人教版九年级数学上册第二十二章二次函数 知识点总结

合集下载

人教版九年级上册第22章二次函数图像与性质知识点题型总结

人教版九年级上册第22章二次函数图像与性质知识点题型总结

二次函数图像及性质【二次函数的定义】一般地,形如y = ax2+bx + c Wc为常数,“工0)的函数称为兀的二次函数,其中兀为自变量,为因变量,J b、c分别为二次函数的二次项、一次项和常数项系数.注意:和一元二次方程类似,二次项系数“工0,而b、c可以为零.二次函数的自变量的取值范朗是全体实数.【二次函数的图象】1.二次函数图象与系数的关系(1)“决左抛物线的开口方向当“>0时,抛物线开口向上;当“<0时,抛物线开口向下.反之亦然.同决过抛物线的开口大小:同越大,抛物线开口越小;同越小,抛物线开口越大.温馨提示:几条抛物线的解析式中,若问相等,则其形状相同,即若"相等,则开口及形状相同,若a互为相反数,则形状相同、开口相反.(2)〃和"共同决左抛物线对称轴的位置(抛物线的对称轴:S2a当b=o时,抛物线的对称轴为y轴;当方同号时,对称轴在轴的左侧;当〃异号时,对称轴在y轴的右侧・(3)“的大小决泄抛物线与y轴交点的位置(抛物线与y轴的交点坐标为(o,C)当c=o时,抛物线与y轴的交点为原点:当c>o时,交点在轴的正半轴:当c<0时,交点在y轴的负半轴.2•二次函数图象的画法五点绘图法:利用配方法将二次函数y = ax2 +bx + c化为顶点式y = a(x-h)2 +k,确泄其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y轴的交点(0, c)、以及(0, c)关于对称轴对称的点(2力,c)、与x轴的交点(占,0) , (x2 , 0)(若与x 轴没有交点,则取两组关于对称轴对称的点)・画草图时应抓住以下几点:开口方向,对称轴,顶点,与X轴的交点,与y轴的交点.3•点的坐标设法(1)一次函数y = ax + h图像上的任意点可设为(“与+“)•其中再=0时.该点为直线与y轴交点.(2)二次函数y = ax2+bx + c(心0)图像上的任意一点可设为(石,妙?+站+可.再=0时,该点为抛物线与y轴交点,当x=-A时,该点为抛物线顶点.2a⑶ 点(召,yj关于(兀2,x2)的对称点为(2兀-若,2比-)・4•二次函数的图象信息(1)根据抛物线的开口方向判断a的正负性.(2)根据抛物线的对称轴判断-仝的大小.2a(3)根据抛物线与y轴的交点,判断。

人教版初中数学第二十二章二次函数知识点

人教版初中数学第二十二章二次函数知识点

第二十二章二次函数22.1 二次函数的图象和性质二次函数1.二次函数的概念:一般地,形如2y ax bx c =++〔a b c ,,是常数,0a ≠〕的函数,叫做二次函数.这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的构造特征:⑴等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二次函数2y ax =的图象和性质1. 二次函数根本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小.例1.假设抛物线y=ax 2经过P 〔1,﹣2〕,那么它也经过 ( )A .〔2,1〕B .〔﹣1,2〕C .〔1,2〕D .〔﹣1,﹣2〕 【答案】 【解析】试题解析:∵抛物线y=ax 2经过点P 〔1,-2〕, ∴x=-1时的函数值也是-2, 即它也经过点〔-1,-2〕. 应选D .考点:二次函数图象上点的坐标特征.例2.假设点(2,-1)在抛物线上,那么,当x=2时,y=_________ 【答案】-1 【解析】试题分析:先把(2,-1)直接代入即可得到解析式,再把x=2代入即可.由题意得14-=a ,41-=a ,那么241x y -=, 当2=x 时,.1441-=⨯-=y考点:此题考察的是二次函数点评:解答此题的关键是掌握二次函数图象上的点适合这个二次函数的关系式. 2. 2y ax c =+的性质: 上加下减.例1.假设抛物线y=ax 2+c 经过点P 〔l ,-2〕,那么它也经过〔〕A .P 1〔-1,-2 〕B .P 2〔-l , 2 〕C .P 3〔 l , 2〕D .P 4〔2, 1〕【答案】A 【解析】试题分析:因为抛物线y=ax 2+c 经过点P 〔l ,-2〕,且对称轴是y 轴,所以点P 〔l ,-2〕的对称点是〔-1,-2〕,所以P 1〔-1,-2〕在抛物线上,应选:A. 考点:抛物线的性质.例2.函数y=ax+b 经过〔1,3〕,〔0,﹣2〕,那么a ﹣b=〔〕 A .﹣1 B .﹣3 C .3 D .7 【答案】D . 【解析】试题分析:∵函数y=ax+b 经过〔1,3〕,〔0,﹣2〕,2y ax =2y ax =∴,解得.∴a ﹣b=5+2=7. 应选D .考点:1.直线上点的坐标与方程的关系;2.求代数式的值.例3.两条直线y 1=ax +b 与y 2=bx +a 在同一坐标系中的图象可能是以下图中的 ( )【答案】无正确答案【解析】分析:首先根据两个一次函数的图象,分别考虑a ,b 的值,看看是否矛盾即可. 解:A 、由y 1的图象可知,a <0,b <0;由y 2的图象可知,a>0,b<0,两结论矛盾,故错误; B 、由y 1的图象可知,a >0,b >0;由y 2的图象可知,a >0,b<0,两结论相矛盾,故错误; C 、由y 1的图象可知,a>0,b<0;由y 2的图象可知,a <0,b <0,两结论相矛盾,故错误; D 、由y 1的图象可知,a >0,b >0;由y 2的图象可知,a<0,b<0,两结论相矛盾,故错误. 故无正确答案.点评:此题主要考察了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y=kx+b 的图象有四种情况: ①当k >0,b >0,函数y=kx+b 的图象经过第一、二、三象限; ②当k >0,b <0,函数y=kx+b 的图象经过第一、三、四象限; ③当k <0,b >0时,函数y=kx+b 的图象经过第一、二、四象限; ④当k <0,b <0时,函数y=kx+b 的图象经过第二、三、四象限.二次函数()2y a x h k =-+的图象和性质左加右减.()2y a x h k =-+的性质:a b 3b 2+=⎧⎨=-⎩a 5b 2=⎧⎨=-⎩a 的符号 开口方向 顶点坐标 对称轴 性质0a >向上()0h ,X=hx h >时,y 随x 的增大而增大;x h <时,y随x 的增大而减小;x h =时,y 有最小值0.0a < 向下()0h ,X=hx h >时,y 随x 的增大而减小;x h <时,y随x 的增大而增大;x h =时,y 有最大值0.a 的符号开口方向 顶点坐标 对称轴 性质例1.将二次函数y=x 2﹣2x ﹣3化成y=〔x ﹣h 〕2+k 形式,那么h+k 结果为〔 〕 A .﹣5 B .5 C .3 D .﹣3 【答案】D . 【解析】试题分析:y=x 2-2x-3=〔x 2-2x+1〕-1-3=〔x-1〕 2-4. 那么h=1,k=-4, ∴h+k=-3. 应选D .考点: 二次函数的三种形式.例2.把二次函数y=x 2+6x+4配方成y=a 〔x-h 〕2+k 的形式,得y=___,它的顶点坐标是___. 【答案】〔x+3〕2-5,〔-3,-5〕 【解析】试题分析:y=2x +6x+4=2(3)5x ,那么顶点坐标为〔-3,-5〕.考点:二次函数的顶点式. 例3.把二次函数y =a 〔x -k 〕2+h 的形式,并写出它的图象的顶点坐标、对称轴. 【答案】y=顶点坐标〔3,-〕,对称轴方程x =3【解析】试题分析:y=x 2﹣3x+4=〔x ﹣3〕2﹣, 那么顶点坐标〔3,﹣〕,对称轴方程x=3, 考点:二次函数的图像及性质1、二次函数图象的平移〔1〕平移步骤:方法一:〔1〕将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; 43212+-=x x y 0a > 向上()h k , X=hx h >时,y 随x 的增大而增大;x h <时,y随x 的增大而减小;x h =时,y 有最小值k .0a < 向下 ()h k ,X=hx h >时,y 随x 的增大而减小;x h <时,y随x 的增大而增大;x h =时,y 有最大值k .〔2〕保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:〔2〕平移规律在原有函数的根底上“h 值正右移,负左移;k 值正上移,负下移〞. 概括成八个字“左加右减,上加下减〞. 方法二:〔1〕c bx ax y ++=2沿y 轴平移:向上〔下〕平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2〔或m c bx ax y -++=2〕〔2〕c bx ax y ++=2沿轴平移:向左〔右〕平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2〔或c m x b m x a y +-+-=)()(2〕例1.将二次函数y =x 2的图象向下平移一个单位,那么平移以后的二次函数的解析式为() A .y =x 2-1 B .y =x 2+1 C .y =(x -1)2 D .y =(x +1)2 【答案】A【解析】直接根据上加下减的原那么进展解答即可,将二次函数y =x 2的图象向下平移一个单位,那么平移以后的二次函数的解析式为:y =x 2-1.应选A.例2.将二次函数y=x 2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是 A .y=(x–1)2+2 B .y=(x+1)2+2 C .y=(x–1)2–2 D .y=(x+1)2–2 【答案】A . 【解析】试题分析:原抛物线的顶点为〔0,0〕,向右平移1个单位,再向上平移2个单位,那么新抛物线的顶点为〔1,2〕.可设新抛物线的解析式为y=〔x ﹣h 〕2+k ,代入得y=〔x ﹣1〕2+2. 应选A .【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位考点:二次函数图象与几何变换.例3.将二次函数的图象如何平移可得到的图象〔〕 A .向右平移2个单位,向上平移一个单位 B .向右平移2个单位,向下平移一个单位 C .向左平移2个单位,向下平移一个单位 D .向左平移2个单位,向上平移一个单位 【答案】C【解析】2243(2)1y x x x =++=+-,根据二次函数的平移性质得:向左平移2个单位,向下平移一个单位.应选C.例4.点P 〔﹣1,m 〕在二次函数y=x 2﹣1的图象上,那么m 的值为;平移此二次函数的图象,使点P 与坐标原点重合,那么平移后的函数图象所对应的解析式为. 【答案】0,y=x 2﹣2x . 【解析】∵点P 〔﹣1,m 〕在二次函数y=x 2﹣1的图象上, ∴〔﹣1〕2﹣1=m , 解得m=0,平移方法为向右平移1个单位,平移后的抛物线的二次函数的顶点坐标为〔1,﹣1〕,平移后的函数图象所对应的解析式为y=〔x ﹣1〕2﹣1=x 2﹣2x , 即y=x 2﹣2x .故答案为:0,y=x 2﹣2x .2、二次函数()2y a x h k =-+与2y ax bx c =++的比拟从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 3、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以2x y =342++=x x y及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,〔假设与x 轴没有交点,那么取两组关于对称轴对称的点〕.