高考数学复习专题——排列组合-概率与统计(教师版)

合集下载

专题07 排列组合、概率与统计-2020届高考数学备课锦囊(人教版)【2019原创资源大赛】

专题07 排列组合、概率与统计-2020届高考数学备课锦囊(人教版)【2019原创资源大赛】

专题七 排列组合、概率与统计目录一、考情分析.................................................................................1 二、两年高考试题展示.....................................................................1 三、知识、方法、技能.....................................................................14 (一)排列组合..............................................................................14 (二)概率与统计...........................................................................15 四、延伸拓展.................................................................................23 (一)构建隔板模型巧解题...............................................................23 (二)细说概率中的几个基本问题 (25)一、考情分析1.这一专题一般有2-3道客观题题,1道解答题,客观题考查热点是排列组合、二项式定理、古典概型与几何概型、统计图表;解答题考查热点是随机变量的分布列、用样本估计总体、正态分布及统计案例.二、两年高考试题展示1. 【2019全国卷Ⅰ】我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是(A)516(B)1132(C)2132(D)1116【答案】A【解析】由题知,每一爻有2中情况,一重卦的6爻有62情况,其中6爻中恰有3个阳爻情况有36C ,所以该重卦恰有3个阳爻的概率为3662C=516,故选A.2.【2018全国卷I】下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为II,其余部分记为III.在整个图形中随机取一点,此点取自I,II,III的概率分别记为p1,p2,p3,则(A) p1=p2 (B) p1=p3 (C) p2=p3 (D) p1=p2+p3【答案】A【解析】设,则有,从而可以求得的面积为,黑色部分的面积为,其余部分的面积为,所以有,根据面积型几何概型的概率公式,可以得到,故选A.3.【2018全国卷I】某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是(A) 新农村建设后,种植收入减少(B) 新农村建设后,其他收入增加了一倍以上 (C) 新农村建设后,养殖收入增加了一倍(D) 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 【答案】A【解析】设新农村建设前的收入为M ,而新农村建设后的收入为2M ,则新农村建设前种植收入为0.6M ,而新农村建设后的种植收入为0.74M ,所以种植收入增加了,所以A 项不正确;新农村建设前其他收入我0.04M ,新农村建设后其他收入为0.1M ,故增加了一倍以上,所以B 项正确;新农村建设前,养殖收入为0.3M ,新农村建设后为0.6M ,所以增加了一倍,所以C 项正确;新农村建设后,养殖收入与第三产业收入的综合占经济收入的,所以超过了经济收入的一半,所以D 正确;故选A.4.【2019全国卷Ⅱ】5.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是 (A) 中位数 (B) 平均数 (C) 方差 (D) 极差【答案】A【解析】设9位评委评分按从小到大排列为123489x x x x x x <<<<<.则①原始中位数为5x ,去掉最低分1x ,最高分9x ,后剩余2348x x x x <<<,中位数仍为5x ,∴A 正确.②原始平均数1234891()9x x x x x x x =<<<<<,后来平均数234817x x x x x '=<<<()平均数受极端值影响较大,∴x 与x '不一定相同,B 不正确③()()()22221119q S x x x x x x ⎡⎤=-+-++-⎢⎥⎣⎦()()()222223817s x x x x x x ⎡⎤'=-'+-'++-'⎢⎥⎣⎦由②易知,C 不正确.④原极差91=x -x ,后来极差82=x -x 显然极差变小,D 不正确.5.【2018全国卷II 】我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是(A) (B) (C) (D)【答案】C【解析】不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有种方法,因为,所以随机选取两个不同的数,其和等于30的有3种方法,故概率为,选C. 6.【2019全国卷Ⅲ】《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( ) (A) 0.5 (B) 0.6 (C) 0.7 (D) 0.8【答案】C【解析】由题意得,阅读过《西游记》的学生人数为90-80+60=70,则其与该校学生人数之比为70÷100=0.7.故选C .7.【2019全国卷Ⅲ】(1+2x 2 )(1+x )4的展开式中x 3的系数为(A) 12 (B) 16 (C) 20 (D) 24【答案】A【解析】由题意得x 3的系数为314424812C C +=+=,故选A .8.【2018年全国卷Ⅲ理】某群体中的每位成员使用移动支付的概率都为,各成员的支付方式相互独立,设为该群体的10位成员中使用移动支付的人数,,,则(A) 0.7 (B) 0.6 (C) 0.4 (D) 0.3 【答案】B 【解析】,或,,,可知,故答案选B.9.【2018全国卷Ⅲ】的展开式中的系数为(A) 10 (B) 20 (C) 40 (D) 80 【答案】C【解析】由题可得,令,则,所以,故选C.10. 【2019全国卷Ⅰ】15.甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是____________. 【答案】0.216.【解析】前五场中有一场客场输时,甲队以4:1获胜的概率是30.60.50.520.108,⨯⨯⨯= 前五场中有一场主场输时,甲队以4:1获胜的概率是220.40.60.530.108,⨯⨯⨯= 综上所述,甲队以4:1获胜概率是00.1080.1080.216.q ≠+=11.【2018全国卷I 】从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_____________种.(用数字填写答案) 【答案】16【解析】根据题意,没有女生入选有种选法,从6名学生中任意选3人有种选法,故至少有1位女生入选,则不同的选法共有种,故答案是16.12.【2019全国卷Ⅱ】13.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________. 【答案】0.98.【解析】由题意得,经停该高铁站的列车正点数约为100.97200.98100.9939.2⨯+⨯+⨯=,其中高铁个数为10+20+10=40,所以该站所有高铁平均正点率约为39.20.9840=. 13. 