BP神经网络在多传感器数据融合中的应用
神经网络技术在传感器信号处理中的应用

神经网络技术在传感器信号处理中的应用近年来,神经网络技术的发展取得了巨大的进步,已经逐渐在各个领域得到了广泛的应用。
其中,神经网络技术在传感器信号处理中的应用尤为突出。
本文将探讨神经网络技术在传感器信号处理中的应用,为读者提供更多的理解和应用参考。
一、传感器信号处理的基本原理在开始讨论神经网络技术在传感器信号处理中的应用之前,我们有必要先了解一下传感器信号处理的基本原理。
传感器信号处理是将传感器获取的信号进行专业分析和处理的一种技术,主要用于检测和控制。
传感器是将非电信号转化成电信号的一种装置,其检测原理与被检测对象的物理量相关。
在传感器信号处理过程中,首先需要对采集到的信号进行预处理,包括滤波、放大、去噪等步骤,以保证信号稳定和准确。
然后,应用信号处理算法进行分析和处理。
传感器信号处理的最终目标是提高数据的准确性和完整性,以利于对被检测对象进行更加精确的控制和管理。
二、神经网络技术在传感器信号处理中的应用神经网络技术是模拟人脑神经系统机制而产生的一种智能计算技术。
它可以学习复杂的非线性关系,自适应地对不稳定和不确定的系统进行控制和优化。
因此,神经网络技术在传感器信号处理中得到了广泛应用。
1. 信号滤波传感器采集的原始信号通常存在着各种噪声干扰和杂波,这些噪声和杂波会严重影响信号的精度和可靠性。
因此,在传感器信号处理中,信号滤波是非常重要的一步。
传统的滤波算法往往需要提供一定的先验知识和经验,比如选择合适的滤波窗口、滤波器类型等。
而神经网络技术可以自适应地从大量的样本数据中学习和理解信号的特征,有效地解决了传统滤波算法无法解决的问题。
2. 特征提取和分类传感器信号中包含着大量的信息和特征,而其中一些特征可能对我们所关注的目标具有更加重要的意义。
因此,在传感器信号处理中,特征提取和分类是一个非常关键的挑战。
神经网络技术可以有效地提取和分析信号的特征,确定哪些信号特征对我们所关注的目标具有更加重要的意义。
bp神经网络的应用综述

bp神经网络的应用综述近年来,人工神经网络(ANN)作为一种神经网络形式在不断发展,因其计算能力强,对现实世界较好地识别和适应能力,已得到越来越广泛的应用,其中,BP神经网络是最典型的人工神经网络之一。
BP神经网络是指以马尔可夫随机过程为基础的反向传播算法,具有自组织学习、泛化、模糊推理的特点,具有非常广泛的应用场景。
它可以用来解决实际问题。
首先,BP神经网络可以用来解决分类问题。
它可以根据给定的输入向量和输出向量,训练模型以分类相关的输入特征。
这种模型可以用来解决工业控制问题、专家系统任务等。
例如,BP神经网络可以用来识别照片中的面孔,帮助改进自动门的判断等。
此外,BP神经网络还可以用于计算机视觉,即以计算机图像识别的形式进行图像处理。
通常,计算机视觉技术需要两个步骤,即识别和分析。
在识别步骤中,BP神经网络可以被用来识别图片中的特征,例如物体的形状、大小、颜色等;在分析步骤中,BP神经网络可以用来分析和判断图片中的特征是否满足要求。
此外,BP神经网络还可以用于机器人技术。
它可以用来识别机器人环境中的物体,从而帮助机器人做出正确的动作。
例如,利用BP神经网络,机器人可以识别障碍物并做出正确的行动。
最后,BP神经网络还可以用于未来的驾驶辅助系统中。
这种系统可以利用各种传感器和摄像机,搜集周围环境的信息,经过BP神经网络分析,判断当前环境的安全程度,及时采取措施,以达到更好的安全驾驶作用。
综上所述,BP神经网络具有自组织学习、泛化、模糊推理的特点,拥有非常广泛的应用场景,可以用于分类问题、计算机视觉、机器人技术和驾驶辅助系统等。
然而,BP神经网络也存在一些问题,例如训练时间长,需要大量的训练数据,容易受到噪声攻击等。
因此,研究人员正在积极改进BP神经网络,使其能够更好地解决各种问题。
无线传感网中基于BP神经网络的数据融合方法

计 算机 工程 与设 计
COM P UTER ENGI NEERI NG AND DE S I GN
J a n .2 0 1 4
Vo 1 . 3 5 NO . 1
第 3 5卷
第 பைடு நூலகம் 期
无线传感网中基于 B P神经 网络的数据融合方法
樊雷松 , 强 彦 , 赵 涓涓, 胡洋洋 , 格 磊
