结构动力学的有限元法
结构动力学问题的有限元法

K Q
K Q
对于结构动力学问题,节点载荷阵还包括惯性力和阻尼力。
e e e K Q (M C ) e e 1 m
或改写为:
C K M Q
代入:
dV Q N u
T T T
M N N dV
dV N N
e T
e
e dV Q N u
e T T
N N dV C
其中:
M M C C
e
e
质量阵和阻尼阵的叠加方法与刚度阵的叠加方法相同,也 是对称稀疏阵。
三、动力方程的简化
M e N T N dV
称为一致质量矩阵,是稀疏带状阵。
如果将单元质量阵近似作为对角阵,则方程变成彼此独立,避免 联立,称为集中质量阵或团聚质量阵。 解耦 例如长度为L,截面积为A,密度为ρ的梁单元。 i
A,ρ
L
j
x
1 A L 0 集中质量阵: m 2 0 0
0 0 0 0
0 0 1 0
0 0 0 0
156 22L 22L 2 一致质量阵: 4 L AL m 13L 420 54 2 13 L 3 L
54 13L 13L 3L2 156 22L 2 22L 4 L
ˆ P K P K
T
在变换[K]和[M]的过程中,有时使用一次雅克比变换将一个 非对角线元素化为零以后,它在另一次变换中会重新变为非零 元素,但在素质上有所减小。这说明需要反复使用雅克比变换, 最终非对角线元素将趋于零。 在实际求解过程中,不必严格地把矩阵[K]和[M]所有的非对 角线元素变换为零,通常在完成一次变换后进行判断是否达到预 l 1 (l ) 设的精度:
有限元法的工程领域应用

有限元法的工程领域应用
有限元法(Finite Element Method,简称FEM)是一种工程领域常用的数值计算方法,广泛应用于结构力学、固体力学、流体力学等领域。
以下是一些有限元法在工程领域常见的应用:
1. 结构分析:有限元法可用于分析各种结构的受力性能,如建筑物、桥梁、飞机、汽车等。
通过将结构离散成有限数量的单元,可以计算出每个单元的应力、应变以及整个结构的位移、变形等信息。
2. 热传导分析:有限元法可用于模拟材料或结构的热传导过程。
通过对材料的热传导系数、边界条件等进行建模,可以预测温度分布、热流量等相关参数。
3. 流体力学分析:有限元法在流体力学领域的应用非常广泛,例如空气动力学、水动力学等。
通过建立流体的速度场、压力场等参数的数学模型,可以分析流体在不同条件下的运动特性。
4. 电磁场分析:有限元法可以应用于计算电磁场的分布和特性,如电磁感应、电磁波传播等。
通过建立电磁场的数学模型,可以预测电场、磁场强度以及电磁力等。
5. 振动分析:有限元法可用于模拟结构的振动特性,如自由振动、强迫振动等。
通过建立结构的质量、刚度和阻尼等参数的数学模型,可以计算出结构在不同频率下的振动响应。
6. 优化设计:有限元法可以与优化算法结合,应用于工程设计中的结构优化。
通过对结构的材料、几何形状等进行参数化建模,并设置目标函数和约束条件,可以通过有限元分析来寻找最佳设计方案。
以上只是有限元法在工程领域的一些应用,实际上有限元法在各个领域都有广泛的应用,为工程师提供了一种精确、高效的数值计算方法,用于解决各种实际工程问题。
有限元法及应用总结