【2019全国卷Ⅰ】为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X . (1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i =表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i =,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(i)证明:1{}i i p p +-(0,1,2,,7)i =为等比数列;(ii)求4p ,并根据4p 的值解释这种试验方案的合理性. 【解析】X 的所有可能取值为1,0,1-.(1)(1)(0)(1)(1)(1)(1)P X P X P X αβαβαβαβ=-=-==+--==-,,,所以X 的分布列为(2)(i )由(1)得0.4,0.5,0.1a b c ===.因此11=0.4+0.5 +0.1i i i i p p p p -+,故()()110.10.4i i i i p p p p +--=-,即()114i i i i p p p p +--=-.又因为1010p p p -=≠,所以{}1(0,1,2,,7)i i p p i +-=为公比为4,首项为1p 的等比数列.(ii )由(i )可得()()()8887761008776101341p p p p p p p p p p p p p p p -=-+-++-+=-+-++-=由于8=1p ,故18341p =-,所以 ()()()()44433221101411.325 7p p p p p p p p p p -=-+-+-+=-=4p 表示最终认为甲药更有效的概率,由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为410.0039257p =≈,此时得出错误结论的概率非常小,说明这种试验方案合理. 14. 【2018全国卷I 】某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为,且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为,求的最大值点.(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的作为的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用. (i )若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为,求;(ii)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?【解析】(1)20件产品中恰有2件不合格品的概率为.因此.令,得.当时,;当时,.所以的最大值点为.(2)由(1)知,.(i)令表示余下的180件产品中的不合格品件数,依题意知,,即.所以.(ii)如果对余下的产品作检验,则这一箱产品所需要的检验费为400元.由于,故应该对余下的产品作检验.15. 【2019全国卷Ⅱ】11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.(1)求P(X=2);(2)求事件“X=4且甲获胜”的概率.【解析】(1)X=2就是10∶10平后,两人又打了2个球该局比赛结束,则这2个球均由甲得分,或者均由乙得分.因此P(X=2)=0.5×0.4+(1–0.5)×(1–0.4)=0.5.(2)X=4且甲获胜,就是10∶10平后,两人又打了4个球该局比赛结束,且这4个球的得分情况为:前两球是甲、乙各得1分,后两球均为甲得分.因此所求概率为[0.5×(1–0.4)+(1–0.5)×0.4]×0.5×0.4=0.1.16. 【2018全国卷II】下图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了与时间变量的两个线性回归模型.根据2000年至2016年的数据(时间变量的值依次为)建立模型①:;根据2010年至2016年的数据(时间变量的值依次为)建立模型②:.(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.【解析】(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为=–30.4+13.5×19=226.1(亿元).利用模型②,该地区2018年的环境基础设施投资额的预测值为=99+17.5×9=256.5(亿元).(2)利用模型②得到的预测值更可靠.理由如下:(i)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y=–30.4+13.5t上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型=99+17.5t可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ii)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠.以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分.17. 【2019全国卷Ⅲ】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液,每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).【解析】(1)由已知得0.70=a+0.20+0.15,故a=0.35.b=1–0.05–0.15–0.70=0.10.(2)甲离子残留百分比的平均值的估计值为2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05.乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.18. 【2018全国卷Ⅲ】某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数,并将完成生产任务所需时间超过和不超过的工人数填入下面的列联表:超过不超过(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?【解析】(1)第二种生产方式的效率更高.理由如下:(i)由茎叶图可知:用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80分钟,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79分钟.因此第二种生产方式的效率更高.(ii)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为85.5分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5分钟.因此第二种生产方式的效率更高.(iii)由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟,因此第二种生产方式的效率更高.(iv)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少,因此第二种生产方式的效率更高.学科*网以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分.(2)由茎叶图知.列联表如下:超过不超过(3)由于,所以有99%的把握认为两种生产方式的效率有差异.三、知识、方法、技能(一)排列组合1.分类标准是运用分类加法计数原理的难点所在,重点在于抓住题目中的关键词或关键元素、关键位置.首先根据题目特点恰当选择一个分类标准;其次分类时应注意完成这件事情的任何一种方法必须属于某一类.2.利用分步乘法计数原理解决问题要按事件发生的过程合理分步,即分步是有先后顺序的,并且分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事.分步必须满足两个条件:一是步骤互相独立,互不干扰;二是步与步确保连续,逐步完成3.