( S c h o o l o f Co mp u t e r S c i e n c e a n d Te c h n o l o g y ,Ta i y u a n Un i v e r s i t y o f Te c h n o l o g y,Ta i y u a n 0 3 0 0 2 4,Ch i n a ) Ab s t r a c t :To r e d u c e a l o t o f r e d u n d a n t a n d i n v a l i d d a t a i n t h e wi r e l e s s s e n s o r n e t wo r k,t o i mp r o v e t h e l i f e c y c l e o f t h e n o d e ,t o
Da t a f u s i o n me t h o d b a s e d o n BP n e u r a l n e t wo r k i n wi r e l e s s s e n s o r n e t wo r k s
F AN L e i — s o n g , QI AN G Y a n , Z HAO J u a n - j u a n , HU Y a n g — y a n g , GE L e i
BP神经网络在多传感器数据融合中的应用

BP神经网络在多传感器数据融合中的应用摘要:提出一种基于多传感器神经网络融合的机动目标估计算法,利用BP 神经网络的函数逼近能力,将BP神经网络与卡尔曼滤波器相结合构成一个估计器,该算法可以对来自经不同噪声污染的传感器信息加以充分利用,在改善估计性能的同时又保持估计滤波的计算结构尽可能简单。
仿真结果表明所提出的估计滤波算法在估计应用上优于一般的加权估计算法,提高了估计算法的精度。
关键词:BP神经网络卡尔曼滤波数据融合一、引言数据融合是指对来自多个传感器的信息进行融合,也可以将来自多个传感器的信息和人机界面的观测事实进行信息融(这种融合通常是决策级融合)。
提取征兆信息,在推理机作用下.将征兆与知识库中的知识匹配,做出故障诊断决策,提供给用户。
在基于信息融合的故障诊断系统中可以加入自学习模块.故障决策经自学习模块反馈给知识库.并对相应的置信度因子进行修改,更新知识库。
同时.自学习模块能根据知识库中的知识和用户对系统提问的动态应答进行推理。
以获得新知识。
总结新经验,不断扩充知识库,实现专家系统的自学习功能。
多传感器数据融合是20世纪70年代以来发展起来的一门新兴边缘学科,目前已经成为备受人们关注的热门领域。
多传感器数据融合是一门新兴技术,在军事和非军事领域中都碍到了广泛应用、多传感器数据融合技术汲取了人工智能、模式识别、统计估计等多门学科的相关技术,计算机技术的快速发展以及数据融合技术的成熟为数据融合的广泛应用提供了基础。
多传感器信息融合状态估计是多传感器信息融合学科的一个重要分支。
多传感器数据融合的基本原理就像是人脑综合处理信息的过程一样,它充分利用多个传感器资源,通过对各种传感器及其观测信息的合理支配与使用,将各传感器在空间和时间上的互补与冗余信息依据某种优化准则组合起来,产生对观测环境的一致性解释和描述。
目前有两种常用的信息融合方法:一种方法是状态融合方法,另一种方法是观测融合方法。
状态融合方法又可分为集中式kalman滤波[1]和分散式kalman滤波。
基于小波分析和BP神经网络的多传感器遥感图像融合算法的研究

得遥 感图像的应用范围得到极大地拓 展。
1 多传感器遥感 图像融合的概述
的载 体 , 过 信 息融 合 , 以将 通 过 不 同 工 通 可
上 。 感 图像 的 融 合技 术 使 用 多 层次 、 遥 多级
完 整 的 分 量 数 据 , 此 小 波 分 析 被 广 泛 地 在 B 神 经 网络 算 法 的 基 础 之 上 , 合 变 尺 因 P 结
对于 二维信 息来说 , 波分 解可以 用 小
多 传 感 器 遥 感 图 像是 一种 多 种 信 息 源 应 用 在 图像 处 理 和 场 量 处 理 领 域 。 具 采 集 到 的 图 像 信 息 集成 在 一 张 遥 感 图像 如 图 1 示 的 示 意 图来 理 解 。 所