有限元法及应用总结有限元法(Finite Element Method,FEM)是一种数学建模方法,用于求解连续介质的力学问题。
它通过将连续介质分割为有限数量的小单元,通过离散化的方式将连续问题转化为离散问题,然后通过数值计算方法进行求解。
有限元法的基本步骤是:建立初始网格、选择合适的单元类型和数学模型、建立有限元方程、求解有限元方程组、计算和评估结果。
1.建立初始网格:将连续介质分割为离散的小单元。
可以根据问题的特点选择不同形状的单元,如三角形、四边形、六边形等。
初始网格的密度应根据问题的要求进行合理的选择。
2.选择合适的单元类型和数学模型:根据问题的情况,选择合适的数学模型,如线性模型、非线性模型、静力学模型、动力学模型等。
同时,根据问题的要求选择合适的单元类型,如三角形单元、四边形单元等。
3.建立有限元方程:根据选择的数学模型,使用变分原理或其他方法建立有限元方程。
有限元方程通常是一个矩阵方程,包含未知变量和已知条件,通过求解该方程可以得到问题的解。
4.求解有限元方程组:将有限元方程组转换为代数方程组,使用数值计算方法求解。
常用的求解方法有直接解法和迭代解法,如高斯消元法、LU分解法、共轭梯度法等。
根据问题的特点选择合适的求解方法。
5.计算和评估结果:得到问题的解后,可以通过计算和评估结果来验证数值解的准确性和可靠性。
常见的评估方法有误差分析、收敛性分析、模型验证等。
有限元法的应用非常广泛,涉及机械、土木、航空航天、电子、生物医学等多个领域。
通过有限元法可以模拟和分析各类结构的力学行为和变形特性,以及流体、热传导等物理问题。
在机械工程中,有限元法可以用于模拟零件的变形、应力和疲劳行为,优化结构设计,确定最佳工艺参数等。
在土木工程中,可以用于模拟建筑物、桥梁、隧道等结构的稳定性和强度,评估结构的安全性。
在航空航天工程中,可以用于模拟飞机、航天器的疲劳和破坏行为,优化材料和结构设计。
在电子工程中,有限元法可以用于模拟芯片、电路板的热分布和应力分布,优化散热和布线设计。
有限元法及其应用 pdf

有限元法及其应用 pdf标题:有限元法及其应用引言概述:有限元法是一种数值分析方法,广泛应用于工程领域。
本文将介绍有限元法的基本原理和应用领域,并详细阐述其在结构分析、流体力学、热传导、电磁场和生物力学等方面的具体应用。
正文内容:1. 结构分析1.1 结构力学基础1.1.1 杆件和梁的有限元分析1.1.2 平面和空间框架的有限元分析1.1.3 壳体和板的有限元分析1.2 结构动力学分析1.2.1 振动问题的有限元分析1.2.2 地震响应分析1.2.3 结构非线性分析2. 流体力学2.1 流体流动的有限元分析2.1.1 稳态流动问题的有限元分析2.1.2 非稳态流动问题的有限元分析2.1.3 多相流动问题的有限元分析2.2 流体结构耦合分析2.2.1 气动力和结构响应的有限元分析2.2.2 液固耦合问题的有限元分析2.2.3 流体流动与热传导的有限元分析3. 热传导3.1 热传导方程的有限元分析3.1.1 稳态热传导问题的有限元分析3.1.2 非稳态热传导问题的有限元分析3.1.3 辐射传热问题的有限元分析3.2 热结构耦合分析3.2.1 热应力分析3.2.2 热变形分析3.2.3 热疲劳分析4. 电磁场4.1 静电场和静磁场的有限元分析4.1.1 静电场的有限元分析4.1.2 静磁场的有限元分析4.2 电磁场的有限元分析4.2.1 电磁场的有限元分析方法4.2.2 电磁场与结构的耦合分析4.2.3 电磁场与流体的耦合分析5. 生物力学5.1 生物组织的有限元分析5.1.1 骨骼系统的有限元分析5.1.2 软组织的有限元分析5.1.3 生物材料的有限元分析5.2 生物力学仿真5.2.1 运动学分析5.2.2 力学分析5.2.3 生物仿真与设计总结:有限元法是一种广泛应用于工程领域的数值分析方法。
本文从结构分析、流体力学、热传导、电磁场和生物力学五个大点详细阐述了有限元法的应用。
通过对各个领域的具体应用介绍,我们可以看到有限元法在工程领域中的重要性和广泛性。
有限元第六章 动力问题的有限元法