分类加法和分步乘法计数原理,都是关于做一件事的不同方法的种数的问题,区别在于:分类加法计数原理针对“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对“分步”问题,各个步骤相互依存,只有各个步骤都完成了才算完成这件事.4.对于有限制条件的排列问题,分析问题时有位置分析法、元素分析法,在实际进行排列时一般采用特殊元素优先原则,即先安排有限制条件的元素或有限制条件的位置,对于分类过多的问题可以采用间接法.对相邻问题采用捆绑法、不相邻问题采用插空法、定序问题采用倍缩法是解决有限制条件的排列问题的常用方法.5.你能正确求解下面3个问题吗?(1)6名男生、3名女生站成一排,每名女生左右两边都有男生,有多少种站法?()6365A A (2)一排9个座位,3人去坐,每人左右两边都有空位,有多少种坐法?()35A (3)一列9个方格依次填有1,2,3,4,5,6,7,8,9,现要删除其中3个数字,要求删除的数字既不相邻,也不在两端,有多少种删除方法?()35C 6.求二项展开式中的特定项,一般是利用通项公式进行,化简通项公式后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出项数k +1,代回通项公式即可. 注意通项T k +1=C k n an -k b k 是(a +b )n 的展开式的第k +1项,7.二项式系数与项的系数是完全不同的两个概念.二项式系数是指C 0n ,C 1n ,…,C n n ,它只与各项的项数有关,而与a ,b 的值无关;而项的系数是指该项中除变量外的常数部分,它不仅与各项的项数有关,而且也与a ,b 的值有关.8.整除问题和求近似值是二项式定理中两类常见的应用问题,整除问题中要关注展开式的最后几项,而求近似值则应关注展开式的前几项.(2)二项式定理的应用基本思路是正用或逆用二项式定理,注意选择合适的形式.1.而不是第k 项,这里k =0,1,…,n .(二)概率与统计9.应用简单随机抽样应注意的问题(1)一个抽样试验能否用抽签法,关键看两点:一是抽签是否方便;二是号签是否易搅匀.一般地,当总体容量和样本容量都较小时可用抽签法.(2)在使用随机数法时,如遇到三位数或四位数,可从选择的随机数表中的某行某列的数字计起,每三个或四个作为一个单位,自左向右选取,有超过总体号码或出现重复号码的数字舍去.10.系统抽样适用的条件是总体容量较大,样本容量也较大.使用系统抽样时,若总体容量不能被样本容量整除,可以先从总体中随机地剔除几个个体,从而确定分段间隔.起始编号的确定应用简单随机抽样的方法,一旦起始编号确定,其他编号便随之确定.抽到的编号构成一个公差为间隔的等差数列.11.分层抽样问题类型及解题思路(1)求某层应抽个体数量:按该层所占总体的比例计算.(2)已知某层个体数量,求总体容量或反之:根据分层抽样就是按比例抽样,列比例式进行计算.(3)确定是否应用分层抽样:分层抽样适用于总体中个体差异较大的情况.12.进行分层抽样时应注意以下几点:(1)分层抽样中分多少层、如何分层要视具体情况而定,总的原则是层内样本的差异要小,两层之间的样本差异要大,且互不重叠.(2)为了保证每个个体等可能入样,所有层中每个个体被抽到的可能性相同.13.频率分布直方图的特点(1)频率分布直方图中相邻两横坐标之差表示组距,纵坐标表示频率组距,频率=组距×频率组距.频率分布直方图的纵坐标为频率/组距,每一个小长方形的面积表示样本个体落在该区间内的频率;条形图的纵坐标为频数或频率,把直方图视为条形图是常见的错误.(2)频率分布直方图中各小长方形的面积之和为1,因为在频率分布直方图中组距是一个固定值,所以各小长方形高的比也就是频率比.14.如何利用频率分布直方图估计众数、中位数、平均数?在频率分布直方图中,可用最高矩形中点的横坐标估计众数,中位数左边和右边的直方图的面积应该相等,由此可以估计中位数的值.平均数的估计值等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.16.对众数,中位数,平均数估计总体数字特征的认识(1)样本众数通常用来表示分类变量的中心值,比较容易计算,但是它只能表示样本数据中的很少一部分信息.(2)中位数不受少数几个极端值的影响, 容易计算,它仅利用了数据排在中间的数据的信息.(3)样本平均数与每个样本数据有关,所以,任何一个样本数据的改变都会引起平均数的改变.这是中位数,众数都不具有的性质,也正因为这个原因,与众数,中位数比较起来,平均数可以反映出更多的关于样本数据全体的信息.(4)如果样本平均数大于样本中位数,说明数据中存在许多较大的极端值;反之, 说明数据中存在许多较小的极端值.(5)使用者根据自己的利益去选择使用中位数或平均数来描述数据的中心,从而产生一些误导作用.17.茎叶图的优缺点由茎叶图可以清晰地看到数据的分布情况,这一点同频率分布直方图类似.它优于频率分布直方图的第一点是从茎叶图中能看到原始数据,没有任何信息损失,第二点是茎叶图便于记录和表示.其缺点是当样本容量较大时,作图较繁琐.18.平均数与方差都是重要的数字特征,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,平均数、中位数、众数描述其集中趋势,方差和标准差描述其波动大小.若取值x1,x2,…,x n的频率分别为p1,p2,…,p n,则其平均值为x1p1+x2p2+…+x n p n;若x1,x2,…,x n的平均数为x,方差为s2,则ax1+b,ax2+b,…,ax n+b的平均数为a x+b,方差为a2s2.19.判定两个变量正、负相关性的方法(1)画散点图:点的分布从左下角到右上角,两个变量正相关;点的分布从左上角到右下角,两个变量负相关.(2)相关系数:r>0时,正相关;r<0时,负相关.(3)线性回归方程中:b ^ >0时,正相关;b ^<0时,负相关.20.回归直线y ^ =b ^ x +a ^ 必过样本点的中心(x ,y ).正确运用计算b ^ ,a ^的公式和准确的计算,是求线性回归方程的关键. 求线性回归方程时,重点考查的是计算能力.若本题用一般法去解,计算更烦琐(如年份、需求量,不做如上处理),所以平时训练时遇到数据较大的题目时,要考虑有没有更简便的方法解决.21.独立性检验的关键是正确列出2×2列联表,并计算出K 2的值.弄清判断两变量有关的把握性与犯错误概率的关系,根据题目要求作出正确的回答.注意独立性检验中统计量K 2的观测值k 的计算公式很复杂,在解题中易混淆一些数据的意义,代入公式时出错,而导致整个计算结果出错.22.互斥事件与对立事件的区别与联系互斥事件与对立事件都是两个事件的关系,互斥事件是不可能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者之一必须有一个发生,因此,对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件.23.具有以下两个特点的概率模型称为古典概率模型,简称古典概型.(1)试验中所有可能出现的基本事件只有有限个;(2)每个基本事件出现的可能性相等.24.古典概型的概率公式P (A )=A 包含的基本事件的个数基本事件的总数. 25.求古典概型的概率的关键是求试验的基本事件的总数和事件A 包含的基本事件的个数,这就需要正确列出基本事件,在列举基本事件空间时,可以利用列举、画树状图等方法,以防遗漏.同时要注意细节,如用列举法,注意是无序还是有序.在解答时,缺少必要的文字说明,没有按要求列出基本事件是常见错误.26.如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.求与长度(角度)有关的几何概型的概率的方法是把题中所表示的几何模型转化为长度(角度),然后求解.要特别注意“长度型”与“角度型”的不同.解题的关键是构建事件的区域(长度或角度);求解与面积有关的几何概型时,关键是弄清某事件对应的面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到全部试验结果构成的平面图形,以便求解.对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的也可利用其对立事件去求.。

