数据分布特征的测度

合集下载

数据分布特征的测度—使用Excel方法

数据分布特征的测度—使用Excel方法

某中学初二(一)班数据分布特征的测度使用excel 方法数据特征的测度众数 中位数 四分位数平均数亠、集中趋势1、众数(mode )— 一组数据中出现次数最多的变 量值.分类数据众数偏态 峰态异众比率 极差 方差 离散系数制作:用frequency 函数求出语文成绩的频数一求 出各个分数段的比例一各个分数段的百分比.原始数据:原始数据一众数・xls2、中位数(median )-排序后处于中间位置上的值解:这里的变量为“成绩 分数段”,这是个分类变 量,不同的分数段就是变 量值。

所调查的初二一班 60人 中,60-69这个分数段的人 数最多,为23人,占全班 人数的38.33%,因此众数 为“ 60-69这一分数段”。

即:M=60-69这一分数段制作:对语文成绩进行降序排列一根据计算公式求得中位数/插入median函数求得中位数要求得这60名学生语文成绩的中位数有2种方法:方法一:1、首先对学生的语文成绩进行降序排列。

2、由于学生人数为偶数,所以位置计算公式二错误!位置=错误!—错误!= 30。

5语文成绩中位数=错误!= 68方法二:插入median函数一求得语文成绩中位数。

原始数据-中位数:原始数据一中位数。

XlS3、四分位数(quartile)—排序后处于25%和75%位置上的值.要求得这60名学生语文成绩的中位数有2种方法: 方法一:1、首先对学生的语文成绩进行升序排列。