画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.4、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b aa ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-. 2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a =-时,y 有最大值244ac b a-.例1.当a < 0 时,方程ax 2+bx+c=0无实数根,那么二次函数y=ax 2+bx+c 的图像一定在〔〕 A 、x 轴上方 B 、x 轴下方 C 、y 轴右侧 D 、y 轴左侧 【答案】B 【解析】试题分析:∵方程ax 2+bx+c=0无实数根,∴b 2+4ac<0,即函数图形与x 轴没有交点 又∵a < 0,∴二次函数y=ax 2+bx+c 的图像一定在x 轴下方 应选B .考点:二次函数的性质例2.二次函数y=ax 2+bx+c 的图象如图,那么a 、b 、c 满足〔〕A 、a <0,b <0,c >0B 、a <0,b <0,c <0C 、a <0,b >0,c >0D 、a >0,b <0,c >0 【答案】A 【解析】试题分析:由于开口向下可以判断a <0,由与y 轴交于正半轴得到c >0,又由于对称轴x=-2ba<0,可以得到b <0,所以可以找到结果.试题解析:根据二次函数图象的性质, ∵开口向下, ∴a <0,∵与y 轴交于正半轴, ∴c >0, 又∵对称轴x=-2ba<0, ∴b <0, 所以A 正确.考点:二次函数图象与系数的关系.例3.二次函数y=ax 2+bx+c 的图象如图,其对称轴x=﹣1,给出以下结果: ①b 2>4ac ;②abc >0;③2a+b=0;④a+b+c >0;⑤a ﹣b+c <0, 那么正确的结论是〔〕A.①②③④B.②④⑤C.②③④D.①④⑤ 【答案】D 【解析】试题分析:根据抛物线与x 轴有两个交点,可得△=b 2﹣4ac >0,即b 2>4ac ,故①正确;根据抛物线对称轴为x=﹣2ba <0,与y 轴交于负半轴,因此可知ab >0,c <0,abc <0,故②错误; 根据抛物线对称轴为x=﹣2ba=﹣1,∴2a ﹣b=0,故③错误;当x=1时,y >0,即a+b+c >0,故④正确; 当x=﹣1时,y <0,即a ﹣b+c <0,故⑤正确; 正确的选项是①④⑤. 应选D .考点:二次函数图象与系数的关系例4.如果二次函数y =ax 2+bx+c 〔a≠0〕的图象如下图,那么〔〕A .a <0,b >0,c >0B .a >0,b <0,c >0C .a >0,b >0,c <0D .a >0,b <0,c <0 【答案】D 【解析】试题分析:因为抛物线开口向上,所以a >0,又对称轴在y 轴右侧,所以2ba->0,所以b <0,又因为抛物线与y 轴的交点在x 轴下方,所以c <0,所以a >0,b <0,c <0,应选:D . 考点:抛物线的性质.例5.抛物线y=ax 2+bx+c 与x 轴的公共点是〔﹣4,0〕,〔2,0〕,那么这条抛物线的对称轴是直线. 【答案】x=-1. 【解析】试题分析:因为点〔-4,0〕和〔2,0〕的纵坐标都为0,所以可判定是一对对称点,把两点的横坐标代入公式x=122x x +求解即可. 试题解析:∵抛物线与x 轴的交点为〔-4,0〕,〔2,0〕, ∴两交点关于抛物线的对称轴对称, 那么此抛物线的对称轴是直线x=4212-+=-,即x=-1. 考点:抛物线与x 轴的交点.5、二次函数解析式的表示方法1. 一般式:2y ax bx c =++〔a ,b ,c 为常数,0a ≠〕;2. 顶点式:2()y a x h k =-+〔a ,h ,k 为常数,0a ≠〕;3. 两根式:12()()y a x x x x =--〔0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标〕.注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.6、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边那么0>ab ,在y 轴的右侧那么0<ab ,概括的说就是“左同右异〞 总结: 3. 常数项c⑴当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. 二次函数解析式确实定:根据条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 抛物线上三点的坐标,一般选用一般式;2. 抛物线顶点或对称轴或最大〔小〕值,一般选用顶点式;3. 抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 抛物线上纵坐标一样的两点,常选用顶点式.7、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---; 2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++; 3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-;()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称〔即:抛物线绕顶点旋转180°〕2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a =--+-; ()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+. 5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+- 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原那么,选择适宜的形式,习惯上是先确定原抛物线〔或表达式的抛物线〕的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.22.2二次函数与一元二次方程1. 二次函数与一元二次方程的关系〔二次函数与x 轴交点情况〕:一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况.图象与x 轴的交点个数:①当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-. ②当0∆=时,图象与x 轴只有一个交点;③当0∆<时,图象与x 轴没有交点.1'当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >;2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵求二次函数的最大〔小〕值需要利用配方法将二次函数由一般式转化为顶点式;⑶根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷二次函数的图象关于对称轴对称,可利用这一性质,求和一点对称的点坐标,或与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,提醒二次函数、二次三项式和一元二次方程之间的内在联系:例1.函数k x x y +-=632〔k 为常数〕的图象经过点A 〔0.8,1y 〕,B 〔1.1,2y 〕,C 〔2,3y 〕,那么有〔〕A .1y <2y <3yB .1y >2y >3yC .3y >1y >2yD .1y >3y >2y【答案】C【解析】试题分析:因为函数k x x y +-=632的对称轴是6126b x a -=-=-=,且抛物线开口向上,所以可以画出函数图象的草图,观察图象可得:3y >1y >2y ,应选:C .考点:二次函数的性质、二次函数图象上点的坐标特点.例2.二次函数y=x 2+2mx +2,当x >2时,y 的值随x 的增大而增大,那么实数m 的取值X 围是.【答案】m≥-2.【解析】试题分析:根据二次函数的性质,利用二次函数的对称轴不大于2列式计算即可得解.试题解析:抛物线的对称轴为直线x=-221m ⨯=-m , ∵当x >2时,y 的值随x 值的增大而增大,∴-m≤2,解得m≥-2.考点:二次函数的性质.例3.函数c bx x y -+=2的图象经过点〔1,2〕,那么b-c 的值为.【答案】1【解析】试题分析:把点〔1,2〕代入c bx x y -+=2,得:12b c +-=,所以1b c -=.考点:函数图象上的点.例4.抛物线y=ax 2+bx+3的对称轴是直线x=1.〔1〕求证:2a+b=0;〔2〕假设关于x 的方程ax 2+bx ﹣8=0的一个根为4,求方程的另一个根.【答案】〔1〕见解析;〔2〕x=-2【解析】试题分析:直接利用对称轴公式代入求出即可;根据〔1〕中所求,再将x=4代入方程求出a ,b 的值,进而解方程得出即可.试题解析:〔1〕证明:∵对称轴是直线x=1=﹣2b a,∴b=-2a ∴2a+b=0; 〔2〕∵ax 2+bx ﹣8=0的一个根为4,∴16a+4b ﹣8=0,∵b=﹣2a ,∴16a ﹣8a ﹣8=0,解得:a=1,那么b=﹣2,∴a 2x +bx ﹣8=0为:2x ﹣2x ﹣8=0,那么〔x ﹣4〕〔x+2〕=0,解得:1x =4,2x =﹣2,故方程的另一个根为:﹣2.考点:二次函数的性质;二次函数图象与系数的关系;抛物线与x 轴的交点例5.函数21y x bx =+-的图象经过点〔3,2〕.〔1〕求这个函数的解析式;〔2〕当0x >时,求使2y ≥的x 的取值X 围.【答案】〔1〕221y x x =--;〔2〕3x ≥.【解析】试题分析:〔1〕把〔3,2〕代入函数解析式求出b 的值,即可确定出解析式;〔2〕利用二次函数的性质求出满足题意x 的X 围即可.试题解析:〔1〕∵函数21y x bx =+-的图象经过点〔3,2〕,∴9312b +-=,解得:2b =-,那么函数解析式为:221y x x =--;〔2〕当3x =时,2y =,根据二次函数性质当3x ≥时,2y ≥,那么当0x >时,使2y ≥的x 的取值X 围是3x ≥. 考点:待定系数法求二次函数解析式.22.3 实际问题与二次函数例1.在同一坐标系内,一次函数y=ax+b与二次函数y=ax2+8x+b的图象可能是〔〕【答案】C【解析】试题分析:A、对于一次函数a<0,对于二次函数a>0,那么不正确;B、对于一次函数b<0,对于二次函数b>0,那么不正确;C、正确;D、对于一次函数b<0,对于二次函数b>0,那么不正确.考点:函数图象例2.学生校服原来每套的售价是100元,后经连续两次降价,现在的售价是81元,那么平均每次降价的百分数是〔〕A.9% B.8.5% C.9.5% D.10%【答案】D.【解析】试题分析:设平均每次降价的百分数是x,根据等量关系“校服原来每套的售价是100元×〔1-下降率〕2=每套校服现在的售价是81元〞,列出方程100〔1-x〕2= 81元,解得x即可,故答案选D.考点:一元二次方程的应用.。