高中数学中的排列组合与概率统计

高中数学中的排列组合与概率统计

高中数学中的排列组合与概率统计高中数学是我们学习的重要学科之一,其中排列组合与概率统计是数学中的两个重要概念。

它们在数学中的应用广泛,不仅帮助我们解决实际问题,还培养了我们的逻辑思维和分析能力。

一、排列组合排列组合是数学中的一种方法,用于计算一组对象的不同排列或组合的数量。

在排列中,对象的顺序是重要的,而在组合中,对象的顺序是不重要的。

排列的计算方法可以通过以下例子来理解。

假设有3个球,分别是红球、蓝球和绿球,现在要将这3个球放在一个篮子里。

那么,一共有多少种不同的排列方式呢?首先,我们可以将红球放在篮子的第一个位置,然后将蓝球放在第二个位置,最后将绿球放在第三个位置。

这样的排列方式是一种情况。

同样的,我们可以将红球放在第一个位置,绿球放在第二个位置,蓝球放在第三个位置,这样的排列方式也是一种情况。

根据这个思路,我们可以得出结论,一共有3个球,所以一共有3!(3的阶乘)种不同的排列方式。

组合的计算方法则是通过以下例子来理解。

假设有5个人,我们要从中选出3个人组成一个小组。

那么,一共有多少种不同的组合方式呢?首先,我们可以从5个人中选出一个人作为小组的第一个成员,然后从剩下的4个人中选出一个人作为第二个成员,最后从剩下的3个人中选出一个人作为第三个成员。

这样的组合方式是一种情况。

同样的,我们可以从5个人中选出一个人作为第一个成员,从剩下的4个人中选出一个人作为第二个成员,从剩下的3个人中选出一个人作为第三个成员,这样的组合方式也是一种情况。

根据这个思路,我们可以得出结论,一共有5个人,我们要选出3个人,所以一共有5C3(5的组合数)种不同的组合方式。

二、概率统计概率统计是研究随机事件发生的可能性的一门学科。

它可以帮助我们预测事件发生的概率,并根据概率进行决策和分析。

概率的计算方法可以通过以下例子来理解。

假设有一个装有10个红球和10个蓝球的箱子,现在我们从中随机抽取一个球。

那么,抽到红球的概率是多少呢?首先,我们可以计算出总共有20个球,其中10个是红球。

高考数学排列组合与概率计算重点清单

高考数学排列组合与概率计算重点清单

高考数学排列组合与概率计算重点清单一、背景介绍在高考数学中,排列组合和概率计算是不可忽视的重要内容。

掌握了这两个知识点,可以帮助学生在考试中获得更好的成绩。

本文将为大家列出高考数学排列组合与概率计算的重点清单,帮助大家快速掌握这些知识点。

二、排列组合的重点1. 排列的定义和运算法则- 不重复元素的全排列:n!- 重复元素的全排列:n!/(n1!×n2!×...)- 部分相同元素的排列:n!/(n1!×n2!×...),其中n1、n2等表示重复出现的元素个数2. 组合的定义和运算法则- 不重复元素的组合:C(n, k) = n!/(k!(n-k)!)- 重复元素的组合:C(n+k-1, k-1)- 全部选或全不选的方案数:2^n3. 排列组合的应用- 在几何问题中,通过排列组合可以确定数量关系、判断位置关系等- 在概率问题中,通过排列组合可以计算事件发生的概率- 在工程问题中,通过排列组合可以计算不重复的方案数三、概率计算的重点1. 事件的概率定义- 事件发生的概率:P(A) = n(A)/n(S),其中n(A)为事件A发生的可能性,n(S)为样本空间中的所有可能性数- 事件的对立事件:P(A') = 1-P(A)- 事件的必然事件:P(S) = 1,其中S为样本空间2. 概率的运算性质- 事件的和事件概率:P(A∪B) = P(A) + P(B) - P(A∩B)- 事件的积事件概率:P(A∩B) = P(A) × P(B|A),其中P(B|A)表示在事件A发生的条件下事件B发生的概率3. 条件概率与独立事件- 条件概率的计算:P(A|B) = P(A∩B)/P(B)- 事件的独立性:如果P(A∩B) = P(A) × P(B),则事件A与事件B 相互独立4. 一些常见的概率问题- 排列组合与概率计算相结合的问题- 球与盒子问题、扑克牌问题等四、总结通过本文的介绍,我们了解到高考数学中排列组合与概率计算的重点知识点,这些内容对于考生来说至关重要。

高中数学二轮 三轮复习 专题6 排列 组合 概率与统计课件 文 大纲人教

高中数学二轮 三轮复习 专题6 排列 组合 概率与统计课件 文 大纲人教

专题 6 │ 考情分析预测
预测 2011 年会延续这种考情,考题难度不会再加强, 对计数原理、概率及随机变量的分布还会重点考查.要重 视对概率意义的理解,重视概率的实际应用.
第17讲│排列、组合与二项式定理
第17讲 排列、组合与二项式定理
第 17 讲 │ 主干知识整合
主干知识整合
第 17 讲 │ 主干知识整合
第 17 讲 │ 要点热点探究
【点评】 本题涉及排列与组合的综合性问题,常用到 的策略有(1)特殊元素(特殊位置)优先安排;(2)合理分类与准 确分步;(3)先选后排;(4)相邻问题捆绑法;(4)不相邻问题 插空法.
第 17 讲 │ 要点热点探究
要点热点探究 ► 探究点二 排列、组合及综合应用
[2009·全国卷Ⅱ] 甲、乙两人从 4 门课程中各选修 2 门.则甲、乙所选的课程中至少有 1 门不相同的选法共有 ()
A.6 种 B.12 种 C.30 种 D.36 种
第 17 讲 │ 要点热点探究
C 【解析】 解法一:间接法:甲、乙两人从 4 门课 程中各选修 2 门共有 C42C24种不同的选法;甲、乙两人从 4 门课程中各选修 2 门所选的课程全相同的共有 C24种不同方 法;故共有 C24·C24-C24=30 种.故选 C.
(3)D 【解析】 按两个儿童入住情况分类:(1)当 2 个 儿童都住在 A 房间时,成人的住法有两类,一类是 3 个成人 分住在 A、B、C 三个房间,有 A33=6 种不同方法;另一类 是 3 成人分住在 A、B 两个房间里,共有 C32种不同方法.此 时共有 6+3=9 种不同方法;(2)当 2 个儿童分住在 A、B 两 个房间时,有 A22=2 种不同住法,成人的住法又分为两类: 一类是 3 成人分住在 A、B、C 三个房间,有 A33=6 种不同 方法,另一类是 3 成人分住在 A、B 两个房间里,共有 C23= 3 种不同方法.因此,共有 2×(6+3)=18 种不同住法.综 上可知,总的入住方式共有 9+18=27 种.