2、由于学生人数为偶数,所以位置计算公式为:Q 位置二错误!=错误!= 15.25Q位置二错误!=错误!= 45。

75Q= 61+0.75 X( 62-61 ) =61。

75Q= 78+0。

25 X( 78—78) =78方法二:使用函数QUARTILE求出语文成绩的四分位数xls 原始数据一四分位数:原始数据-四分位数。

4、平均数(mean)加权平均数一初二(一)班语文总评成绩总评成绩=错误!原始数据一平均数:原始数据一平均数。

统计学测量数据分布的测度描述

统计学测量数据分布的测度描述

统计学测量数据分布的测度描述包括以下几种常见的描述方法:
1.平均数:也称为均值,是指一组数据中所有数值的总和除以数
据个数的结果。

平均数可以用来描述一组数据的集中趋势。

2.中位数:也称为中值,是指一组数据中所有数值按大小排序后,
位于中间的那个数值,如果数据个数为偶数,则中位数为中间两个数的平均数。

中位数可以用来描述一组数据的集中趋势。

3.众数:也称为模数,是指一组数据中出现次数最多的数值。


数可以用来描述一组数据的集中趋势,特别是对于呈现多峰分布的数据。

4.极差:是指一组数据中最大值与最小值的差值。

极差可以用来
描述一组数据的离散程度。

5.方差:是指一组数据中每个数值与平均数的差的平方和除以数
据个数的结果。

方差可以用来描述一组数据的离散程度。

6.标准差:是指方差的正平方根。

标准差可以用来描述一组数据
的离散程度,同时也可以用来进行数据的比较。

7.百分位数:是指一组数据中某个百分比的数值。

例如,50%的百
分位数就是中位数。

百分位数可以用来描述一组数据的分布情况,比如数据的偏态和尾重程度。

这些测度描述可以帮助我们更好地理解和分析一组数据的特征和分布情况。

统计学习题答案 4~9章

统计学习题答案 4~9章
经管类 核心课程
统计学
第4章 数据分布特征的测度
4.1 一家汽车零售店的10名销售人员5月份销售的汽 车数量(单位:台)排序后如下: 2 4 7 10 10 10 12 12 14 15 要求: (1)计算汽车销售量的众数、中位数和平均数; M 0 10,M e 10,x 9.6, (2)根据定义公式计算四分位数;QL 5.5,QU 12, (3)计算销售量的标准差;
n ( xi x )3 1.08
(4)计算偏态系数和峰态系数;
(n 1)(n 2) s 4 2 2 n(n 1) ( xi x ) 3[ ( xi x ) ] (n 1)
3
(n 1)(n 2)(n 3)s
4
0.77
(5)对网民年龄的分布特征进行综合分析。 样本数据的均值为24岁,但标准差较大,说明网民 年龄之间差异较大.
0
30
60
经管类 核心课程
统计学
第3章 数据的整理与显示
3.1 为评价家电行业售后服务的质量,随机抽取了由 100家庭构成的一个样本。服务质量的等级分别 表示为:A.好;B.较好;C.一般;D.较差;E.差。 调查结果如下表:
B E C C A D C B A E
D
A B C D B
A
D A B A E
SK 0.203,K 0.688
600以上
合计
11
120
(2) 计算分布的偏态系数和峰态系数。
经管类 核心课程
统计学
第4章 数据分布特征的测度
4.7 为研究少年儿童的成长发育状况,某研究所的 一位调查人员在某城市抽取100名7~17岁的少 年儿童作为样本,另一位调查人员则抽取了 1000名7~17岁的少年儿童作为样本。请回答下 面的问题,并解释其原因。 (1)哪一位调查研究人员在其所抽取的样本中得到的 少年儿童的平均身高较大?或者这两组样本的 平均身高相同? (2)哪一位调查研究人员在其所抽取的样本中得到的 少年儿童身高的标准差较大?或者这两组样本 的标准差相同?

统计学-数据分布特征

统计学-数据分布特征

2
描述集中趋势的统计
一、平均数
平均数:
集中趋势的测度值之一
最常用的测度值
一组数据的均衡点所在 易受极端值的影响
用于数值型数据,不能用于品质型数据
4
一、平均数
5
平均数的计算公式
6
二、中位数和分位数
(一)中位数 集中趋势的测度值之一 排序后处于中间位置上的值 不受极端值的影响

14
15
例:某城市居民关注广告类型的频数分布
16
例:甲城市家庭对住房状况评价的分布频数
17
四、各度量值的比较
18
四、各度量值的比较
19
四、各度量值的比较
20
各度量值适用的数据类型
21
4.2离散程度的度量
22
4.2离散程度的度量
离散程度 数据分布的另一个重要特征 离中趋势的各测度值是对数据离散程度所作的描述 反映各变量值远离其中心值的程度,因此也称为离 中趋势 从另一个侧面说明了集中趋势测度值的代表程度 不同类型的数据有不同的离散程度测度值
50
51
一、偏态及其测度
52
二、峰态及其测度
53
例:
54
55
56
57
用Excel计算描述统计量
58
用Excel计算描述统计量 72页习题2
59
60
61
62
63
作业1:
64
65
作业2:
66
答案:
67
68

对某一个值在一组数据中相对位置的度量 可用于判断一组数据是否有离群点 用于对变量的标准化处理
40
标准分数的性质
41
例:

第6章 数据分布特征测度

第6章  数据分布特征测度

6.4.4 平均差
平均差是数列中各变量值与算术平均数的离差绝对值的算术平均数。
记作AD。采用离差绝对值计算平均离差,是为了消除正负离差相抵为0
的影响,以便反映平均的离散程度。计算公式为:
平均差能全面地准确地反映各变量值的离散程度,但带有绝对值符
号,运算上很不方便,实际应用很少。【例6.21】
湖南商学院信息系 龚曙明
湖南商学院信息系 龚曙明
第11页
统计学 6.3.5 众 数
众数是变量数列中出现次数最多的变量值。由于众数在数列中出现
的频率较高,有时利用众数来表示现象的一般水平或集中趋势。众数 M0
的确定有以下两种情形: 1、单项分组数列求众数。直接找出次数最多的变量值即为众数
2、组距变量数列求众数。对称分布时众数M0为众数组(次数最多
的组)的组中值(粗众数)。非对称分布时,众数会受众数组前后两组次数 (f-1及f+1)的影响众数有两种计算方法:【例6.18】
①金氏插值法。根据众数组前后两组次数,用下列公式求众数:
②切伯插值法。根据众数组次数分别与前后两组次数之差求众数:
湖南商学院信息系 龚曙明
第12页
统计学
6.3.6 四分位数
湖南商学院信息系 龚曙明
第5页
6.3.1 算术平均数 基本算式:总体标志总量/总体单位总量【例6.2】 1.简单算术平均数:未分组资料 平均数= ∑x /n【例6.3】 2.加权算术平均数:分组资料求平均数
统计学
计算加权算术平均数应注意两点: (1)权数绝对权数和比重权数之分. (2)权数对平均数大小起权衡轻重的作用,比重权数更能反 映权数的实质。 (3)根据组距数列计算的平均数只是一个近似值。
湖南商学院信息系 龚曙明