九年级数学上册第二十二章二次函数知识点总结归纳完整版(带答案)

九年级数学上册第二十二章二次函数知识点总结归纳完整版(带答案)

九年级数学上册第二十二章二次函数知识点总结归纳完整版单选题1、已知实数a ,b 满足b −a =1,则代数式a 2+2b −6a +7的最小值等于( )A .5B .4C .3D .2答案:A分析:由已知得b =a +1,代入代数式即得a 2-4a +9变形为(a -2)2+5,再根据二次函数性质求解. 解:∵b -a =1,∴b =a +1,∴a 2+2b -6a +7=a 2+2(a +1)-6a +7=a 2-4a +9=(a -2)2+5,∵(a -2)2≥0,∴当a =2时,代数式a 2+2b -6a +7有最小值,最小值为5,故选:A .小提示:本题考查二次函数的最值,通过变形将代数式化成(a -2)2+5是解题的关键.2、点A (m -1,y 1),B (m ,y 2)都在二次函数y =(x -1)2+n 的图象上.若y 1<y 2,则m 的取值范围为()A .m >2B .m >32C .m <1D .32<m <2答案:B分析:根据y 1<y 2列出关于m 的不等式即可解得答案.解:∵点A (m -1,y 1),B (m ,y 2)都在二次函数y =(x -1)2+n 的图象上,∴y 1=(m -1-1)2+n =(m -2)2+n ,y 2=(m -1)2+n ,∵y 1<y 2,∴(m -2)2+n <(m -1)2+n ,∴(m-2)2-(m-1)2<0,即-2m+3<0,∴m>3,2故选:B.小提示:本题考查了二次函数图象上点的坐标特征,解题的关键是根据已知列出关于m的不等式.3、抛物线y=x2−x−1经过点(m,3),则代数式m2−m−1的值为()A.0B.1C.2D.3答案:D分析:将点(m,3)代入代数式中即可得到结果.解:将点(m,3)代入m2−m−1中得,m2−m−1=3,故代数式m2−m−1的值为3,故选:D.小提示:本题考查代数式的值,根据函数图象经过的点求函数解析式,能够掌握属性结合思想是解决本题的关键.4、小明在研究抛物线y=−(x−ℎ)2−ℎ+1(h为常数)时,得到如下结论,其中正确的是()A.无论x取何实数,y的值都小于0B.该抛物线的顶点始终在直线y=x−1上C.当−1<x<2时,y随x的增大而增大,则ℎ≥2D.该抛物线上有两点A(x1,y1),B(x2,y2),若x1<x2,x1+x2<2ℎ,则y1>y2答案:C分析:根据二次函数的对称轴、二次函数图象上点的坐标特征、二次函数的性质,判断即可.解:A.∵y=−(x−ℎ)2−ℎ+1,∴当x=ℎ时,y max=−ℎ+1,当ℎ<1时,y max=−ℎ+1>0,故错误;B.∵抛物线y=−(x−ℎ)2−ℎ+1的顶点坐标为(ℎ,−ℎ+1),当x=ℎ时,y=−ℎ−1≠−ℎ+1,故错误;C.∵抛物线开口向下,当−1<x<2时,y随x的增大而增大,∴ℎ≥2,故正确;D.∵抛物线上有两点A(x1,y1),B(x2,y2),若x1<x2,x1+x2<2ℎ,∴x1+x2<ℎ,∴点A到对称轴的距离大2于点B到对称轴的距离,∴y1<y2,故错误.故选C.小提示:本题考查了二次函数的性质,二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键.5、根据表格中二次函数y=ax2+bx+c的自变量x与函数值y的对应值,可以判断方程ax2+bx+c=0的一个解x 的范围是()C.1<x<1.5D.1.5<x<2答案:B分析:利用二次函数和一元二次方程的性质.解:观察表格可知:当x=0.5时,y=-0.5;当x=1时,y=1,∴方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解x的范围是0.5<x<1.故选:B.小提示:本题考查了用图象法求一元二次方程的近似根,解题的关键是找到y由正变为负时,自变量的取值即可.6、某种产品按质量分为10个档次,生产最低档次产品,每件获利润8元,每提高一个档次,每件产品利润增加2元,用同样工时,最低档次产品每天可生产60件,提高一个档次将减少3件.如果用相同的工时生产,总获利润最大的产品是第k档次(最低档次为第一档次,档次依次随质量增加),那么k等于()A.5B.8C.9D.10答案:C分析:第k档次产品比最低档次产品提高了(k−1)个档次,则数量在60的基础上减少了3(k−1),每件产品利润在8的基础上增加2(k−1),据此可求出总利润关系,求出最值即可.解:设总利润为y元,∵第k档次产品比最低档次产品提高了(k−1)个档次,∴每天利润为y=[60−3(k−1)][8+2(k−1)]=−6(k−9)2+864,∴当k=9时,产品利润最大,每天获利864元,故选C.小提示:本题考查了二次函数的实际应用,借助二次函数解决实际问题是本题的关键.7、已知抛物线y=x2+bx+c与x轴的两个交点之间的距离为6,对称轴为x=3,则抛物线的顶点P关于x轴对称的点P′的坐标是()A.(3,9)B.(3,−9)C.(−3,9)D.(−3,−9)答案:A分析:根据抛物线y=x2+bx+c与x轴两个交点间的距离为6.对称轴为直线x=3,可以得到b、c的值,然后即可得到该抛物线的解析式,再将函数解析式化为顶点式,即可得到点P的坐标,然后根据关于x轴对称的点的特点横坐标不变,纵坐标互为相反数,即可得到点P关于x轴的对称点的坐标.解:设抛物线y=x2+bx+c与x轴两个交点坐标为(x1,0),(x2,0),∵抛物线y=x2+bx+c与x轴两个交点间的距离为6,对称轴为直线x=3,∴(x1﹣x2)2=(x1+x2)2﹣4x1x2=36,−b=3,2×1∴(﹣b)2﹣4×c=36,b=﹣6,解得:c=0,∴抛物线的解析式为y=x2﹣6x=(x﹣3)2﹣9,∴顶点P的坐标为(3,﹣9),∴点P关于x轴的对称点的坐标是(3,9),故选:A.小提示:本题考查抛物线与x轴的交点、二次函数的性质、关于x轴对称的点的坐标特点,解答本题的关键是求出点P的坐标,利用二次函数的性质解答.8、已知a是不为0的常数,函数y=ax和函数y=﹣ax2+a在同一平面直角坐标系内的图象可以是()A.B.C.D.答案:C分析:根据题意分a>0,a<0两种情况讨论,结合函数图象即可求解.解:A.正比例函数中a<0,二次函数开口向上,−a>0,与y轴的交点在y轴正半轴,则a>0,矛盾,故A 不正确;B.正比例函数中a>0,二次函数开口向上,−a>0,与y轴的交点在y轴正半轴,则a>0,矛盾,故B不正确;C.正比例函数中a>0,二次函数开口向下,−a<0,与y轴的交点在y轴正半轴,则a>0,故C正确;D. .正比例函数中a<0,二次函数开口向下,−a<0,与y轴的交点在y轴正半轴,则a>0,矛盾,故D不正确;故选C小提示:本题考查了正比例函数与二次函数的图象的性质,掌握正比例函数与二次函数的图象的性质是解题的关键.9、二次函数y=ax2+bx+c(a≠0)的图像如图所示,则关于x的一元二次方程ax2+bx+c=0的根的情况描述正确的是()A.有两个相等的实数根B.有两个异号的实数根C.有两个同号的实数根D.有两个无法确定符号的实数根答案:B分析:根据二次函数的图像判断与x轴有两个交点,且在原点两侧,故关于x的一元二次方程ax2+bx+c= 0有两个异号的实数根.解:∵二次函数的图像与x轴有两个交点,且在原点两侧,∴关于x的一元二次方程ax2+bx+c=0有两个异号的实数根,故选:B.小提示:本题考查二次函数图像与一元二次方程根的关系,掌握二次函数y=ax2+bx+c(a≠0)的图像与x 轴有交点的横坐标即为关一元二次方程ax2+bx+c=0的根是解答本题的关键.10、已知抛物线y=2(x−3)2−5,其对称轴是()A.直线x=−3B.直线x=3C.直线x=−5D.直线x=5答案:B分析:直接根据抛物线的顶点式进行解答即可.解:∵y=2(x−3)2−5,∴抛物线对称轴为直线x=3.故选:B.小提示:本题考查二次函数的性质,解题关键是掌握二次函数图像与系数的关系.填空题11、已知二次函数y=(x−1)2+3,当x=_______时,y取得最小值.答案:1分析:根据抛物线的顶点坐标和开口方向即可得出答案.解:∵y=(x−1)2+3,∴该抛物线的顶点坐标为(1,3),且开口方向向上,∴当x=1时,y取得最小值,所以答案是:1.小提示:本题考查二次函数的最值,求二次函数最大值或最小值有三种方法:第一种可有图象直接得出,第二种是配方法,第三种是公式法.12、如图,过点D(1,3)的抛物线y=-x2+k的顶点为A,与x轴交于B、C两点,若点P是y轴上一点,则PC+PD的最小值为____.答案:3√2分析:由两点之间线段最短可知,当D、P、B在同一直线上时就可使PC+PD的值最小,解答即可.解:连接PB,对于抛物线y=-x2+k,对称轴是y轴,∴PC=PB,∴当D、P、B在同一直线上时,PC+PD的值最小,最小值为BD的长,∵抛物线y=-x2+k过点D(1,3),∴把x=1,y=3代入y=-x2+k,解得:k=4,把y=0代入y=-x2+4,解得:x=2或x=-2,所以点B的坐标为(-2,0),所以BD=√(−2−1)2+32=3√2,所以答案是:3√2.小提示:本题考查了抛物线与x轴的交点,轴对称-最短路线问题,找到P点是本题的关键.13、已知实数a、b满足a-b2=4,则代数式a2-3b2+a-14的最小值是________.答案:6分析:根据a-b2=4得出b2=a−4,代入代数式a2-3b2+a-14中,通过计算即可得到答案.∵a-b2=4∴b2=a−4将b2=a−4代入a2-3b2+a-14中得:a2-3b2+a-14=a2−3(a−4)+a−14=a2−2a−2a2−2a−2=a2−2a+1−3=(a−1)2−3∵b2=a−4≥0∴a≥4当a=4时,(a−1)2−3取得最小值为6∴a2−2a−2的最小值为6∵a2-3b2+a-14=a2−2a−2∴a2-3b2+a-14的最小值6所以答案是:6.小提示:本题考查了代数式的知识,解题的关键是熟练掌握代数式的性质,从而完成求解.14、已知二次函数y =−x 2−2x +3,当a ⩽x ⩽12时,函数值y 的最小值为1,则a 的值为_______. 答案:−1−√3##−√3−1分析:先把函数解析式化为顶点式可得当x <−1时,y 随x 的增大而增大,当x >−1时,y 随x 的增大而减小,然后分两种情况讨论:若a ≥−1;若a <−1,即可求解.解:y =−x 2−2x +3=−(x +1)2+4,∴当x <−1时,y 随x 的增大而增大,当x >−1时,y 随x 的增大而减小,若a ≥−1,当a ⩽x ⩽12时,y 随x 的增大而减小, 此时当x =12时,函数值y 最小,最小值为74,不合题意,若a <−1,当x =a 时,函数值y 最小,最小值为1,∴−a 2−2a +3=1,解得:a =−1−√3或−1+√3(舍去);综上所述,a 的值为−1−√3.所以答案是:−1−√3小提示:本题主要考查了二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键.15、已知二次函数y =ax 2+bx +c(a ≠0)的图像的顶点为(2,−2),与x 轴交于点(1,0)、(3,0),根据图像回答下列问题:当x _______时,y 随x 的增大而减小:方程ax 2+bx +c =0的两个根是___________.答案: x <2 x 1=1,x 2=3分析:利用开口向上和对称轴以及二次函数与一元二次方程的联系即可得到答案.解(1)∵二次函数图像与x轴的两个交点坐标为(1,0)、(3,0),∴二次函数的对称轴为直线x=2,∵抛物线的开口向上,∴当x<2时,y随x的增大而减小;(2)∵二次函数图像与x轴的两个交点坐标为(1,0)、(3,0),∴方程ax2+bx+c=0的两个根是x1=1,x2=3.小提示:本题考查了二次函数的图像与性质以及二次函数与一元二次方程的联系,属于常考题型.解答题16、在一条笔直的滑道上有黑、白两个小球同向运动,黑球在A处开始减速,此时白球在黑球前面70cm处.小聪测量黑球减速后的运动速度v(单位:cm/s)、运动距离y(单位:cm)随运动时间t(单位:s)变化的数据,整理得下表.y与运动时间t之间成二次函数关系.(1)直接写出v关于t的函数解析式和y关于t的函数解析式(不要求写出自变量的取值范围)(2)当黑球减速后运动距离为64cm时,求它此时的运动速度;(3)若白球一直..以2cm/s的速度匀速运动,问黑球在运动过程中会不会碰到白球?请说明理由.答案:(1)v=−12t+10,y=−14t2+10t(2)6cm/s(3)黑、白两球的最小距离为6cm,大于0,黑球不会碰到白球分析:(1)根据黑球的运动速度v与运动时间t之间成一次函数关系,设表达式为v=kt+b,代入两组数值求解即可;根据运动距离y与运动时间t之间成二次函数关系,设表达式为y=at2+bt+c,代入三组数值求解即可;(2)当黑球减速后运动距离为64cm时,代入(1)式中y关于t的函数解析式求出时间t,再将t代入v关于t的函数解析式,求得速度v即可;(3)设黑白两球的距离为w cm,得到w=70+2t−y=14t2−8t+70,化简即可求出最小值,于是得到结论.(1)根据黑球的运动速度v与运动时间t之间成一次函数关系,设表达式为v=kt+b,代入(0,10),(1,9.5)得,{10=b 9.5=k+b ,解得{k=−12b=10,∴v=−12t+10,根据运动距离y与运动时间t之间成二次函数关系,设表达式为y=at2+bt+c,代入(0,0),(1,9.75),(2,19)得{0=c9.75=a+b19=4a+2b,解得{a=−14b=10c=0,∴y=−14t2+10t;(2)依题意,得−14t2+10t=64,∴t2−40t+256=0,解得,t1=8,t2=32;当t1=8时,v=6;当t2=32时,v=−6(舍);答:黑球减速后运动64cm时的速度为6cm/s.(3)设黑白两球的距离为w cm,w=70+2t−y=14t2−8t+70=14(t−16)2+6,∵14>0,∴当t=16时,w的值最小为6,∴黑、白两球的最小距离为6cm,大于0,黑球不会碰到白球.小提示:本题考查一次函数和二次函数的实际应用,待定系数法求解析式,解决本题的关键是明确题意求出函数表达式.17、已知抛物线y=ax2−4ax+3(a≠0)的图象经过点A(−2,0),过点A作直线l交抛物线于点B(4,m).(1)求抛物线的函数表达式和顶点坐标.(2)将抛物线向下平移n(n>0)个单位,使顶点落在直线l上,求m,n的值.答案:(1)y=−14x2+x+3;(2,4)(2)3;2分析:(1)把点A(−2,0)代入y=ax2−4ax+3(a≠0),求出a的值即可;再运用顶点坐标公式求出顶点坐标即可;(2)把C(4,m)代入y=−14x2+x+3可求出m的值;再运用待定系数法求出直线AB的解析式,从而可求出平移后押物线的顶点坐标,进一步可得结论.(1)将A(−2,0)代入y=ax2−4ax+3得:0=4a+8a+3,解得a=−14,∴抛物线的函数表达式为y=−14x2+x+3,∵−b2a =−12×(−14)=2,4ac−b24a=4×(−14)×3−124×(−14)=4,∴顶点坐标为(2,4);(2)把C(4,m)代入y=−14x2+x+3得,m =−4+4+3=3,设直线AB 的解析式为y =kx +b ,将A (−2,0),B (4,3)代入y =kx +b 得{0=−2k +b 3=4k +b, 解得{k =12b =1, ∴直线AB 的解析式为y =12x +1, ∵顶点的横坐标为2,∴把x =2代入y =12x +1得:y =2,∴n =4−2=2.小提示:本题主要考查了运用待定系数法求函数关系式以及二次函数图象的平移,正确理解题意是解答本题的关键.18、戴口罩是阻断呼吸道病毒传播的重要措施之一,某商家对一款成本价为每盒50元的医用口罩进行销售,如果按每盒70元销售,每天可卖出20盒.通过市场调查发现,每盒口罩售价每降低1元,则日销售量增加2盒(1)若每盒售价降低x 元,则日销量可表示为_______盒,每盒口罩的利润为______元.(2)若日利润保持不变,商家想尽快销售完该款口罩,每盒售价应定为多少元?(3)当每盒售价定为多少元时,商家可以获得最大日利润?并求出最大日利润.答案:(1)(20+2x )盒,(20-x ) 元(2)每盒售价应定为60元(3)每盒售价应定为65元时,最大日利润是450元分析:(1)根据题意列出代数式即可;(2)设每盒售价x 元,则每件的销售利润为(x −50)元,日销售量为[20+2(70−x )]件,即可得出关于x 的一元二次方程,解之即可得出x 的值,再结合商家想尽快销售完该款商品,即可求解;(3)设日利润为y ,由(2)列出函数关系式,根据二次函数的性质即可求解.(1)设每盒售价降低x 元,则日销量可表示为(20+2x )盒,每盒口罩的利润为70−50−x =20−x (元)所以答案是:(20+2x);(20−x)(2)设每盒售价x元,则每件的销售利润为(x−50)元,日销售量为[20+2(70−x)]件,根据题意得,(x−50)[20+2(70−x)]=(70−50)×20解得x1=70,x2=60又∵商家想尽快销售完该款商品,∴x=60.答:每件售价应定为60元;(3)设日利润为y,则y=(x−50)[20+2(70−x)]=−2x2+260x−8000=−2(x−65)2+450∴x=65时,y的最大值为450,即每盒售价应定为65元时,最大日利润是450元.小提示:本题考查了一元二次方程的应用,二次函数的应用,根据题意列出方程和函数关系式是解题的关键.。