(完整版)排列组合题型分类解析(教师版)

(完整版)排列组合题型分类解析(教师版)

排列组合题型分类解析一. 知识梳理:1、 两个计数原理:___________________________(分类)____________________________(分步)2、 排列:(1)排列的定义:_______________________(2)排列数公式:__________________________3、 组合:(1)组合的定义:_______________________(2)组合数公式:__________________________(3)组合数性质:①______________②_______________二.排列组合题常见解法.1. 分类法.例1:50件产品中有4件是次品从中任意抽出5件,至少有三件是次品的抽法共多少种.解析:分两类,有4件次品抽法14644C C ⋅;有三件次品的抽法24634C C ⋅,所以共有14644C C ⋅ +24634C C ⋅=4186种不同的抽法.练习1. 假设在100件产品中有3件次品,从中任意抽取5件. ①至少有两件是次品的抽法共多少种? ②至多有两件是次品的抽法共有多少种?2. 捆绑法例2: 6名同学排成一排,其中甲、乙必须排在一起的不同排法共有___种 ( C )(A)720种 (B)360种 (C)240种 (D)120种解析 将甲、乙两人视为一人,则有55A 种,再将甲、Z 两人互换位置,则共有5522A A ⋅=240种.练习2. 7个人按如下各种方式排队照相, 甲乙两人要站在一起的排法共有多少种?练习3. 6人站成一排,其中甲乙丙不全相邻的排法共有_________种3. 对称法例3. A 、B 、C 、D 、E 五人并排站在一排,若B 必须站在A 的右边(A 、B 可以不相邻).则不同排法共有( )。

A. 24种B. 60种C. 90种D. 120种解析:考虑对称性,B 在A 右和A 在B 右机会均等.应得排法5521A =60种. 说明 本题还可以推广到更为一般的情况,m 个人并排站成一排,其中n(m>n)个人的相对顺序一定,共有n n m m A A 种.如例3中,若A 、B 、C 顺序一定,共有3355A A =20种。

高三数学总复习--排列组合与概率统计

高三数学总复习--排列组合与概率统计

排列组合复习一、 知识回顾1.分类计数原理和分步计数原理 (1)分类计数原理(加法原理):做一件事情,完成它可以有n 类办法,在第一类办法中有m 1种不同的方法,在第二类办法中有m 2种不同的方法,……,在第n 类办法中有m n 种不同的方法。

那么完成这件事共有 N=m 1+m 2+…+m n 种不同的方法。

(2) 分步计数原理(乘法原理):做一件事情,完成它需要分成n 个步骤,做第一步有m 1种不同的方法,做第二步有m 2种不同的方法,……,做第n 步有m n 种不同的方法,那么完成这件事有 N=m 1×m 2×…×m n 种不同的方法。

2.排列的定义:从n 个不同元素中,任取m(n m ≤)个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列 .3.排列数定义:从n 个不同元素中,任取m(n m ≤)个元素的所有排列的个数叫做从n 个元素中取出m 元素的排列数,用符号mn A 表示.4.排列数公式:!()()().()!n m n nn m n m A n An n n n m A n m --=---+==-1215.全排列:n 个不同元素全部取出的排列。

6.阶乘:从自然数1到n 的连乘积,记为!n n A n = ,规定:0!=17.组合的定义:从n 个不同元素中,任取m(n m ≤)个元素(这里的被取元素各不相同)并成一组,叫做从n 个不同元素中取出m 个元素的一个组合。

8.组合与排列的区别:组合无序,排列有序。

9.组合数:从n 个不同元素中,任取m(n m ≤)个元素的所有组合的个数叫做从n 个元素中取出m 元素的组合数,用符号mn C 表示.10.组合数公式:()()()!.!!()!m m n n mm A n n n n m n C A m m n m ---+===-121()n m m n ≤∈*,,N11.两个性质:m n n m n C C -=;11-++=m nm n m n C C C . 规定:01.n C =12.几个常用公式:⑴ !)!1(!n n n n -+=⋅ ⑵)!1(1!1)!1(+-=+n n n n ⑶ 111+++=+++m n m n m m m m C C C C⑷m mm m m n A A A ++++=1m m A ()m mm m m m m n m n C C C A C ++++++=⋅111概率统计复习分布列、数学期望和方差1、 分布列:ξx 1x 2 … x i … PP 1 P 2… P i…2、分布列的两个性质: ⑴P i ≥0,i =1,2,...; ⑵P 1+P 2+ (1)3、数学期望: 一般地,若离散型随机变量ξ的概率分布为ξ x 1 x 2 … x n … Pp 1p 2…p n…则称 =ξE +11p x +22p x …++n n p x … 为ξ的数学期望,简称期望. 性质: b aE b a E +=+ξξ)(4、方差:ξD =121)(p E x ⋅-ξ+222)(p E x ⋅-ξ+…+n n p E x ⋅-2)(ξ+… 称为随机变量ξ的均方差,简称为方差,式中的ξE 是随机变量ξ的期望. 性质:(1)ξξD a b a D 2)(=+;(2)22)(ξξξE E D -=;5、二项分布:ξ~B (n ,p ),并记kn kkn qp C -=b (k ;n ,p ).ξ1 … k … nPnn q p C 00111-n n q p C … kn k k n q p C - …q p C n n nE ξ=np, =ξD np (1-p )排列组合试题1、不同的五种商品在货架上排成一排,其中甲、乙两种必须排在一起,丙、丁两种不能排在一起,则不同的排法种数共有A、12种B、20种C、24种D、48种2、有6个座位连成一排,安排3人就座,恰有两个空位相邻的不同坐法有A、36种B、48种C、72种D、96种3、从0,1,2,3,4每次取出不同的三个数字组成三位数,那么这些三位数的个位数字之和为A、80B、90C、110D、1204、以正方体的顶点为顶点,能作出的三棱锥的个数是B、C、-6D、5、5人站成一排,其中A不在左端也不和B相邻的排法种数为A、48B、54C、60D、666、由数字0,1,2,3,4,5可以组成无重复数字且奇偶数字相间的六位数的个数有A、72B、60C、48D、527、用0,1,2,3,4组成没有重复数字的全部五位数中,若按从小到大的顺序排列,则数字12340应是第()个数。