分 解 前 的 图像 被 定 义 为 第 一 层 图 像 进 行 图像 融 合 处 理 时 , 用 的 是 负 梯 度 方 采
首 先 , 照 小 波 塔 形 分 解 的 方 法 对 每 按
一
不是 太 大 。 过 小 波 分 解 , 以 借 助小 波 的 通 可
源 图 像 进 行 小 波 变 换 ; 后 针 对 每 一 个 然
融 时 , 于 传 感 器 信 息 的 处 理 技 术 也 随 之 提 方 向性 特 点 将 方 向 各 异 的 高频 分 辨 率 图像 分 解 层 进 行 融 合 , 合 的 方 法 按 照 每 层 上 对
够 达 到 抗 干 扰 、 定的 科 学 数据 载 体 。 稳
会 大 大 增 加 , 间消 耗 也 随 之 增 长 。 此 , 时 因
被 分 解 为 水 平 方 向 上 的 图像 L , 直 方 Hl 垂
向 上 的 图 像 HL1 及 斜 对 角 线 上 的 图 像 以
多传感器数据融合技术研究及应用

多传感器数据融合技术研究及应用随着科技发展,大量的传感器技术得到了广泛的应用,而多传感器数据融合技术也因此而生,成为了当今科技领域的一个热门话题。
本文将从多个角度深入探讨多传感器数据融合技术的研究现状以及应用前景。
一、多传感器数据融合技术简介多传感器数据融合技术是指将来自多个传感器的数据进行处理和整合,从而得到更加准确、全面的信息,提高数据处理和分析的精度和效率。
多传感器数据融合技术既可以用于研究基础理论,也可以应用于实际工程领域,如环境监测、智能交通、军事侦察等领域。
传感器是将感受到的物理量转化为电信号的装置,用于将环境信息转化为数据,工业、生活和科学研究领域中的各种设备都可以使用传感器技术。
而多传感器数据融合技术则是将不同类型和数量的传感器数据整合在一起,以期获得更加精确、全面的信息。
多传感器数据融合技术的主要优势在于能够在不同维度上提供更高的空间和时间分辨率,并且可以解决单个传感器所不能捕捉到的数据缺失问题,以此提高数据分析、处理和应用的精度和效率。
二、多传感器数据融合技术的研究现状当前,多传感器数据融合技术的研究和应用已经成为了很多领域的关注重点,相关学科如计算机科学、电子工程、物理学等也已经逐渐形成了完整的研究方向。
多传感器数据融合技术的研究包括数据处理、信息融合、模型构建、智能识别等方面,具体来说,主要包括以下几个方面:1. 数据融合算法数据融合是多传感器数据融合技术的核心内容,当前大量的研究工作主要关注如何对不同类型、来源和质量的传感器数据进行有效的融合,从而得到更加精准的数据信息。
当前,常用的数据融合算法主要包括加权平均法、卡尔曼滤波法、粒子滤波法、小波变换和小波包分解等,其中,小波变换技术较为全部。
2. 模型构建在多传感器数据融合技术中,模型构建是非常重要的一部分,它可以对不同传感器数据融合的模型进行建立和优化,以此提高数据融合的准确性和效率。
常见的模型构建技术包括神经网络、贝叶斯网络、决策树、支持向量机、两类模型、仿生学等等。
多传感器数据智能融合理论与应用 第1章 多传感器数据融合概述

类似LANDSAT的卫星使用可见光和红外传感器来提 供有关作物的种类,生长情况,病虫害及耕作情况等信息。 合成孔径雷达(SAR)甚至可以从宇宙飞船上穿过云层拍 摄到地球的图片。SAR提供的关于地球资源的其他信息可 以与其他传感器提供的信息进行融合。
多传感器数据智能融合
8
2 多传感器系统的应用及优势
一个能够支持自动目标识别(ART)的多传感器系 统里面的传感器包含了毫米波雷达,毫米波辐射计以及被 动式和主动式红外传感器等。
在这个传感器级数据融合结构中,每个传感器都具 有自己的处理算法,采用何种算法主要考虑如下因素:数 据所处的频段;传感器的类型(主动型或被动型);空间 分辨率和扫描特性;目标和背景特性以及信号的极化信息 等。
■ 遗传算法(GA):求最优的一种迭代算法,属于人工智能类。 ■ 确定基因优化的准则?交叉、变异、进化。 ■ 有用遗传算法,用于多传感器信息的融合。
多传感器数据智能融合
18
3 数据融合算法
■ 粒子群方法(PSO):粒子群优化算法(Particle Swarm optimization, PSO)是一种进化计算(evolutionary computation)技术,由Eberhart博士和Kennedy博士于1995年 提出[1]。该算法源于对鸟群捕食的行为研究,主要用于优化 计算,基本思想是通过群体中个体之间的协作和信息共享来 寻找最优解。PSO算法的优势在于简单容易实现并且没有许多 参数的调节。目前已被广泛应用于函数优化、神经网络训练、 模糊系统控制以及其他遗传算法的应用领域。