九年级数学上册第二十二章二次函数高频考点知识梳理(带答案)

九年级数学上册第二十二章二次函数高频考点知识梳理(带答案)

九年级数学上册第二十二章二次函数高频考点知识梳理单选题1、已知a是不为0的常数,函数y=ax和函数y=﹣ax2+a在同一平面直角坐标系内的图象可以是()A.B.C.D.答案:C分析:根据题意分a>0,a<0两种情况讨论,结合函数图象即可求解.解:A.正比例函数中a<0,二次函数开口向上,−a>0,与y轴的交点在y轴正半轴,则a>0,矛盾,故A 不正确;B.正比例函数中a>0,二次函数开口向上,−a>0,与y轴的交点在y轴正半轴,则a>0,矛盾,故B不正确;C.正比例函数中a>0,二次函数开口向下,−a<0,与y轴的交点在y轴正半轴,则a>0,故C正确;D. .正比例函数中a<0,二次函数开口向下,−a<0,与y轴的交点在y轴正半轴,则a>0,矛盾,故D不正确;故选C小提示:本题考查了正比例函数与二次函数的图象的性质,掌握正比例函数与二次函数的图象的性质是解题的关键.2、函数y=ax与y=ax2+a(a≠0)在同一直角坐标系中的大致图象可能是()A.B.C.D.答案:D分析:先根据一次函数的性质确定a>0与a<0两种情况分类讨论抛物线的顶点位置即可得出结论.解:函数y=ax与y=ax2+a(a≠0)A. 函数y=ax图形可得a<0,则y=ax2+a(a≠0)开口方向向下正确,当顶点坐标为(0,a),应交于y轴负半轴,而不是交y轴正半轴,故选项A不正确;B. 函数y=ax图形可得a<0,则y=ax2+a(a≠0)开口方向向下正确,当顶点坐标为(0,a),应交于y轴负半轴,而不是在坐标原点上,故选项B不正确;C. 函数y=ax图形可得a>0,则y=ax2+a(a≠0)开口方向向上正确,当顶点坐标为(0,a),应交于y轴正半轴,故选项C不正确;D. 函数y=ax图形可得a<0,则y=ax2+a(a≠0)开口方向向上正确,当顶点坐标为(0,a),应交于y轴正半轴正确,故选项D正确;故选D.小提示:本题考查的知识点是一次函数的图象与二次函数的图象,理解掌握函数图象的性质是解此题的关键.3、在平面直角坐标系中,若抛物线y=2(x+5)(x−3)经一次变换后得到抛物线y=2(x+3)(x−5),则这个变换可以是()A.向左平移2个单位B.向右平移2个单位C.向上平移8个单位D.向下平移8个单位答案:B分析:先将两解析式化成顶点式,然后根据平移前后的两抛物线的顶点坐标即可解答.解:y=2(x+5)(x-3)=2x2+4x-30=2(x+1)2-32,顶点坐标是(-1,-32).y=2(x+3)(x-5)=2x2-4x-30=2(x-1)2-32,顶点坐标是(1,-32).所以将抛物线y=2(x+5)(x-3)向右平移2个单位长度得到抛物线y=2(x+3)(x-5).故选:B.小提示:本题主要考查了二次函数图像与平移变换,掌握平移的规律“左加右减,上加下减”是解答本题的关键.4、若y=(a﹣2)x2﹣3x+2是二次函数,则a的取值范围是()A.a≠2B.a>0C.a>2D.a≠0答案:A分析:根据二次函数的二次项系数不为0可得关于a的不等式,解不等式即得答案.解:由题意得:a−2≠0,则a≠2.故选:A.小提示:本题考查了二次函数的定义,属于基础题型,掌握二次函数的概念是关键.5、某商场降价销售一批名牌衬衫,已知所获利润y(元)与降价x(元)之间的关系是y=-2x2+60x+800,则利润获得最多为()A.15元B.400元C.800元D.1250元答案:D分析:将函数关系式转化为顶点式,然后利用开口方向和顶点坐标即可求出最多的利润.解:y=-2x2+60x+800=-2(x-15)2+1250∵-2<0故当x=15时,y有最大值,最大值为1250即利润获得最多为1250元故选:D.小提示:此题考查的是利用二次函数求最值,掌握将二次函数的一般式转化为顶点式求最值是解决此题的关键.6、从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.则下列结论不正确的是()A.小球在空中经过的路程是40mB.小球运动的时间为6sC.小球抛出3s时,速度为0D.当t=1.5s时,小球的高度ℎ=30m答案:A分析:选项A、B、C可直接由函数图象中的信息分析得出答案;选项D可由待定系数法求得函数解析式,再将t=1.5s代入计算,即可作出判断.解:A、由图象可知,小球在空中达到的最大高度为40m,则小球在空中经过的路程一定大于40m,故选项A 错误;B、由图象可知,小球6s时落地,故小球运动的时间为6s,故选项B正确;C、小球抛出3秒时达到最高点,即速度为0,故选项C正确;D、设函数解析式为ℎ=a(t−3)2+40,将(0,0)代入得:0=a(0−3)2+40,解得a=−40,9∴函数解析式为ℎ=−40(t−3)2+40,9∴当t=1.5s时,ℎ=−40(1.5−3)2+40=30,9∴选项D正确.故选:A.小提示:本题考查了二次函数在物体运动中的应用,会用待定系数法求函数解析式并数形结合进行分析是解题的关键.7、某超市销售一种商品,每件成本为50元,销售人员经调查发现,该商品每月的销售量y(件)与销售单价x (元)之间满足函数关系式y=−5x+550,若要求销售单价不得低于成本,为每月所获利润最大,该商品销售单价应定为多少元?每月最大利润是多少?()A.90元,4500元B.80元,4500元C.90元,4000元D.80元,4000元答案:B分析:设每月所获利润为w,按照等量关系列出二次函数,并根据二次函数的性质求得最值即可.解:设每月总利润为w,依题意得:w=y(x−50)=(−5x+550)(x−50)=−5x2+800x−27500=−5(x−80)2+4500∵−5<0,此图象开口向下,又x≥50,∴当x=80时,w有最大值,最大值为4500元.故选:B.小提示:本题考查了二次函数在实际生活中的应用,根据题意找到等量关系并掌握二次函数求最值的方法是解题的关键.8、下表中列出的是一个二次函数的自变量x与函数y的几组对应值:B.这个函数的图象与x轴无交点C.这个函数的最小值小于-6D.当x>1时,y的值随x值的增大而增大答案:C分析:利用表中的数据,求得二次函数的解析式,再配成顶点式,根据二次函数的性质逐一分析即可判断.解:设二次函数的解析式为y=ax2+bx+c,依题意得:{4a −2b +c =6c =−4a +b +c =−6 ,解得:{a =1b =−3c =−4, ∴二次函数的解析式为y =x 2−3x −4=(x −32)2−254,∵a =1>0,∴这个函数的图象开口向上,故A 选项不符合题意;∵△=b 2−4ac =(−3)2−4×1×(−4)=25>0,∴这个函数的图象与x 轴有两个不同的交点,故B 选项不符合题意;∵a =1>0,∴当x =32时,这个函数有最小值−254<−6,故C 选项符合题意;∵这个函数的图象的顶点坐标为(32,−254),∴当x >32时,y 的值随x 值的增大而增大,故D 选项不符合题意;故选:C .小提示:本题主要考查了待定系数法求二次函数的解析式以及二次函数的性质,利用二次函数的性质解答是解题关键.9、抛物线y =x 2+x +c 与x 轴只有一个公共点,则c 的值为( )A .−14B .14C .−4D .4答案:B分析:根据抛物线与x 轴只有一个公共点,得到根的判别式等于0,即可求出c 的值.解:∵y =x 2+x +c 与x 轴只有一个公共点,∴x 2+x +c =0有两个相等的实数根, ∴△=1-4c =0,解得:c =14.故选:B .小提示:此题考查了抛物线与x 轴的交点,弄清根的判别式的意义是解本题的关键.10、小嘉说:将二次函数y =x 2的图象平移或翻折后经过点(2,0)有4种方法:①向右平移2个单位长度 ②向右平移1个单位长度,再向下平移1个单位长度③向下平移4个单位长度④沿x轴翻折,再向上平移4个单位长度你认为小嘉说的方法中正确的个数有( )A.1个B.2个C.3个D.4个答案:D分析:根据二次函数图象的平移可依此进行求解问题.解:①将二次函数y=x2向右平移2个单位长度得到:y=(x−2)2,把点(2,0)代入得:y=(2−2)2=0,所以该平移方式符合题意;②将二次函数y=x2向右平移1个单位长度,再向下平移1个单位长度得到:y=(x−1)2−1,把点(2,0)代入得:y=(2−1)2−1=0,所以该平移方式符合题意;③将二次函数y=x2向下平移4个单位长度得到:y=x2−4,把点(2,0)代入得:y=22−4=0,所以该平移方式符合题意;④将二次函数y=x2沿x轴翻折,再向上平移4个单位长度得到:y=−x2+4,把点(2,0)代入得:y=−22+4=0,所以该平移方式符合题意;综上所述:正确的个数为4个;故选D.小提示:本题主要考查二次函数图象的平移,熟练掌握二次函数图象的平移是解题的关键.填空题11、某游乐场的圆形喷水池中心O有一雕塑OA,从点A向四周喷水,喷出的水柱为抛物线,且形状相同.如图,以水平方向为x轴,点O为原点建立直角坐标系,点A在y轴上,x轴上的点C,D为水柱的落水点,水柱所在抛物线(第一象限部分)的函数表达式为y=−1(x﹣5)2+66(1)雕塑高OA的值是____m;(2)落水点C,D之间的距离是____m.答案: 116##156 22 分析:(1)利用二次函数图象上点的坐标特征可求出点A 的坐标,进而可得出雕塑高OA 的值;(2)利用二次函数图象上点的坐标特征可求出点D 的坐标,进而可得出OD 的长度,由喷出的水柱为抛物线且形状相同,可得出OC 的长,结合CD =OC +OD 即可求出落水点C ,D 之间的距离;解:(1)当x =0时,y =−16×(0﹣5)2+6=116,∴点A 的坐标为(0,116),∴雕塑高116m . 