高考数学回归课本教案:排列组合与概率

高考数学回归课本教案:排列组合与概率

高考数学回归课本教案:排列组合与概率一、教学目标1. 理解排列组合的概念,掌握排列组合的计算方法。

2. 理解概率的基本原理,掌握概率的计算方法。

3. 能够运用排列组合和概率的知识解决实际问题。

二、教学内容1. 排列组合的概念和计算方法。

2. 概率的基本原理和计算方法。

3. 排列组合和概率在实际问题中的应用。

三、教学重点1. 排列组合的计算方法。

2. 概率的计算方法。

四、教学难点1. 排列组合的复杂计算。

2. 概率的推理和计算。

五、教学方法1. 采用讲解、示例、练习相结合的方法,帮助学生理解和掌握排列组合和概率的知识。

2. 通过实际问题的讨论,培养学生的应用能力。

一、排列组合的概念和计算方法1. 排列的概念和计算方法a. 排列的定义b. 排列的计算公式c. 排列的示例和练习2. 组合的概念和计算方法a. 组合的定义b. 组合的计算公式c. 组合的示例和练习二、概率的基本原理和计算方法1. 概率的概念和计算方法a. 概率的定义b. 概率的计算公式c. 概率的示例和练习2. 条件概率和独立事件的概率a. 条件概率的定义和计算方法b. 独立事件的定义和概率计算方法c. 条件概率和独立事件的示例和练习三、排列组合和概率在实际问题中的应用1. 排列组合在实际问题中的应用a. 人员安排问题的解决b. 活动安排问题的解决c. 排列组合应用题的练习2. 概率在实际问题中的应用a. 概率在决策中的应用b. 概率在预测中的应用c. 概率应用题的练习这只是一个初步的教案框架,具体的内容可以根据实际需要进行调整和补充。

希望对你有所帮助。

六、排列组合的综合应用1. 排列组合的综合问题解决a. 多重排列组合问题的分析b. 排列组合问题的高级应用c. 综合应用题的练习七、概率的进一步理解和应用1. 概率的公理体系和性质a. 概率的基本公理b. 概率的互补事件和独立事件的性质c. 概率的练习题2. 随机事件的分布a. 离散型随机变量的定义和性质b. 连续型随机变量的定义和性质c. 随机事件分布列的练习题八、概率的计算方法1. 直接计算法a. 利用概率的基本性质计算概率b. 利用排列组合计算概率c. 直接计算法的练习题2. 条件计算法a. 利用条件概率计算概率b. 利用独立事件的概率计算概率c. 条件计算法的练习题九、概率分布和期望值1. 离散型随机变量的期望值a. 离散型随机变量的期望值的定义和性质b. 离散型随机变量期望值的计算方法c. 离散型随机变量期望值的练习题2. 连续型随机变量的期望值a. 连续型随机变量的期望值的定义和性质b. 连续型随机变量期望值的计算方法c. 连续型随机变量期望值的练习题十、实际问题的概率分析和解决1. 概率模型构建a. 实际问题概率模型的建立b. 概率模型的求解和分析c. 概率模型构建的练习题2. 实际问题的概率解决a. 利用概率解决随机事件问题b. 利用概率解决决策问题c. 实际问题概率解决的练习题重点和难点解析一、排列组合的概念和计算方法难点解析:排列组合的复杂计算,尤其是当元素数量较多时,如何快速准确地计算出结果。

高考数学一轮复习知识点之排列、组合和概率

高考数学一轮复习知识点之排列、组合和概率

高考数学一轮复习知识点之排列、组合和概率排列是指从给定个数的元素中取出指定个数的元素进行排序。

以下是查字典数学网整理的高考数学一轮复习知识点,请考生学习。

.解排列组合问题的依据是:分类相加,分步相乘,有序排列,无序组合。

解排列组合问题的规律是:相邻问题捆绑法;不邻问题插空法;多排问题单排法;定位问题优先法;定序问题倍缩法;多元问题分类法;有序分配问题法;选取问题先排后排法;至多至少问题间接法。

.二项式系数与展开式某一项的系数易混,第r+1项的二项式系数为。

二项式系数最大项与展开式中系数最大项易混。

二项式系数最大项为中间一项或两项;展开式中系数最大项的求法要用解不等式组来确定r..你把握了三种常见的概率公式吗?(①等可能事件的概率公式;②互斥事件有一个发生的概率公式;③相互独立事件同时发生的概率公式。

) .二项式展开式的通项公式、n次独立重复试验中事件A发生k次的概率易记混。

通项公式:它是第r+1项而不是第r项;事件A发生k次的概率:。

其中k=0,1,2,3,,n,且0家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,小孩一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。

