢ 加权幂平均数一般形式为: 其中,k 为任意实数。
N
xik wi
M
p
k
i 1 N
wi
i 1
➢权数w均相等时,加权平均数退化为简单 平均数:
➢是最常用的数值平均数;
➢根据掌握资料不同,其有多种计算公式。
1.简单算术平均数 ➢对未分组数据,采用简单算术平均数公式。即 把各项数据直接加总,然后除以总项数。 ➢计算公式:
N
xi x i1
N
举例
表 3-1 解:采用简单算术平均法计算,即全体队员的
男性 女性 平均年龄为(单位:周岁)
22 22
1 xi
wi
wi
i 1
N1
i1 xi
wi
N
wi
i 1
MH
1 N1
N N1
i1 xi i1 xi
N
k0:几何平均数 ➢加权
N
MG
wi
i 1
x1w1
x2w2

xNwN
➢简单
MG N x1 x2 xN
关于加权问题
权数确定方式: ➢客观权数: 权数由实际统计资料获得或推算。 ➢主观权数: 根据研究问题,由研究者主观赋值。
权数作用: ➢权衡变量的各种取值在计算平均数时的重 要性。 ➢权数作用,根本上是通过权数结构实现。
权数作用:
➢即使不改变被平均的数值,仅改变权数结构,即 可改变平均数水平。
例如,改变教师职称结构,而不改变各种职 称教师课时费标准,会改变平均课时费水平。
权数实质
➢权数的实质在于其结构,即结构比例形式(比重 权数)。
1 xi
wi
N
wi
i 1
N
MG
wi i1
x w1 1
x w2 2
x wN N
wi
N
N
wi
x i1 i
i 1
(二)算术平均数
➢算术平均数(Arithmetic mean ),也称均 值(mean)。
➢由一组数据的总和(总体标志总量)除以 该组数据的项数(总体单位总量)得到; 算术平均数=总体标志总量/总体单位总量
22 25 30 50 31.75 4
应采用加权平均。
50
1
合计
20
两种计算公式结果相同!
2.加权算术平均数
➢ 对单项式分组资料,应以各标志值出现次数为权数加权 平均 。
➢ 加权算术平均数计算公式:
n
x
x1 f1 x2 f2 ... xn fn f1 f2 ... fn
xi fi
i 1 n
fi
xf f
i 1
例3-1单项式分组资料(表3-2)计算方法为:
x 22 4 2510 30 5 501 4 10 5 1
主要有算术平均数、调和平均数及几 何平均数,三者均为幂平均数特例。
➢位置平均数 根据对总体中处于特定位置的单个或部
分单位标志值直接观察或推算确定的代表值。 优点:不易受极端值影响,具有较好稳健性。 缺点:不宜用作统计推断。 主要包括众数和中位数。
一、集中趋势指标及作用
集中趋势指标作用 1.反映变量分布的集中趋势和一般水平。
22
22
25
25
25
25
25 25 25 25
25 25
30 30 30 30
50 30
22 22 25 25 25 25 25 30 30 50 22 ... 30
20
538 26.9 20
表 3-2
年龄 人数(人)
x
f
22
4
25
10
30
5
分组数据不能简单平 均 !因为各组变量值 的次数(权数)不等! 若采用简单平均:
本章学习任务
以数值特征,对统计数据分布进行量化描述。 主要包括三方面:
➢集中趋势 用平均指标描述(位置特征);
➢离中趋势 用变异指标描述(离散特征);
➢偏斜程度 用偏度和峰度描述(偏斜特征、峰度特征)。
学习要求:
理解测度统计数据集中趋势、离散程度的概念 、指标、相互关系;
掌握主要分析指标的计算方法和应用场合,并能 熟练进行相关计算分析。
➢其更能清晰表明权数之权衡轻重的作用。
权数形式有2种:
➢ 绝对数形式
Mp
➢ 结构比例形式
k
N
xik wi
i 1
N
wi
i 1
k
N
i 1
xik
wi
N
wi
i 1
x
N
xiwi
i 1 N
wi
i 1
N
i 1
xi
wi
N
wi
i 1
MH
1
N
i 1
1 xi
wi
N
wi
i 1
1
N
i 1
相关文档
最新文档