所以答案是:116. (2)当y =0时,−16(x ﹣5)2+6=0,解得:x 1=﹣1(舍去),x 2=11,∴点D 的坐标为(11,0),∴OD =11m .∵从A 点向四周喷水,喷出的水柱为抛物线,且形状相同,∴OC =OD =11m ,∴CD =OC +OD =22m .所以答案是:22.小提示:本题考查了二次函数的应用,解题的关键是:(1)利用二次函数图象上点的坐标特征,求出点A 的坐标;(2)利用二次函数图象上点的坐标特征,求出点D 的坐标;.12、已知抛物线y =(x −1)(x −5)与x 轴的公共点坐标是A(x 1,0),B(x 2,0),则x 1+x 2=_______.答案:6分析:令y=0,可得(x−1)(x−5)=0,解出即可求解.解:∵抛物线y=(x−1)(x−5)与x轴的公共点坐标是A(x1,0),B(x2,0),令y=0,则(x−1)(x−5)=0,解得:x1=1,x2=5,∴x1+x2=1+5=6.所以答案是:6.小提示:本题主要考查了二次函数的图象与x轴的交点问题,熟练掌握二次函数的图象和性质是解题的关键.13、如图,某单位的围墙由一段段形状相同的抛物线形栅栏组成,为了牢固,每段栅栏间隔0.2米设置一根立柱(即AB间间隔0.2米的7根立柱)进行加固,若立柱EF的长为0.28米,则拱高OC为_____米答案:0.64分析:根据抛物线,建立直角坐标系,求出抛物线解析式,即可求得OC的长.解:如图,以点C为坐标系原点,OC所在直线为y轴,建立直角坐标系.设抛物线的解析式为y=ax2(a≠0),由题意可知:点A的横坐标为-0.8,点F的横坐标为-0.6,代入y=ax2(a≠0),有y F=(−0.6)2a=0.36a,y A=(−0.8)2a=0.64a,点A 的纵坐标即为OC 的长,∴0.36a +0.28=0.64a ,解得a =1,∴抛物线解析式为y =x 2,y A =(−0.8)2=0.64,故OC 的长为:0.64m .小提示:本题考查根据抛物线构建直角坐标系,解决实际问题,熟练掌握二次函数相关知识点是解题的关键.14、已知二次函数y =ax 2+bx +c 中,函数y 与自变量x 的部分对应值如下表:答案:y =2x 2+2x −74 分析:将点(−1,−74),(0,−74),(1,94)代入y =ax 2+bx +c 中,进行计算即可得.解:将点(−1,−74),(0,−74),(1,94)代入y =ax 2+bx +c 中,得{ a −b +c =−74c =−74a +b +c =94解得,{a =2b =2c =−74,则二次函数的解析式为:y =2x 2+2x −74, 所以答案是:y =2x 2+2x −74. 小提示:本题考查了二次函数的性质,解题的关键是掌握待定系数法.15、如图,已知抛物线y =−2x 2+4x +6与x 轴相交于于点A ,B ,与y 轴的交于点C .点P(m ,n)在平面直角坐标系第一象限内的抛物线上运动,设ΔPBC 的面积为S .下列结论:①AB =4;②OC =6;③S 最大值=274,其中,正确结论的序号是________.(所有正确的序号都填上)答案:①②③分析:y=−2x2+4x+6中令y=0得:−2x2+4x+6=0,得A(-1,0),B(3,0),从而判断①;y=−2x2+4x+6中令x=0得:y=6,得C(0,6),从而判断②;过点P作PF//y轴,交BC于点F,求出BC的函数关系式,得出点P的坐标为(m,−2m2+4m+6),点F的坐标为(m,−2m+6),再列出S关于m的函数关系式,最后求出其最大值,从而判断③.∵抛物线y=−2x2+4x+6与x轴相交于于点A,B,∴令y=0得:−2x2+4x+6=0,解得:x1=−1,x2=3,∴A(-1,0),B(3,0),∴AB=4故①正确;∵抛物线y=−2x2+4x+6与y轴相交于于点C,∴令x=0得:y=6,∴C(0,6),∴OC=6,故②正确;过点P作PF//y轴,交BC于点F,如图1所示.设直线BC 的解析式为y =kx +c ,将B(3,0)、C(0,6)代入y =kx +c ,得{3k +c =0c =6 ,解得{k =−2c =6, ∴直线BC 的解析式为y =−2x +6.∵点P(m,n)在平面直角坐标系第一象限内的抛物线上运动,∴点P 的坐标为(m,−2m 2+4m +6),则点F 的坐标为(m,−2m +6),∴PF =−2m 2+4m +6−(−2m +6)=−2m 2+6m ,∴S =12PF ⋅OB =−3m 2+9m =−3(m −32)2+274, ∴当m =32时,ΔPBC 面积取最大值,最大值为274.故③正确,所以答案是:①②③.小提示:本题是二次函数综合题,考查了待定系数法求函数解析式,三角形的面积,二次函数的性质,坐标与图形的性质等知识,熟练运用方程思想及分类讨论思想是解题的关键.解答题16、跳绳是一项很好的健身活动,如图是小明跳绳运动时的示意图,建立平面直角坐标系如图所示,甩绳近似抛物线形状,脚底B 、C 相距20cm ,头顶A 离地175cm ,相距60cm 的双手D 、E 离地均为80cm .点A 、B 、C 、D 、E 在同一平面内,脚离地面的高度忽略不计.小明调节绳子,使跳动时绳子刚好经过脚底B 、C 两点,且甩绳形状始终保持不变.(1)求经过脚底B、C时绳子所在抛物线的解析式.(2)判断小明此次跳绳能否成功,并说明理由.答案:(1)y=110x2−90.(2)不成功,理由见解析分析:(1)建立如图所示的坐标系:结合题意可得:D(−30,0),E(30,0),由双手D、E离地均为80cm,可得C 点坐标为:(10,−80),再利用待定系数法求解解析式即可;(2)由175−80=95>80,可得跳绳不过头顶A,从而可得答案.(1)解:建立如图所示的坐标系:结合题意可得:D(−30,0),E(30,0),∵双手D、E离地均为80cm.∴C点坐标为:(10,−80),设抛物线为:y=ax2−80,{0=900a+b−80=100a+b,解得:{a=110b=−90,所以抛物线为y=110x2−90.(2)解:∵y=0.1x²-90,∴顶点为(0,-90).即跳绳顶点到手的距离是90cm,∵175−90=85>80,∴跳绳不过头顶A,∴小明此次跳绳能不成功.小提示:本题考查的是二次函数的实际应用,理解题意,建立合适的坐标系是解本题的关键.17、如图,抛物线的顶点为A(h,-1),与y轴交于点B(0,−12),点F(2,1)为其对称轴上的一个定点.(1)求这条抛物线的函数解析式;(2)已知直线l是过点C(0,-3)且垂直于y轴的定直线,若抛物线上的任意一点P(m,n)到直线l的距离为d,求证:PF=d;(3)已知坐标平面内的点D(4,3),请在抛物线上找一点Q,使△DFQ的周长最小,并求此时△DFQ周长的最小值及点Q的坐标.答案:(1)y=18(x−2)2−1;(2)见解析;(3)2√2+6,(4,−12)分析:(1)由题意抛物线的顶点A(2,-1),可以假设抛物线的解析式为y=a(x-2)2-1,把点B坐标代入求出a即可.(2)由题意P(m,18m2−12m−12),求出d2,PF2(用m表示)即可解决问题.(3)如图,过点Q作QH⊥直线l于H,过点D作DN⊥直线l于N.因为△DFQ的周长=DF+DQ+FQ,DF是定值=√22+22=2√2,推出DQ+QF的值最小时,△DFQ的周长最小,再根据垂线段最短解决问题即可.解:(1)设抛物线的函数解析式为y=a(x−ℎ)2+k,由题意,抛物线的顶点为A(2,−1),∴y=a(x−2)2−1.又∵抛物线与y轴交于点B(0,−12)∴−12=a(0−2)2−1∴a=18∴抛物线的函数解析式为y=18(x−2)2−1(2)证明:∵P(m,n),∴n=18(m−2)2−1=18m2−12m−12,∴P(m,18m2−12m−12),∴d=18m2−12m−12−(−3)=18m2−12m+52,∵F(2,1),∴PF=√(m−2)2+(18m2−12m−12−1)2=√164m4−18m3+78m2−52m+254,∵d2=164m4−18m3+78m2−52m+254,PF2=164m4−18m3+78m2−52m+254,∴d2=PF2,∴PF=d.(3)如图,过点Q作QH⊥直线l于H,过点D作DN⊥直线l于N.∵△DFQ的周长=DF+DQ+FQ,DF是定值=√22+22=2√2,∴DQ+QF的值最小时,△DFQ的周长最小,∵QF=QH,∴DQ+DF=DQ+QH,根据垂线段最短可知,当D,Q,H共线时,DQ+QH的值最小,此时点H与N重合,点Q在线段DN上,∴DQ+QH的最小值为6,∴△DFQ的周长的最小值为2√2+6,此时Q(4,-1).2小提示:本题属于二次函数综合题,考查了待定系数法,两点间距离公式,垂线段最短等知识,解题的关键是学会利用参数解决问题,学会用转化的思想思考问题.18、某宾馆有240间标准房,当标准房价格150元时,每天都客满,市场调查表明,当房价在150~225元之间(含150元,225元)浮动时,每提高25元,日均入住客房数减少20间.如果不考虑其它因素,宾馆将标准房价格提高到多少元时,客房的日营业收入最大?答案:每间租金225元时,客房租金总收入最高,日租金40500元分析:首先设宾馆客房租金每间日租金提高x个25元,以及客房租金总收入为y,建立y与x的关系式,并通过二次函数求解最大值.解:设宾馆客房租金每间日租金提高x个25元,将有20x间客房空出,客房租金总收入为y.由题意可得:y=(150+25x)(240−20x)=−500x2+3000x+36000=−500(x−3)2+40500当x=3时,y最大值=40500.因此每间租金150+25×3=225元时,客房租金总收入最高,日租金40500元.小提示:本题考查根据实际问题选择函数类型,通过实际问题,抽象出函数模型,并通二次函数计算最大值,考查对知识的综合运用能力,属于中档题.。