第四章 数据分布特征的测度

第四章     数据分布特征的测度

第四章数据分布特征的测度教学目的与要求:统计平均指标是表明总体数量特征的一个重要指标,它是将总体各单位标志值的差异抽象化,反映总体各单位标志值的一般水平,揭示总体分布的集中趋势。

变异指标是反映总体各单位标志值的差异程度,揭示总体分布离中趋势的又一重要数量特征指标。

通过本章的学习,要求理解统计平均指标的意义和作用;掌握各种统计平均指标的特点、应用条件、应用范围和计算方法;理解变异指标的意义和作用;掌握各种变异指标的性质和计算方法;能运用变异指标衡量平均数代表性的大小。

教学重点与难点:重点为各种平均指标和变异指标的概念、特点、应用条件、应用范围和计算方法。

难点是不同条件下平均指标和变异指标的计算。

统计数据经过整理和显示后,对数据分布的形状和特征就可以有一个大致的了解。

为进一步掌握数据分布的特征和规律,进行更深入的分析,还需要找到反映数据分布特征的各个代表值。

对一组数据分布的特征,可以从三个方面进行测度和描述:一是分布的集中趋势,反映各数据向其中心值靠拢和聚集的程度;二是分布的离散程度,反映各数据远离中心值的趋势;三是分布偏态和峰态,反映数据分布的形状。

这三个方面分别反映了数据分布特征的不同侧面。

第一节集中趋势的测度集中趋势是指一组数据向某一中心值靠拢的倾向,它反映了一组数据中心点的位置所在。

测度集中趋势也就是寻找数据一般水平的代表值或中心值。

低层次数据的集中趋势测度值适用于高层次的测量数据,反过来,高层次数据的集中趋势测度值并不适用于低层次的测量数据。

因此,选用哪一个测度值来反映数据的集中趋势,要根据所掌握的数据的类型和特点来确定。

一、分类数据:众数(M o)众数是指一组数据中出现次数最多的变量值。

•出现次数最多的变量值•不受极端值的影响•一组数据可能没有众数或有几个众数•主要用于分类数据,也可用于顺序数据和数值型数据从分布的角度看,众数是具有明显集中趋势点的数值,一组数据分布的最高峰点所对应的数值即为众数。

统计学课后习题与答案 郑贵华、颜泳红主编 湘潭大学出版:第四章 数据分布特征的度量

统计学课后习题与答案   郑贵华、颜泳红主编 湘潭大学出版:第四章 数据分布特征的度量

第四章思考与习题一、思考题1.什么是集中趋势?测度集中趋势常用指标有哪些?2.算术均值.众数和中位数有何关系?3.什么是几何平均数?其适用场合是什么?4.什么叫离散趋势?测度离散趋势常用指标有哪些?5.为什么要计算离散系数?二、练习题(一)填空题1.统计数据分布的特征,可以从三个方面进行测度和描述:一是分布的__________,反映所有数据向其中心值靠拢或聚集的程度;二是分布的__________,反映各数据远离其中心值的趋势;三是分布的__________,反映数据分布的形状。

2.在某城市随机抽取13个家庭,调查得到每个家庭的人均月收入数据如下:1080.750.1080.850.960.2000.1050.1080.760.1080.950.1080.660,则其众数为,中位数为。

3.算术均值有两个重要数学性质:各变量值与其算术均值的__________等于零;各变量值与其算术均值的__________等于最小值。

4.简单算术均值是__________的特例。

4.几何均值主要用于计算__________的平均。

5.在一组数据分布中,当算术均值大于中位数大于众数时属于________分布;当算术均值小于中位数小于众数时属于________分布。

6.__________是各变量值与其均值离差平方的平均数,是测度数值型数据__________最主要的方法。

7.为了比较人数不等的两个班级学生的学习成绩的优劣,需要计算__________;而为了说明哪个班级学生的学习成绩比较整齐,则需要计算________。

8.偏态是对数据分布__________或__________的测度;而峰度是对数据分布_________的测度。

(二)判断题1.众数的大小只取决于众数组与相邻组次数的多少。

()2.当总体单位数n为奇数时,中位数=(n+1)/2。

()3.根据组距分组数据计算的均值是一个近似值。

()4.若已知甲企业工资的标准差小于乙企业,则可断言:甲企业平均工资的代表性好于乙企业。

数据分布特征的测度.