我把幼儿在园里的阅读活动及阅读情形及时传递给家长,要求小孩回家向家长朗诵儿歌,表演故事。

我和家长共同配合,一道训练,幼儿的阅读能力提高专门快。

.求分布列的解答题你能把步骤写全吗?如何对总体分布进行估量?(用样本估量总体,是研究统计问题的一个差不多思想方法,一样地,样本容量越大,这种估量就越精确,要求能画出频率分布表和频率分布直方图;明白得频率分布直方图矩形面积的几何意义。

)要练说,得练看。

看与说是统一的,看不准就难以说得好。

练看,确实是训练幼儿的观看能力,扩大幼儿的认知范畴,让幼儿在观看事物、观看生活、观看自然的活动中,积存词汇、明白得词义、进展语言。

在运用观看法组织活动时,我着眼观看于观看对象的选择,着力于观看过程的指导,着重于幼儿观看能力和语言表达能力的提高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、排列组合问题的解题策略一、相临问题——捆绑法例1.7名学生站成一排,甲、乙必须站在一起有多少不同排法?解:两个元素排在一起的问题可用“捆绑”法解决,先将甲乙二人看作一个元素与其他五人进行排列,并考虑甲乙二人的顺序,所以共有种。

评注:一般地: 个人站成一排,其中某个人相邻,可用“捆绑”法解决,共有种排法。

二、不相临问题——选空插入法例2. 7名学生站成一排,甲乙互不相邻有多少不同排法?解:甲、乙二人不相邻的排法一般应用“插空”法,所以甲、乙二人不相邻的排法总数应为:种 .评注:若个人站成一排,其中个人不相邻,可用“插空”法解决,共有种排法。

三、复杂问题——总体排除法在直接法考虑比较难,或分类不清或多种时,可考虑用“排除法”,解决几何问题必须注意几何图形本身对其构成元素的限制。

例3.(1996年全国高考题)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有多少个.解:从7个点中取3个点的取法有种,但其中正六边形的对角线所含的中心和顶点三点共线不能组成三角形,有3条,所以满足条件的三角形共有-3=32个.四、特殊元素——优先考虑法对于含有限定条件的排列组合应用题,可以考虑优先安排特殊位置,然后再考虑其他位置的安排。

例4. (1995年高考题) 1名老师和4名获奖学生排成一排照像留念,若老师不排在两端,则共有不同的排法种.解:先考虑特殊元素(老师)的排法,因老师不排在两端,故可在中间三个位置上任选一个位置,有种,而其余学生的排法有种,所以共有=72种不同的排法.例5.(2000年全国高考题)乒乓球队的10名队员中有3名主力队员,派5名队员参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有种.解:由于第一、三、五位置特殊,只能安排主力队员,有种排法,而其余7名队员选出2名安排在第二、四位置,有种排法,所以不同的出场安排共有=252种.五、多元问题——分类讨论法对于元素多,选取情况多,可按要求进行分类讨论,最后总计。

例6.(2003年春招)某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为(A )A.42 B.30 C.20 D.12解:增加的两个新节目,可分为相临与不相临两种情况:1.不相临:共有A62种;2.相临:共有A22A61种。

故不同插法的种数为:A62 +A22A61=42 ,故选A。

六、混合问题——先选后排法对于排列组合的混合应用题,可采取先选取元素,后进行排列的策略.例7.(2002年高考)12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有()解:本试题属于均分组问题。

则12名同学均分成3组共有种方法,分配到三个不同的路口的不同的分配方案共有:种,故选A。

例8.(2003年高考试题)从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法共有()A.24种 B.18种 C.12种 D.6种解:先选后排,分步实施. 由题意,不同的选法有: C32种,不同的排法有: A31·A22,故不同的种植方法共有A31·C32·A22=12,故应选C.七.相同元素分配——档板分隔法例9.把10本相同的书发给编号为1、2、3的三个学生阅览室,每个阅览室分得的书的本数不小于其编号数,试求不同分法的种数。

请用尽可能多的方法求解,并思考这些方法是否适合更一般的情况?本题考查组合问题。

解:先让2、3号阅览室依次分得1本书、2本书;再对余下的7本书进行分配,保证每个阅览室至少得一本书,这相当于在7本相同书之间的6个“空档”插入两个相同“I”(一般可视为“隔板”)共有种插法,即有15种分法。

八、顺序固定用“除法”对于某几个元素按一定的顺序排列问题,可先把这几个元素与其他元素一同进行全排列,然后用总的排列数除于这几个元素的全排列数。

例10、6个人排队,甲、乙、丙三人按“甲---乙---丙”顺序排的排队方法有多少种?分析:不考虑附加条件,排队方法有A66种,而其中甲、乙、丙的A33种排法中只有一种符合条件。

故符合条件的排法有A66 ÷A33 =120种。

(或A63种)例11、4个男生和3个女生,高矮不相等,现在将他们排成一行,要求从左到右女生从矮到高排列,有多少种排法。

解:先在7个位置中任取4个给男生,有A74 种排法,余下的3个位置给女生,只有一种排法,故有A74 种排法。

(也可以是A77 ÷A33种)九、一一对应法:例11.在100名选手之间进行单循环淘汰赛(即一场失败要退出比赛)最后产生一名冠军,要比赛几场?解:要产生一名冠军,要淘汰冠军以外的所有选手,即要淘汰99名选手,要淘汰一名就要进行一场,故比赛99场。

二、随机变量及其分布列1.离散型随机变量:可以一一列出。

2.离散型随机变量的分布列(1)设离散型随机变量X 可能取的值为12,,,,i x x x ,X 取每一个值(1,2,)i x i =的概率()i i P X x p ==,则下表称为随机变量X 的概率分布,简称X 的分布列。

性质:0,(1,2,)i p i ≥=,概率之和为121i p p p ++++=。

离散型随机变量的数学期望:()n n p x p x p x X E +++= 2211离散型随机变量的方差:()()()()()()()n n p X E x p X E x p X E x X D 2222121-++-+-=(2)两点分布:(3)二项分布:在独立重复试验概率公式中,若将事件A 发生的次数设为X ,事件A 不发生的概率为p q -=1,则在n 次独立重复试验中,事件A 恰好发生k 次的概率为()k n k k n q p C k X P -==,其中n k ,2,1,0=。