2024九年级数学上册“第二十二章 二次函数”必背知识点

2024九年级数学上册“第二十二章 二次函数”必背知识点

2024九年级数学上册“第二十二章二次函数”必背知识点一、二次函数的定义与表达式定义:一般地,自变量x和因变量y之间存在如下关系:y = ax² + bx + c(a, b, c为常数,a ≠ 0)。

这样的函数称为二次函数,其中a决定函数的开口方向,b和a共同决定对称轴的位置,c决定抛物线与y轴的交点。

三种表达式:1. 一般式:y = ax² + bx + c (a, b, c为常数,a ≠ 0)。

2. 顶点式:y = a(x - h)² + k,其中(h, k)为抛物线的顶点坐标。

3. 交点式:y = a(x - x₁)(x - x₂),仅限于与x轴有交点A(x₁, 0)和B(x₂, 0)的抛物线。

二、二次函数的图像与性质图像:二次函数的图像是一条抛物线。

开口方向与大小:由二次项系数a决定。

当a > 0时,开口向上;当a < 0时,开口向下。

|a|越大,开口越小;|a|越小,开口越大。

对称轴:1. 一般式:对称轴为直线x = -b/2a。

2. 顶点式:对称轴为直线x = h。

3. 交点式:对称轴为直线x = (x₁ + x₂)/2。

顶点坐标:1. 顶点式直接给出为(h, k)。

2. 一般式可通过公式计算得到(-b/2a, (4ac - b²)/4a)。

最值:1. 当a > 0时,函数有最小值,最小值为(4ac - b²)/4a,此时x = -b/2a。

2. 当a < 0时,函数有最大值,最大值为(4ac - b²)/4a,此时x = -b/2a。

三、二次函数与一元二次方程当二次函数y = ax² + bx + c中y = 0时,即转化为一元二次方程ax² + bx + c = 0。

函数图像与x轴的交点即为该方程的根。

根据判别式Δ = b² - 4ac的值,可以判断抛物线与x轴的交点个数:1. Δ > 0时,抛物线与x轴有两个交点。

九年级数学上册第二十二章二次函数知识点梳理(带答案)

九年级数学上册第二十二章二次函数知识点梳理(带答案)