数据分布特征的测度.

n
0 8 20 1 100 1 12(分) 10
均值的数学性质
1. 各变量值与均值的离差之和等于零
(x x) 0
i 1 n i
n
2. 各变量值与均值的离差平方和最小
(x x)
i 1 i
2
min
二、调和平均数 (倒数平均数 Harmonic mean)
甲 乙 丙

15 20 30
试指出那个厂的总平均成本高,其原因何在?
练习3: 计算某地区工业企业产值平均计划完成程度
计划完成%
90以下 90——100 100——110 110——120 120以上 合计
企业数(个)
7 22 57 26 3 115
计划产值(万元)
140 310 1650 710 40 2850
均值(mean)
1.
2. 3. 4. 5.
集中趋势的最常用测度值 一组数据的均衡点所在 体现了数据的必然性特征 易受极端值的影响 用于数值型数据,不能用于分类数据和顺 序数据
一、算术平均数(Arithmetic mean)
(一)简单算术平均数
X X N

i
例:有5名工人生产的零件数分别为:15、16、17、18、 19,平均零件数为多少?
xf xA Ax x x f A nA n
例:计算某车间工人平均工资(单项式)
某班组工人平均工资的计算(单项式数列)
工资(x) 500 530
740 860 1020 合计

工人数(f) 2 4
8 5 1 20
工资总额(xf) 1000 2120
5920 4300 1020 14360
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数 据 分 布 特 征 的 测 度
演讲人
2020-09-30
目 录
0 1 集中趋势 0 2 离散程度 0 3 分布的形状
01
集中趋势
出现次数最多的变量值
没有众数或两个以上众数
集中趋势
众数
不受极端值影响
用于分类数据、顺序数据、 数值型数据
排序后处于中间位置上的值 用于顺序数据、数值型数据
集中趋势
中位数
不受极端值影响
各变量值与中位数的离差绝 对值之和最小
均值
,一组数据的中心 位置,是集中趋势
的最常用测度
01
02
用于数据型数据, 不能用于分类数据
和顺序数据
03
容易受极端值的影 响
04
调和平均数
几何平均数
05
均值
调和平均数
均值的另一种表现形式 容易受极端值影响 计算公式
均值
几何平均数
n个变量值乘积的n次方根 适用于对比率数据的平均 主要用于计算平均增长率 计算公式
02
离散程度
异众比率
A
离散程度
四分位差
B
方差和标准差
C
离散系数
D
对分类数据离散程度 的测度
A
非众数组的频数占总 频数的比率
B
用于衡量众数的代表 性
C
计算公式为
D
离散程度
异众比率
异众比率
用于衡量众数的代 表性
非众数组的频数占 总频数的比率
对分类数据离散程 度的测度
C
B
A
计算公式为
D
反映中间50%数据的离散程 度
用于衡量中位数的代表性
离散程度
四分位差
不受极端值影响
四分位差
反映中间 50%数据的
离散程度
不受极端值 影响
用于衡量中 位数的代表

离散程度
方差和标准差
极差
平均差
方差和标准 差
方差和标准差
极差
01
一组数据的最 大值与最小值
之差
02
易受极端值影 响
03
04
未考虑数据分 布
计算公式
平均差
各变量值与其均值离差绝 对值的平均数
峰态
0 1
数据分布扁平
程度的测度
0 2
峰态系数=0扁
平峰度适中
0 3
峰态系数<0
为扁平分布
0 4
峰态系数>0
为尖峰分布
0 5
峰态系数
感 谢 聆 听
能全面反映一组数据的 离散程度
数学性质较差,实际中 应用较少
计算公式
分组数据 未分组数据
方差和标准差
离散程度的最常 用测度值
总体/样本方差 或标准差
反映各变量值与 均值的平均差异
方差和标准差
计算公式
对数据相对离散程度的测度 用于对不同组别数据离散程
度的比较
离散程度
离散系数
消除了数据水平高低和计量 单散程度的测 度
用于对不同组别数据离散 程度的比较
离散系数
消除了数据水平高低和计 量单位的影响
计算公式
03
分布的形状
分布的形状
偏态
峰态
分布的形状
偏态
数据分布 偏斜程度
的测度
偏态系数 =0为对 称分布
偏态系数 >0为 右偏分布
偏态系 数
偏态系数 <0为 左偏分布
分布的形状
相关文档
最新文档