第六章 动力问题的有限元法6.1 概述前面几章所研究的问题都属于静力问题,其特点是施加到结构上的外载荷不会使结构产生加速度,且外载荷的大小和方向不随时间变化,因而结构所产生的位移和应力也不随时间变化。
本章将要研究结构分析中另一类重要问题的有限元解法,即动力问题的有限元解法。
动力学问题的特点是,载荷是随时间变化的,因而结构所产生的位移和应力是时间的函数,结构会产生速度和加速度。
由于结构本身的弹性和惯性,结构在动力载荷的作用下,往往呈现出振动的运动形态。
结构振动是工程中一个很普遍很重要的问题。
有些振动对我们有利,例如,振动打桩,振动选料,有些振动对我们有害,例如,机床的振动,仪器与仪表的振动,桥梁、水坝及高层建筑在地震作用下的振动等。
因此,我们必须对振动体本身的振动特性以及它对外部激振力的响应有一个明确的认识,才能更好地利用它有利的一面,而避免它有害的一面,设计出更好的机械和结构。
振动问题主要解决两方面的问题。
1. 寻求结构的固有频率和主振型,从而了解结构的固有振动特性,以便更好地利用或减少振动。
2. 分析结构的动力响应特性,以计算结构振动时动应力和动位移的大小及其变化规律。
6.2 结构的振动方程结构的振动方程可用多种方法建立,这里我们使用达朗伯原理(动静法),仿照前几章建立静力有限元方程的方法,来建立动力问题的有限元方程。
在静力问题中用有限元法建立的平衡方程是}{}]{[F K =δ在振动问题中,对结构的各节点应用达郎伯原理所建立的振动方程仍然具有与上式相同的形式,只不过节点位移是动位移,节点载荷是动载荷,它们都是时间的函数。
上面的方程成为)}({)}(]{[t Q t K =δ (6.1)上式中{})(t δ为节点的动位移,它是时间的函数,)}(]{[t K δ是t 时刻的节点位移产生的弹性恢复力,它与该时刻的节点外力{})(t Q 构成动态平衡。
在动态情况下,结构承受的载荷(集中载荷 ,分布载荷 )可随时间而变化,是时间的函数。
有限元分析法概述

第十一章 有限元分析方法概述1、基本概念有限元分析方法是随着电子计算机的发展而迅速发展起来的一种现代没计计算方法。
它是20世纪50年代首先在连续体力学领域—飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快就广泛地应用于求解热传导、电磁场、流体力学等连续性问题。
在工程分析和科学研究中,常常会遇到大量的由常微分方程、偏微分方程及相应的边界条件描述的场问题,如位移场、应力场和温度场等问题。
求解这类场问题的方法主要有两种:用解析法求得精确解;用数值解法求其近似解。
应该指出,能用解析法求出精确解的只是方程性质比较简单且几何边界相当规则的少数问题。
而对于绝大多数问题,则很少能得出解析解。
这就需要研究它的数值解法,以求出近似解。
目前工程中实用的数值解法主要有三种:有限差分法、有限元法和边界元法。
其中,以有限元法通用性最好,解题效率高,目前在工程中的应用最为广泛。
下面通过一个具体例子,分别采用解析法和数值解法进行求解,从而体会一下有限元分析方法的含义及其相关的一些基本概念。
如下图所示为一变横截面杆,杆的一端固定,另一端承受负荷P ,试求杆沿长度方向任一截面的变形大小。
其中,杆的上边宽度为1w ,下边宽度为2w ,厚度为t ,长度为L ,杆的材料弹性模量为E 。
已知P =4450N ,1w =50mm ,2w =25mm ,t =3mm ,L =250mm ,E =72GPa 。
① 采用解析法精确求解假设杆任一横截面面积为)(y A ,其上平均应力为σ,应变为ε。
根据静力平衡条件有:0)(=-y A P σ根据虎克定律有:εσE =而任一横截面面积为:t y L w w w y A )()(121-+= 任一横截面产生的应变为:dydu=ε将上述方程代入静力平衡条件,进行变换后有:dy y EA Pdu )(=沿杆的长度方向对上式两边进行积分,可得:⎰⎰⎰-+==y yudy y Lw w w Et P dy y EA P du 01210)()(将)(y A 表达式代入上式,并对两边进行积分,得杆沿长度方向任一横截面的变形量:]ln )[ln()()(112112w y Lw w w w w Et PL y u --+-=当y 分别取0、62.5、125、187.5、250值时,变截面杆相应横截面处的沿杆长方向的变形量分别为:m u m u m u m u m u 6564636211080.142 ;1083.96 ;1027.59 ;1051.27 ;0----⨯=⨯=⨯=⨯==② 采用数值解法近似求解将变横截面杆沿长度方向分成独立的4小段,每一小段采用等截面直杆近似,等截面直杆的横截面面积为相应的变截面杆横截面面积的平均面积表示,每一小段称为一个单元,小段之间通过节点连接起来。
结构动力学中基于有限元方法的动力响应分析