基于神经网络的多传感器信息融合研究

基于神经网络的多传感器信息融合研究一、绪论随着物联网技术的发展,传感器技术得到了广泛应用。
在物联网中,往往需要多个传感器协同工作,完成更为复杂的任务。
传感器之间的信息融合是实现多传感器协同的关键。
而神经网络技术因其自适应性和非线性映射能力,被广泛应用于多传感器信息融合研究。
本文将对基于神经网络的多传感器信息融合进行探讨。
二、多传感器信息融合的概念所谓多传感器信息融合,就是将多个传感器的数据进行整合、分析和综合,达到整个系统效能的最优化,以满足特定需求的过程。
多传感器信息融合可以提高测量精度和鲁棒性,同时还可以提高反应速度和可靠度。
三、神经网络神经网络是一种模仿生物神经网络的非线性数学模型,由于其强大的自适应和泛化能力,在多传感器信息的处理和分析中被广泛应用。
神经网络的基本结构包括输入层、输出层和隐藏层。
输入层接受传感器的原始数据,输出层输出分析结果,隐藏层则负责对输入数据进行处理和映射。
神经网络的训练过程,实际上就是调整神经元之间的权重和阈值,并使得网络的输出结果与实际结果最为接近的过程。
四、基于神经网络的多传感器信息融合方法1、基于神经网络的特征提取传感器往往会输出大量的数据,只有对这些数据进行处理和分析,才能得到有意义的信息。
基于神经网络的特征提取方法对传感器数据进行预处理和降维,使得提取出的特征更具有代表性。
特征提取的目标是,让神经网络能够利用有用的特征来完成多传感器信息的融合。
2、神经网络的融合模型在多传感器信息融合过程中,可以使用神经网络作为融合模型。
神经网络可以自适应的将各个传感器的信息进行分析和综合,同时保持整个系统的鲁棒性和稳定性。
神经网络的作用是将各个传感器的数据进行综合和提取,得到信息量更大、更准确的结果。
3、基于神经网络的检测与诊断基于神经网络的检测与诊断是多传感器信息融合的重要应用之一。
利用神经网络诊断系统可以更加准确地判断物品是否受损或发生故障。
在这种应用中,神经网络可以从多个传感器中获得信息,通过分析各种信号,来确保系统正常工作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
BP神经网络在多传感器数据融合中的应用
摘要:提出一种基于多传感器神经网络融合的机动目标估计算法,利用BP 神经网络的函数逼近能力,将BP神经网络与卡尔曼滤波器相结合构成一个估计器,该算法可以对来自经不同噪声污染的传感器信息加以充分利用,在改善估计性能的同时又保持估计滤波的计算结构尽可能简单。
仿真结果表明所提出的估计滤波算法在估计应用上优于一般的加权估计算法,提高了估计算法的精度。
关键词:BP神经网络卡尔曼滤波数据融合
一、引言
数据融合是指对来自多个传感器的信息进行融合,也可以将来自多个传感器的信息和人机界面的观测事实进行信息融(这种融合通常是决策级融合)。
提取征兆信息,在推理机作用下.将征兆与知识库中的知识匹配,做出故障诊断决策,提供给用户。
在基于信息融合的故障诊断系统中可以加入自学习模块.故障决策经自学习模块反馈给知识库.并对相应的置信度因子进行修改,更新知识库。
同时.自学习模块能根据知识库中的知识和用户对系统提问的动态应答进行推理。
以获得新知识。
总结新经验,不断扩充知识库,实现专家系统的自学习功能。
多传感器数据融合是20世纪70年代以来发展起来的一门新兴边缘学科,目前已经成为备受人们关注的热门领域。
多传感器数据融合是一门新兴技术,在军事和非军事领域中都碍到了广泛应用、多传感器数据融合技术汲取了人工智能、模式识别、统计估计等多门学科的相关技术,计算机技术的快速发展以及数据融合技术的成熟为数据融合的广泛应用提供了基础。
多传感器信息融合状态估计是多传感器信息融合学科的一个重要分支。
多传感器数据融合的基本原理就像是人脑综合处理信息的过程一样,它充分利用多个传感器资源,通过对各种传感器及其观测信息的合理支配与使用,将各传感器在空间和时间上的互补与冗余信息依据某种优化准则组合起来,产生对观测环境的一致性解释和描述。