九年级数学上册第二十二章二次函数知识点梳理单选题1、已知点A(-2,y1),B(1,y2),C(3,y3)在二次函数y=−2x2图象上,则y1,y2,y3的大小关系是()A.y1<y3<y2B.y1<y2<y3C.y2<y1<y3D.y3<y1<y2答案:D分析:分别计算出自变量为-2、-1和3的函数值,然后比较函数值的大小.解:∵点A(-2,y1),B(1,y2),C(3,y3)在二次函数y=-2x2图象上,∴y1=-2×4=-8;y2=-2×1=-2;y3=-2×9=-18,∴y3<y1<y2.故选:D.小提示:本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.2、已知抛物线y=x2+kx−k2的对称轴在y轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线正好经过坐标原点,则k的值是()A.−5或2B.−5C.2D.−2答案:B分析:根据二次函数图象左加右减,上加下减的平移规律进行解答即可.解:函数y=x2+kx−k2向右平移3个单位,得:y=(x−3)2+k(x−3)−k2;再向上平移1个单位,得:y=(x−3)2+k(x−3)−k2+1,∵得到的抛物线正好经过坐标原点∴0=(0−3)2+k(0−3)−k2+1即k2+3k−10=0解得:k=−5或k=2∵抛物线y=x2+kx−k2的对称轴在y轴右侧∴x=−k>02∴k<0∴k=−5故选:B.小提示:此题主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.3、在同一平面直角坐标系中,函数y=ax2+bx与y=ax+b的图象不可能是( )A.B.C.D.答案:D分析:根据二次函数与一次函数的图象与性质进行判断即可.解:当a>0,b>0时,y=ax2+bx的开口上,与x轴的一个交点在x轴的负半轴,y=ax+b经过第一、二、三象限,且两函数图象交于x的负半轴,无选项符合;当a>0,b<0时,y=ax2+bx的开口向上,与x轴的一个交点在x轴的正半轴,y=ax+b经过第一、三、四象限,且两函数图象交于x的正半轴,故选项A正确,不符合题意题意;当a<0,b>0时,y=ax2+bx的开口向下,与x轴的一个交点在x轴的正半轴,y=ax+b经过第一、二、四象限,且两函数图象交于x的正半轴,C选项正确,不符合题意;当a<0,b<0时,y=ax2+bx的开口向下,与x轴的一个交点在x轴的负半轴,y=ax+b经过第二、三、四象限,B选项正确,不符合题意;只有选项D的两图象的交点不经过x轴,故选D.小提示:本题考查二次函数与一次函数图象的性质,解题的关键是根据a、b与0的大小关系进行分类讨论.4、在平面直角坐标系中,若抛物线y=2(x+5)(x−3)经一次变换后得到抛物线y=2(x+3)(x−5),则这个变换可以是()A.向左平移2个单位B.向右平移2个单位C.向上平移8个单位D.向下平移8个单位答案:B分析:先将两解析式化成顶点式,然后根据平移前后的两抛物线的顶点坐标即可解答.解:y=2(x+5)(x-3)=2x2+4x-30=2(x+1)2-32,顶点坐标是(-1,-32).y=2(x+3)(x-5)=2x2-4x-30=2(x-1)2-32,顶点坐标是(1,-32).所以将抛物线y=2(x+5)(x-3)向右平移2个单位长度得到抛物线y=2(x+3)(x-5).故选:B.小提示:本题主要考查了二次函数图像与平移变换,掌握平移的规律“左加右减,上加下减”是解答本题的关键.5、如图,已知抛物线y=ax2+bx−2的对称轴是x=−1,直线l∥x轴,且交抛物线于点P(x1,y1),Q(x2,y2),下列结论错误..的是()A.b2>−8a B.若实数m≠−1,则a−b<am2+bmC.3a−2>0D.当y>−2时,x1⋅x2<0答案:C分析:先根据抛物线对称轴求出b=2a,再由抛物线开口向上,得到a>0,则b2+8a=4a2+8a>0由此即可判断A;根据抛物线开口向上在对称轴处取得最小值即可判断B;根据当x=1时,y=a+b−2<0,即可判断C;根据y>−2时,直线l与抛物线的两个交点分别在y轴的两侧,即可判断D.解:∵抛物线y=ax2+bx−2的对称轴是x=−1,∴−b=−1,2a∴b=2a,∵抛物线开口向上,∴a>0,∴b2+8a=4a2+8a>0,∴b2>−8a,故A说法正确,不符合题意;∵抛物线开口向下,抛物线对称轴为直线x=-1,∴当x=-1时,y=a−b−2,最小值∴当实数m≠−1,则a−b−2<am2+bm−2,∴当实数m≠−1时,a−b<am2+bm,故B说法正确,不符合题意;∵当x=1时,y=a+b−2<0,∴a+2a-2<0,即3a-2<0,故C说法错误,符合题意;∵y>−2,∴直线l与抛物线的两个交点分别在y轴的两侧,∴x1⋅x2<0,故D说法正确,不符合题意;故选C.小提示:本题主要考查了根据二次函数的图象去判断式子符号,二次函数的系数与图象之间的关系等等,熟知二次函数的相关知识是解题的关键.6、二次函数y=x2+2x+2的图象的对称轴是()A.x=−1B.x=−2C.x=1D.x=2答案:A分析:将二次函数y=x2+2x+2写成顶点式,进而可得对称轴.解:∵y=x2+2x+2=(x+1)2+1.∴二次函数y=x2+2x+2的图象的对称轴是x=−1.故选A.小提示:本题考查了二次函数的性质,将一般式转化为顶点式是解题的关键.7、某商场降价销售一批名牌衬衫,已知所获利润y(元)与降价x(元)之间的关系是y=-2x2+60x+800,则利润获得最多为()A.15元B.400元C.800元D.1250元答案:D分析:将函数关系式转化为顶点式,然后利用开口方向和顶点坐标即可求出最多的利润.解:y=-2x2+60x+800=-2(x-15)2+1250∵-2<0故当x=15时,y有最大值,最大值为1250即利润获得最多为1250元故选:D.小提示:此题考查的是利用二次函数求最值,掌握将二次函数的一般式转化为顶点式求最值是解决此题的关键.8、抛物线y=ax2+bx+c经过点(−1,0)、(3,0),且与y轴交于点(0,−5),则当x=2时,y的值为()A.−5B.−3C.−1D.5答案:A分析:先利用待定系数法求出抛物线解析式,再求函数值即可.解:∵抛物线y=ax2+bx+c经过点(−1,0)、(3,0),且与y轴交于点(0,−5),∴{c=−5a−b+c=09a+3b+c=0,解方程组得{c=−5 a=53b=−103,∴抛物线解析式为y=53x2−103x−5,当x=2时,y=53×4−103×2−5=−5.故选择A.小提示:本题考查待定系数法求抛物线解析式,和函数值,掌握系数法求抛物线解析式方法和函数值求法是解题关键.9、如图,等腰Rt△ABC与矩形DEFG在同一水平线上,AB=DE=2,DG=3,现将等腰Rt△ABC沿箭头所指方向水平平移,平移距离x是自点C到达DE之时开始计算,至AB离开GF为止.等腰Rt△ABC与矩形DEFG的重合部分面积记为y,则能大致反映y与x的函数关系的图象为()A.B.C.D.答案:B分析:根据平移过程,可分三种情况,当0≤x<1时,当1≤x<3时,当3≤x≤4时,利用直角三角形的性质及面积公式分别写出各种情况下y与x的函数关系式,再结合函数图象即可求解.过点C作CM⊥AB于N,DG=3,在等腰Rt△ABC中,AB=2,∴CN=1,①当0≤x<1时,如图,CM=x,∴PQ=2x,∴y=12⋅PQ⋅CM=12×2x⋅x=x2,∴0≤x<1,y随x的增大而增大;②当1≤x<3时,如图,∴y=S△ABC=12×2×1=1,∴当1≤x<3时,y是一个定值为1;③当3≤x≤4时,如图,CM=x−3,∴PQ=2(x−3),∴y=12AB⋅CN−12PQ⋅CM=12×2×1−12×2×(x−3)2=1−(x−3)2,当x=3,y=1,当3<x<4,y随x的增大而减小,当x=4,y=0,结合ABCD选项的图象,故选:B.小提示:本题考查了动点函数问题,涉及二次函数的图象及性质,能够准确理解题意并分情况讨论是解题的关键.10、如图,在正方形ABCD中,AB=4,点P从点A出发沿路径A→B→C向终点C运动,连接DP,作DP的垂直平分线MN与正方形ABCD的边交于M,N两点,设点P的运动路程为x,△PMN的面积为y,则下列图象能大致反映y与x函数关系的是()A.B.C.D.答案:A分析:分点P在AB和BC上两种情况,分别求出MN和PF长,利用面积公式求解.解:(1)如图,当0≤x≤4时,点P在AB上,过点N作NE⊥AD于点E,设MN与PD交于点F,∴NE=DC=AD,则PD=√PA2+AD2=√x2+42=√x2+16,又∵MN垂直平分PD,∴PF=12PD=12√x2+16,∴∠MDF+∠FMD=∠MNE+∠FME=90°,∴∠MNE=∠PDA,在△MNE和△PDA中,{∠A=∠NEMAD=EN∠PDA=∠MNE∴△APD≌△EMN,∴PD=MN=√x2+16,∴y=12MN⋅PF=12√x2+16⋅12√x2+16=14x2+4 ,(2)如图,当4<x≤8时,点P在BC上,过点N作NE⊥CD于点E,设MN交PD于点F,则PD=√PC2+CD2=√(8−x)2+16 ,∴PF=12√(8−x)2+16用(1)的方法得MN=√(8−x)2+16,y=12√(8−x)2+16⋅12√(8−x)2+16=14(x−8)2+4,故y={14x2+4(0≤x≤4)14(x−8)2+4(4<x≤8)故选择A.小提示:本题考查分段函数,解决问题的关键是根据点P的位置确定自变量的取值范围得出函数解析式.填空题11、抛物线y=3−x2位于y轴左侧的部分是______的.(填“上升”或“下降”)答案:上升分析:根据二次函数图象的性质解答即可.解:∵二次项系数-1<0,∴抛物线开口向下,∵对称轴是直线y=0,∴抛物线y=3−x2位于y轴左侧的部分是上升的.所以答案是:上升.小提示:本题考查了二次函数图象的性质,熟练掌握二次函数y=ax2+k的性质是解答本题的关键.对于二次函数y=ax2+k (a,k为常数,a≠0),当a>0时,抛物线开口向上,在对称轴的左侧y随x的增大而减小,在对称轴的右侧y随x的增大而增大;当a<0时,抛物线开口向下,在对称轴的左侧y随x的增大而增大,在对称轴的右侧y随x的增大而减小.12、如图,平行四边形ABCD中,AB=4,点D的坐标是(0,8),以点C为顶点的抛物线经过x轴上的点A,B,则此抛物线的解析式为__________________.答案:y=−2x2+16x−24分析:根据平行四边形的性质得到CD=AB=4,即C点坐标为(4,8),进而得到A点坐标为(2,0),B点坐标为(6,0),利用待定系数法即可求得函数解析式.∵四边形ABCD为平行四边形∴CD=AB=4∴C点坐标为(4,8)∴A点坐标为(2,0),B点坐标为(6,0)设函数解析式为y=a(x−2)(x−6),代入C点坐标有8=a(4−2)(4−6)解得a=−2∴函数解析式为y=−2(x−2)(x−6),即y=−2x2+16x−24故答案为y=−2x2+16x−24.小提示:本题考查了平行四边形的性质,和待定系数法求二次函数解析式,问题的关键是求出A点或B点的坐标.13、如图,二次函数y=ax2+bx+c的部分图象与y轴的交点为(0,3),它的对称轴为直线x=1,则下列结论中:①c=3;②2a+b=0;③8a-b+c>0;④方程ax2+bx+c=0的其中一个根在2,3之间,正确的有_______(填序号).答案:①②④分析:由二次函数y=ax2+bx+c的部分图象与y轴的交点为(0,3),即可判断①;由抛物线的对称轴为直线x=1,即可判断②;抛物线与x轴的一个交点在-1到0之间,抛物线对称轴为直线x=1,即可判断④,由抛物线开口向下,得到a<0,再由当x=-1时,a−b+c<0,即可判断③.解:∵二次函数y=ax2+bx+c的部分图象与y轴的交点为(0,3),∴c=3,故①正确;∵抛物线的对称轴为直线x=1,∴−b=1,即2a+b=0,故②正确;2a∵抛物线与x轴的一个交点在-1到0之间,抛物线对称轴为直线x=1,∴抛物线与x轴的另一个交点在2到3之间,故④正确;∵抛物线开口向下,∴a<0,∵当x=-1时,a−b+c<0,∴a−b+c+7a<0即8a−b+c<0,故③错误,所以答案是:①②④.小提示:本题主要考查了二次函数图像的性质,解题的关键在于能够熟练掌握二次函数图像的性质.14、如图,一位篮球运动员投篮,球沿抛物线y=−0.2x2+x+2.25运行,然后准确落入篮筐内,已知篮筐的中心离地面的高度为3.05m,则他距篮筐中心的水平距离OH是_________m.答案:4分析:将y=3.05代入y=−0.2x2+x+2.25中可求出x,结合图形可知x=4,即可求出OH.解:当y=3.05时,−0.2x2+x+2.25=3.05,解得:x=1或x=4,结合图形可知:OH=4m,所以答案是:4小提示:本题考查二次函数的实际应用:投球问题,解题的关键是结合函数图形确定x的值.15、如图,一次足球训练中,一球员从球门正前方将球射向球门,球射向球门的路线呈抛物线,当球飞行的水平距离为6米时,球达到最高点,此时球离地面3米,当足球下落到离地面53米时,足球飞行的水平距离为__________米.答案:10分析:设抛物线的解析式为y=a(x−6)2+3,代入原点,确定解析式为y=−112x2+x,当y=53米时,求得x的值即可.设抛物线的解析式为y=a(x−6)2+3,代入原点,得:0=a(0−6)2+3,解得a=−112,∴抛物线的解析式为y=−112x2+x,当y=53米时,−112x2+x=53,解得x=10,x=2(舍去),足球飞行的水平距离为10米,所以答案是:10.小提示:本题考查了抛物线的解析式,已知函数值求自变量值,熟练掌握待定系数法是解题的关键.解答题16、李大爷每天到批发市场购进某种水果进行销售,这种水果每箱10千克,批发商规定:整箱购买,一箱起售,每人一天购买不超过10箱;当购买1箱时,批发价为8.2元/千克,每多购买1箱,批发价每千克降低0.2元.根据李大爷的销售经验,这种水果售价为12元/千克时,每天可销售1箱;售价每千克降低0.5元,每天可多销售1箱.(1)请求出这种水果批发价y(元/千克)与购进数量x(箱)之间的函数关系式;(2)若每天购进的这种水果需当天全部售完,请你计算,李大爷每天应购进这种水果多少箱,才能使每天所获利润最大?最大利润是多少?答案:(1)y=−0.2x+8.4(1≤x≤10且x为整数).(2)李大爷每天应购进这种水果7箱,获得的利润最大,最大利润是140元.分析:(1)根据题意列出y=8.2−0.2(x−1),得到结果.(2)根据销售利润=销售量×(售价-进价),利用(1)结果,列出销售利润w与x的函数关系式,即可求出最大利润.(1)解:由题意得y=8.2−0.2(x−1)=−0.2x+8.4∴批发价y与购进数量x之间的函数关系式是y=−0.2x+8.4(1≤x≤10,且x为整数).(2)解:设李大爷销售这种水果每天获得的利润为w元则w=[12−0.5(x−1)−y]⋅10x=[12−0.5(x−1)−(−0.2x+8.4)]⋅10x=−3x2+41x∵a=−3<0∴抛物线开口向下∵对称轴是直线x=416∴当1≤x≤41时,w的值随x值的增大而增大6∵x为正整数,∴此时,当x=6时,w=138最大当41≤x≤10时,w的值随x值的增大而减小6∵x为正整数,∴此时,当x=7时,w=140最大∵140>138∴李大爷每天应购进这种水果7箱,获得的利润最大,最大利润是140元.小提示:本题考查了二次函数的性质在实际生活中的应用,最大销售利润的问题常利用二次函数的增减性来解答,解题关键是理解题意,确定变量,建立函数模型,然后结合实际选择最优方案进行解决.17、某服装店以每件30元的价格购进一批T恤,如果以每件40元出售,那么一个月内能售出300件,根据以往销售经验,销售单价每提高1元,销售量就会减少10件,设T恤的销售单价提高x元.(1)服装店希望一个月内销售该种T恤能获得利润3360元,并且尽可能减少库存,问T恤的销售单价应提高多少元?(2)当销售单价定为多少元时,该服装店一个月内销售这种T恤获得的利润最大?最大利润是多少元?答案:(1)2元;(2)当服装店将销售单价50元时,得到最大利润是4000元分析:(1)根据题意,通过列一元二次方程并求解,即可得到答案;(2)设利润为M元,结合题意,根据二次函数的性质,计算得利润最大值对应的x的值,从而得到答案.(1)由题意列方程得:(x+40-30)(300-10x)=3360解得:x1=2,x2=18∵要尽可能减少库存,∴x2=18不合题意,故舍去∴T恤的销售单价应提高2元;(2)设利润为M 元,由题意可得:M =(x +40-30)(300-10x )=-10x 2+200x +3000=−10(x −10)2+4000 ∴当x =10时,M 最大值=4000元 ∴销售单价:40+10=50元∴当服装店将销售单价50元时,得到最大利润是4000元.小提示:本题考查了一元二次方程、二次函数的知识;解题的关键是熟练掌握一元二次方程、二次函数的性质,从而完成求解.18、在平面直角坐标系中,设二次函数y =−12(x −2m )2+3−m (m 是实数). (1)当m =2时,若点A (8,n )在该函数图象上,求n 的值.(2)小明说二次函数图象的顶点在直线y =−12x +3上,你认为他的说法对吗?为什么?(3)已知点P(a +1,c),Q(4m −5+a,c)都在该二次函数图象上,求证:c ≤138.答案:(1)-7 (2)对,理由见解析 (3)见解析分析:(1)把m =2,点A (8,n )代入解析式即可求解;(2)由抛物线解析式,得顶点是(2m ,3-m ),把x =2m 代入y =−12x +3,求出y 值与3-m 比较,若相等则即可判断小明说法正确,否则说法错误;(3)由点P (a +1,c ),Q (4m -5+a ,c )的纵坐标相同,即可求得对称轴为直线x =a+1+4m−5+a2=a +2m -2,即可得出a +2m -2=2m ,求得a =2,得到P (3,c ),代入解析式即可得到 c =-12(3-2m )2+3-m =-2m 2+5m -32=-2(m -54)2+138,根据二次函数的性质即可证得结论.(1)解:当m =2时,y =-12(x -4)2+1 ∵A (8,n )在函数图象上, ∴n =-12(8-4)2+1=-7(2)解:由题意得,顶点是(2m,3-m)当x=2m时,y=-12×2m+3=-m+3∴顶点(2m,3-m)在直线y=-12x+3上(3)证明:∵P(a+1,c),Q(4m-5+a,c)都在二次函数的图象上∴对称轴是直线x=a+1+4m-5+a2=a+2m-2∴a+2m-2=2m,∴a=2,∴P(3,c),把P(3,c)代入抛物线解析式,得∴c=-12(3-2m)2+3-m=-2m2+5m-32=-2(m-54)2+138,∵-2<0,∴c有最大值为138,∴c≤138.小提示:本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,二次函数的性质,熟练掌握二次函数的性质是解题的关键.。