结构动力学中基于有限元方法的动力响应分析结构动力学是研究结构在外部载荷作用下的振动特性和动态响应的学科。
大型工程结构系统的复杂性和非线性特性给结构动力学分析提出了挑战,而有限元方法则成为求解这种非线性响应的一种重要手段。
在本文中,我们将探讨结构动力学中基于有限元方法的动力响应分析。
1. 有限元方法有限元法是一种现代数值计算方法。
它是把连续物体分割成多个单元,通过单元间的相互作用关系求解结构的内部应力、变形和各种响应的数值方法。
有限元法的基本思想是把复杂的整体结构分解成有限数量的小单元,并对每个小单元进行数学模型分析。
通过求解这些模型,可以推导出整个结构的力学特性和响应情况。
2. 结构动力学中的有限元方法在结构动力学中,有限元方法也是一种重要的分析方法。
一般来说,结构动力学的有限元模型应包括结构的物理性质、载荷和边界条件等。
在构建有限元模型之前,需要对结构几何形状进行测量和描述,然后将结构分割成有限数量的单元,每个单元都有一组节点和自由度,节点之间的相互作用关系是通过构建单元刚度矩阵来实现的。
在建立了完整的有限元模型后,可以采用不同的求解算法,如静力求解和动力求解进行解析求解。
3. 动力响应分析在有限元法中,一般需要对结构进行动力响应分析。
动力响应分析的主要目标是确定在特定载荷下结构的动态响应情况。
动态响应包括结构的位移、速度、加速度、应力和应变等。
这些响应都对结构的安全性、稳定性和寿命等方面产生影响,因此需要进行充分的动态响应分析。
在动力响应分析中,一般采用有限元模型接触外部载荷模拟结构振动情况。
通过分析结构的固有振动模态和相应的频率响应,可以计算出特定载荷下结构的动态响应。
在实际分析中,通常需要考虑多种载荷并结合计算机模拟技术实现更为准确的动态响应分析。
4. 结论本文简要介绍了结构动力学中基于有限元方法的动力响应分析。
有限元法是一种现代数值计算方法,它可以将结构分割成多个小单元,进行数值模拟,计算结构内部应力、变形和各种响应。
有限元法的理论基础

有限元法的理论基础有限元法是一种离散化的数值计算方法,对于结构分析而言,它的理论基础是能量原理。
能量原理表明,在外力作用下,弹性体的变形、应力和外力之间的关系受能量原理的支配,能量原理与微分方程和定解条件是等价的。
下面介绍有限元法中经常使用的虚位移原理和最小势能原理。
1.虚位移原理虚位移原理又称虚功原理,可以叙述如下:如果物体在发生虚位移之前所受的力系是平衡的(物体内部满足平衡微分方程,物体边界上满足力学边界条件),那么在发生虚位移时,外力在虚位移上所做的虚功等于虚应变能(物体内部应力在虚应变上所做的虚功)。
反之,如果物体所受的力系在虚位移(及虚应变)上所做的虚功相等,则它们一定是平衡的。
可以看出,虚位移原理等价于平衡微分方程与力学边界条件。
所以虚位移原理表述了力系平衡的必要而充分的条件。
虚位移原理不仅可以应用于弹性性力学问题,还可以应用于非线性弹性以及弹塑性等非线性问题。
2.最小势能原理最小势能原理可以叙述为:弹性体受到外力作用时,在所有满足位移边界条件和变形协调条件的可以位移中,真实位移使系统的总势能取驻值,且为最小值。
根据最小势能原理,要求弹性体在外力作用下的位移,可以满足几何方程和位移边界条件且使物体总势能取最小值的条件去寻求答案。
最小势能原理仅适用于弹性力学问题。
2.2有限元法求解问题的基本步骤弹性力学中的有限元法是一种数值计算方法,对于不同物理性质和数学模型的问题,有限元法的基本步骤是相同的,只是具体方式推导和运算求解不同,有限元求解问题的基本步骤如下。
2.2.1问题的分类求解问题的第一步就是对它进行识别分析,它包含的更深层次的物理问题是什么?比如是静力学还是动力学,是否包含非线性,是否需要迭代求解,要从分析中得等到什么结果等。
对这些问题的回答会加深对问题的认识与理解,直接影响到以后的建模与求解方法的选取等。
2.2.2建模在进行有限元离散化和数值求解之值,我们为分析问题设计计算模型,这一步包括决定哪种特征是所要讨论的重点问题,以便忽略不必要的细节,并决定采用哪种理论或数学公式描述结果的行为。