目前有两种常用的信息融合方法:一种方法是状态融合方法,另一种方法是观测融合方法。
状态融合方法又可分为集中式kalman滤波[1]和分散式kalman滤波。
集中式kalman滤波虽然在理论上可获得全局最优融合状态估计,但这种方法计算量大,且容错性能差,而分散式kalman滤波信息融合能克服这些缺点,但这种方法是局部最优的,因此基于此思想我们可以利用BP神经网络来提高融合精度。
BP(Back Propagation)神经网络[2],即误差反传误差反向传播算法的学习过程,由信息的正向传播和误差的反向传播两个过程组成。
输入层各神经元负责接收来自外界的输入信息,并传递给中间层各神经元;中间层是内部信息处理层,负责信息变换,根据信息变化能力的需求,中间层可以设计为单隐层或者多隐层结构;最后一个隐层传递到输出层各神经元的信息,经进一步处理后,完成一次学习的正向传播处理过程,由输出层向外界输出信息处理结果。
当实际输出与期
望输出不符时,进入误差的反向传播阶段。
误差通过输出层,按误差梯度下降的方式修正各层权值,向隐层、输入层逐层反传。
周而复始的信息正向传播和误差反向传播过程,是各层权值不断调整的过程,也是神经网络学习训练的过程,此过程一直进行到网络输出的误差减少到可以接受的程度,或者预先设定的学习次数为止。
BP神经网络是模拟人脑的信息处理机制而构造出来的一种并行信息处理模型,它有分布式存储和联想记忆功能,具有较强的自适应性和自组织性,具有任意的非线性映射能力,能被用来对两个估计模型的输出结果进行有效的分析和综合,提高估计的精度和可靠性。
二、模型描述
带有观测噪声的三传感器雷达跟踪系统:
状态,,和分别为在时刻处运动目标的位置、速度和加速度,为第个传感器对位置的观测,为与相关的白噪声。
kalman滤波按矩阵加权融合准则算法是基于L个传感器观测已知它的L 个无偏估计,即,
设已知估计误差的方差阵和协方差阵,,,,其中E为均值号,T为转置号,问题是寻求X的按矩阵加权无偏融合估计,,
其中加权阵为矩阵,在线性最小方差意义下,应选择加权阵极小化融合估计误差的分量均方和J,,
它等价于
按矩阵加权融合准则算法既是对L个传感器经kalman滤波器得到的状态求得加权矩阵使得性能指标J最小。
基于加权思想,对以上的三传感器雷达跟踪模型建立BP神经网络,三传感器的输出作为网络的输入,网络的输出与模型的状态数据比较后反向传播对各层神经元权值进行修改,直到输出层与模型状态的误差达到期望误差。
由于本次实验模型简单,对其采用两层BP网络,隐层神经元采用Sigmoid型激活函数,输出层采用线性激活函数。
在使用网络前需要对网络进行训练,本次实验设置训练时间为50个单位时间,训练目标设置为误差小于0.2。
三、仿真分析
以下给出个状态在各种方法下的仿真结果:
图1、图2为三个传感器的测量值经kalman平滑器估计后的的状态1经BP神经网络融合后的值和理想状态的对比图。
从图中可以看出经神经网络融合后对状态1的估计精度有了进一步的提高。
而且训练速度也非常迅速,大约10步左右就能达到要求的误差。
图3、图4为三个传感器的测量值经kalman平滑器估计后的的状态2经BP神经网络融合后的值和理想状态的对比图。
从图中可以看出经神经网络融合后对状态2的估计精度有了进一步的提高。
而且训练速度也非常迅速,大约20步左右就能达到要求的误差。
图5为比较加权融合后的稳态误差方差阵的迹和三个传感器的稳态平滑误差方差阵的迹,可以明显看出经融合后的精度明显高于局部平滑的精度。
由于设置的神经网络的误差目标为0.2,通过训练后目标误差能达到要求,因此经神经网络融合后的状态估计精度要大大高于经加权矩阵融合估计的精度。
四、结论
本文利用BP神经网络对来自经不同噪声污染的传感器的测量信息进行处理,完成机动检测,并与卡尔曼滤波器相结合构成一个性估计器,对目标进行估计。
这种估计方案可以利用神经网络的函数逼近能力对来自各传感器的充信息加以充分利用,在改善估计性能的同时又保持估计滤波的计算结构尽可能简单。
参考文献:
[1]邓自立. 最优估计理论及其应用——建模、滤波、信息融合估计.
[2]杨行峻、郑君里. 人工神经网络与盲信号处理.
[3]matlab7.0辅助神经网络分析与设计.
注:本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文。