第二十二章《二次函数》知识点总结人教版数学九年级上册

第二十二章《二次函数》知识点总结人教版数学九年级上册

《二次函数》知识点总结【知识点1 二次函数的表达式】1. 一般式: . 顶点坐标: . 对称轴: .2. 顶点式: .顶点坐标: . 对称轴: . 【知识点2 二次函数的图象与性质】 1. 二次项系数a 决定抛物线的 开口方向 ;①当0>a 时,抛物线的 ; ②当0<a 时,抛物线的 ; ③ ||a 越大,抛物线的开口 .3.常数项c 决定抛物线 与y 轴 交点的位置 . ①当0=c ,抛物线与y 轴交于 ; ②当0>c ,抛物线与y 轴交于 ; ③当0<c ,抛物线与y 轴交于 .5.根据a 、b 、c 的符号,画出二次函数的草图:①已知 a <0、b <0、c <0 ②已知 a>0、b <0、c >0 6.描述下面二次函数c bx ax y ++=2的增减性: 【知识点3 抛物线与坐标轴的交点】 1. 抛物线c bx ax y ++=2与x 轴的交点个数,即02=++c bx ax . ①当 ,抛物线与x 轴有两个交点; ②当 ,抛物线与x 轴有1个交点; ③当 ,抛物线与x 轴有没有交点;2.求抛物线c bx ax y ++=2与x 轴的交点的过程: 3.求抛物线c bx ax y ++=2与y 轴的交点的过程:4.函数 y = ax 2 + bx + c 的图象如图,那么 ①方程 ax 2 + bx + c =2 的根是 ______________;2.系数a 和b 共同决定抛物线 对称轴的位置 . ①a 和b 同号,对称轴在原点的 ; ②a 和b 异号, .4.根据图象判断出a 、b 、c 的符号:方法总结:第一步:求出对称轴;第二步:用箭头在对称轴两侧标出上升和下降;第三步:描述增减性.①当 时,随的增大而减小; ②当 时, 随的增大而增大;∵轴上的点, 为零,∴ . ∵轴上的点, 为零,∴ .②不等式 ax 2 + bx + c >0 的解集是 ___________; ③不等式 ax 2 + bx + c <2 的解集是 _________.④ a + b + c 0 ,4a 2 b + c 0 , 9a +3 b + c 0 .【知识点4 抛物线的平移】二次函数 y = ax 2 + bx + c 的平移口诀:“上下平移, ;左右平移, .” 【 * *知识点5 抛物线的对称 ** 】抛物线c bx ax y ++=2关于x 轴对称的解析式为 . 抛物线c bx ax y ++=2关于y 轴对称的解析式为 . 【 * *知识点6 二次函数图象的画法 ** 】 画出二次函数3-2-2x x y =的的图象.【典型例题 】1.m2+1+2x −是二次函数,则m 的值为( )C. −1D. 1或−12.【求顶点坐标 】抛物线y =2(x −3)4的顶点坐标是( ) A. (3,4)B. (−3,4)C. (3,−4)D. (2,4)3.【与坐标轴的交点 】抛物线y =−x 2+4x −4与坐标轴的交点个数为( ) A. 0B. 1C. 2D. 34.【平移】将函数y =x 2的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是( ) A. 向左平移1个单位 B. 向右平移3个单位C. 向上平移3个单位D. 向下平移1个单位5.【平移】抛物线y =x 2+6x +7可由抛物线y =x 2如何平移得到的( )A. 先向左平移3个单位,再向下平移2个单位B. 先向左平移6个单位,再向上平移7个单位C. 先向上平移2个单位,再向左平移3个单位D. 先向右平移3个单位,再向上平移2个单位 6.【图象与性质】对于抛物线y =−3(x +1)2−2,下列说法正确的是( ) A. 抛物线开口向上 B. 当x >−1时,y 随x 的增大而减小 C. 函数最小值为−2D. 顶点坐标为(1,−2)7.【增减性】已知(−3,y 1),(−1,y 2),(2,y 3)是抛物线y =−3x 2+6x +m 上的三个点.则( ) A. y 1<y 3<y 2B. y 3<y 2<y 1C. y 1<y 2<y 3D. y 2<y 1<y 38.【最值】已知二次函数y=x2−4x+2,关于该函数在−1≤x≤3的取值范围内,下列说法正确的是( )A. 有最大值−1,有最小值−2B. 有最大值0,有最小值−1C. 有最大值7,有最小值−1D. 有最大值7,有最小值−29.【系数与图象】二次函数y=ax2+bx+c(a≠0)与一次函数y=ax+c在同一坐标系中的图象大致为( )A. B. C. D.10.【求解析式】如图所示,已知二次函数y=ax2+bx+c的图象,求二次函数的解析式.11.如图,已知二次函数y=ax2−4x+c的图象经过点A(−1,−1)和点B(3,−9).(1)求该二次函数的解析式、对称轴及顶点坐标;(2)点C是抛物线与x轴的一个交点,点D是抛物线与y轴的交点,求三角形ACD 的面积;(3)已知点M(x1,y1)和N(1+x1,y2)在抛物线对称轴的右侧,判段y1和y2的大小.12.在运动会比赛时,九年级的一名男同学推铅球,已知铅球经过的路线是某二次函数图象的一部分(如图所示),如果这名男同学的出手处A点的坐标为(0,2),铅球路线的最高处B点的坐标为(6,5).(1)求出这个二次函数的解析式;(2)请求出这名男同学比赛时的成绩?13.如图是抛物线形拱桥,当拱顶离水面2m时,水面宽4m.(1)建立平面直角坐标系,求抛物线的解析式;(2)如果水面下降1m,则水面宽度是多少米?14.某商场一种商品的进价为每件30元,售价为每件50元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件40.5元,求两次下降的百分率;(2)经调查,若该商品每降价2元,每天可多销售16件,那么每天要想获得最大利润,每件售价应多少元?最大利润是多少?。

第二十二章 二次函数(单元总结)(解析版)

第二十二章 二次函数(单元总结)(解析版)

2.二次函数 y=3x﹣5x2+1 的二次项系数、一次项系数、常数项分别为________. 【答案】﹣5、3、1 【分析】根据二次函数的定义,判断出二次函数 y=3x-5x2+1 的二次项系数、一次项系数、常数项分别为多 少即可. 【详解】解:二次函数 y=3x-5x2+1 的二次项系数、一次项系数、常数项分别为-5、3、1. 故答案为:-5、3、1. 【点睛】此题主要考查了二次函数的定义,要熟练掌握,一般地,形如 y=ax2+bx+c(a、b、c 是常数,a≠0) 的函数,叫做二次函数.其中 x、y 是变量,a、b、c 是常量,a 是二次项系数,b 是一次项系数,c 是常数
用配方法可化成:
���ᝈ ���ᝈ
的形式,其中

������
ܾ,

���
ᝈ ���ܾ .

二次函数图象的平移
平移步骤: 将抛物线解析式转化成顶点式 ��� ᝈ ��� ᝈ ,确定其顶点坐标 ᝈ , ; 保持抛物线 ��� ᝈ 的形状不变,将其顶点平移到 ᝈ , 处,具体平移方法如下:
4
平移规律 在原有函数的基础上“ᝈ 值正右移,负左移; 值正上移,负下移”. 【概括】左加右减,上加下减
;⑤ ��� ᝈ ܾ .
开口方
对称
ᝈ 的符号
顶点坐标


ᝈ춠
向上


ᝈ���
向下


性质
춠 时, 随 的增大而增大; ��� 时, 随 的增大而减小; ��� 时, 有最小值 .
춠 时, 随 的增大而减小; ��� 时, 随 的增大而增大; ��� 时, 有最大值 .
第二种:二次函数 ��� ᝈ
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

右对称地描点画图 .一般我们选取的五点为:顶点、与 y 轴的交点 0 ,c 、以及 .
c - , ⎪
⎝ 2a
⎭ . 2a 时, y 随 x 的增大而减小;当
2a 时, y 随 x 的增大而增大;
第二十二章 二次函数
一、二次函数的有关概念: 1、二次函数的定义:
一般地,形如 y = ax 2 + bx + c ( a ,b ,c 是常数,a ≠ 0 )的函数,叫做二次函数。

2、二次函数解析式的表示方法
(1) 一般式: y = ax 2 + bx + c ( a , b , c 为常数, a ≠ 0 );
(2) 顶点式: y = a ( x - h )2 + k ( a , h , k 为常数, a ≠ 0 );
(3)两根式:y = a ( x - x 1 )(x - x 2 )( a ≠ 0 ,x 1 ,x 2 是抛物线与 x 轴两交点的横坐标)
二、二次函数 y = ax 2 + bx + c 图象的画法
1.基本方法:描点法
注 : 五 点 绘 图 法 。

利 用 配 方 法 将 二 次 函 数 y = ax 2 + bx + c 化 为 顶 点 式
y = a ( x - h )2 + k ,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左
( )
(0 , ) 关于对称轴对称的点 (2h ,c ) 、与 x 轴的交点 (x 1 ,0) ,(x 2
,0)(若与 x 轴没有
交点,则取两组关于对称轴对称的点).
2.画草图 抓住以下几点:开口方向,对称轴,顶点,与 x 轴的交点,与 y 轴的 交点.
三、二次函数的图像和性质
1.二次函数 y = ax 2 + bx + c 的性质
( 1 ) . 当 a > 0 时,抛物线开口向上,对称轴为
⎛ b 4ac - b 2 ⎫ 4a x =- b
2a ,顶点坐标为
当 x <- b b
x >-

x =-
b 4a
c - b 2 2a 时, y 有最小值 4a .
( 2 ) . 当 a < 0 时,抛物线开口向下,对称轴为
x =- b
2a ,顶点坐标为
- , ⎪
⎝ 2a
⎭ . 2a 时, y 随 x 的增大而增大;当
2a 时, y 随 x 的增大而减小; 上
(h ,k )

(h ,k )
① 当 ∆ = b 2 - 4ac > 0 时,图象与 x 轴交于两点 A x 1 ,0 ,B x 2 ,0 ( x 1 ≠ x 2 ) ,其 中 的 x 1 ,x 2 是 一 元 二 次 方 程 ax 2 + bx + c = 0
a ≠ 0 的 两 根 . 这 两 点 间 的 距 离
⎛ b 4ac - b 2 ⎫ 4a
当 x <- b
b x >-

x =-
b 4a
c - b 2 2a 时, y 有最大值 4a .
2.二次函数
y = a (x - h )2 + k
的性质:
符号
a 的
开 顶 点 对
口方向 坐标 称轴
性质
a > 0

a < 0

x > h 时, y 随 x 的增大而增大;
X=h x < h 时, y 随 x 的增大而减小; x = h
时, y 有最小值 k .
x > h 时, y 随 x 的增大而减小;
X=h x < h 时, y 随 x 的增大而增大; x = h
时, y 有最大值 k .
四、二次函数图象的平移
概括成八个字“左加右减,上加下减”. 五、二次函数与一元二次方程:
一元二次方程 ax 2 + bx + c = 0 是二次函数 y = ax 2 + bx + c 当函数值 y = 0 时的特
殊情况.
图象与 x 轴的交点个数:
( ) ( )
( )
AB = x - x =
2 1 b 2 - 4ac
a
.
② 当 ∆ = 0 时,图象与 x 轴只有一个交点;
③ 当 ∆ < 0 时,图象与 x 轴没有交点.
1'当a>0时,图象落在x轴的上方,无论x为任何实数,都有y>0;
2'当a<0时,图象落在x轴的下方,无论x为任何实数,都有y<0.
六、二次函数中的符号问题
1.二次项系数a
a决定了抛物线开口大小和方向,a的正负决定开口方向,a的大小决定开口的大小.
2.一次项系数b在二次项系数a确定的前提下,b决定了抛物线的对称轴.
⑴在a>0的前提下,

b
-
b>0时,2a<0,即抛物线的对称轴在y轴左侧;
b
-
当b=0时,2a =0
,即抛物线的对称轴就是y轴;

b
-
b<0时,2a>0,即抛物线对称轴在y轴的右侧.
⑵在a<0的前提下,结论刚好与上述相反,即
b
-当b>0时,2a >0
,即抛物线的对称轴在y轴右侧;

b
-
b=0时,2a=0,即抛物线的对称轴就是y轴;
b
-
当b<0时,2a <0
,即抛物线对称轴在y轴的左侧.
总结起来,在a确定的前提下,b决定了抛物线对称轴的位置.
总结:“左同右异”
3.常数项c
⑴当c>0时,抛物线与y轴的交点在x轴上方,即抛物线与y轴交点的纵坐标为正;⑵当c=0时,抛物线与y轴的交点为坐标原点,即抛物线与y轴交点的纵坐标为0;
⑶当c0时,抛物线与y轴的交点在x轴下方,即抛物线与y轴交点的纵坐标
为负.
总结起来,c决定了抛物线与y轴交点的位置.
七、二次函数解析式的确定:
根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:
1.已知抛物线上三点的坐标,一般选用一般式;
2.已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
3.已知抛物线与x轴的两个交点的横坐标,一般选用两根式;
4.已知抛物线上纵坐标相同的两点,常选用顶点式.。

相关文档
最新文档