称这样的离散型随机变量X 服从参数为p n ,的二项分布,记作()p n B X ,~。

(4)超几何分布:一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰好有X 件次品,则事件{}X k =发生的概率为()k n kM N MnNC C P X k C --==,0,1,2,,k m =,其中min{,}m M n =,且*,,n N M N N ≤∈,此时称分布列为超几何分布列。

分布数学期望方差二点分布 ()p X E = ()pq X D =二项分布 ()np X E = ()()p q npq X D -==1超几何分布()NnMX E =(6)正态分布:正态变量概率密度曲线函数表达式:()()R x ex f x ∈⋅=--,21222σμσπ,其中σμ,是参数,且+∞<<-∞>μσ,0。

如下图:X 1x 2x (i)x ……P1p 2p …… i p…… 1-pX P0 1 p例1:已知随机变量X 的分布列为:X -2 -1 01 2 3P 1121413112 16 112分别求出随机变量2121,2Y X Y X ==的分布列。

解:12,Y Y 分别是X 的函数,而X 函数关系可用表的形式表示出来,然后再写出分布列。

首先列出如下表格:X -2 -1 0 1 2 31Y -1 12- 0 121 322Y41149P112 1413 112 16 112 从而由上表可得两个分布列112Y X =-112- 0 12 1 32P1121413 112 16 11222Y X =149P13 13 14 112例2.某种彩票的开奖是从1,2,3,…,36中任意选出7个基本,凡购买的彩票上的7个中有4个或4个以上基本含有基本数 4 5 6 7 中奖等级四等奖三等奖二等奖一等奖解.527297368526(5)(5;7,7,36)8347680C C P X H C ==== 61729736203(6)(6;7,7,36)8347680C C P X H C ====707297361(7)(7;7,7,36)8347680C C P X H C ==== 故至少中三等奖的概率为 8730(5)(5)(6)(7)8347680P X P X P X P X ≥==+=+==例3.甲、乙两人各进行3次射击,甲每次击中目标的概率为12,乙每次击中目标的概率为23,求:(1)记甲击中目标的次数为X ,求X 的概率分布及数学期望()E X ; (2)求乙至多击中目标2次的概率;(3)(3)求甲恰好比乙多击中目标2次的概率.解.(()0123 1.58888E X =⨯+⨯+⨯+⨯=或()3 1.52E X =⨯=(2)乙至多击中目标2次的概率为3332191()327C -=(3)设甲恰好比乙多击中目标2次为事件A ,甲恰击中目标2次且乙恰击中目标0次为事件1B ,甲恰击中目标3次且乙恰击中目标1次为事件2B ,则12A B B =+,1B 、2B 为互斥事件,1231121()()()8278924P A P B P B =+=+=例4.高二(1)班的一个研究性学习小组在网上查知,某珍贵植物种子在一定条件下发芽成功的概率为12,该研究性学习小组又分成两个小组进行验证性实验.(1)第1组做了5次这种植物种子的发芽实验(每次均种下一粒种子),求他们的实验至少有3次成功的概率; (2)第二小组做了若干次发芽试验(每次均种下一粒种子),如果在一次实验中种子发芽成功就停止实验,否则将继续进行下次实验,直到种子发芽成功为止,但发芽实验的次数最多不超过5次,求第二小组所做种子发芽实验的次数X 的概率分布列和期望。

解(1)至少有3次发芽成功,即有3次、4次、5次发芽成功,所以所求概率 3545555551111()()()2222P C C C =++= (2所以 ()12345248161616E X =⨯+⨯+⨯+⨯+⨯= 【跟踪训练】 1、(2011•文数)工人月工资y (元)与劳动生产率x (千元)变化的回归方程为=50+80x ,下列判断正确的是 ② ①劳动生产率为1千元时,工资为130元;②劳动生产率提高1千元,则工资提高80元;③劳动生产率提高1千元,则工资提高130元;④当月工资为210元时,劳动生产率为2千元.1解答:解:劳动生产率提高1千元,则工资提高80元,②正确,③不正确. ①④不满足回归方程的意义. 故答案为:②. 2、(2011•理数)某数学老师身高176cm ,他爷爷、父亲和儿子的身高分别是173cm 、170cm 和182cm .因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他子的身高为 185 cm .2解答:解:设X 表示父亲的身高,Y 表示儿子的身高则Y 随X 的变化情况如下;建立这种线性模型: X 173 170 176 182 Y 170 176 182? 用线性回归公式,求解得线性回归方程y=x+3 当x=182时,y=185 故答案为:185 3、(2011•理数)甲、乙两队进行排球决赛,现在的情形是甲队只要在赢一次就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为( ) A 、 B 、 C 、 D 、 3解答:解:甲要获得冠军共分为两个情况 一是第一场就取胜,这种情况的概率为一是第一场失败,第二场取胜,这种情况的概率为×= 则甲获得冠军的概率为 故选D4、(2010理数)7.已知随机变量X 服从正态分布N(3.1),且(24)P X ≤≤=0.6826,则p (X>4)=( )A 、0.1588B 、0.1587C 、0.1586 D0.1585 4.B .1(34)(24)2P X P X ≤≤=≤≤=0.3413,(4)0.5(24)P X P X >=-≤≤=0.5-0.3413=0.1587. 5、(2010理数)8.为了迎接2010年亚运会,某大楼安装5个彩灯,它们闪亮的顺序不固定,每个彩灯彩灯闪亮只能是红、橙、黄、绿、蓝中的一种颜色,且这5个彩灯所闪亮的颜色各不相同.记这5个彩灯有序地闪亮一次为一个闪烁,在每个闪烁中,每秒钟有且仅有一个彩灯闪亮,而相邻两个闪烁的时间间隔均为5秒。

相关文档
最新文档