六、-动力学问题的有限元法
有限元分析-动力学分析PPT课件

目录
• 引言 • 有限元分析基础 • 动力学分析基础 • 有限元分析在动力学中的应用 • 案例分析 • 结论与展望
01 引言
目的和背景
01
介绍有限元分析在动力学分析中 的应用和重要性。
02
阐述本课件的目标和内容,帮助 读者了解有限元分析在动力学分 析中的基本概念、方法和应用。
随着工程复杂性和精确度要求的提高,有限元分析在动力学分析中的 应用将更加重要和必要。
02
未来需要进一步研究有限元分析算法的改进和优化,以提高计算效率 和精度。
03
未来需要加强有限元分析与其他数值计算方法的结合,如有限差分、 有限体积等,以实现更复杂的动力学模拟和分析。
04
未来需要加强有限元分析在多物理场耦合和多尺度模拟中的应用,以 更好地解决工程实际问题。
有限元分析的优点和局限性
• 精确性:对于某些问题,可以得到相当精确的结 果。
有限元分析的优点和局限性
数值误差
由于离散化的近似性,结果存在一定的数值误 差。
计算成本
对于大规模问题,计算成本可能较高。
对模型简化的依赖
结果的准确性很大程度上依赖于模型的简化程度。
03 动力学分析基础
动力学简介
动力学是研究物体运 动过程中力与运动关 系的科学。
THANKS FOR WATCHING
感谢您的观看
ห้องสมุดไป่ตู้
求解等。
02 有限元分析基础
有限元方法概述
01
有限元方法是一种数值分析方法,通过将复杂的物理系统离散化为有 限个简单元(或称为元素)的组合,来模拟和分析系统的行为。
02
它广泛应用于工程领域,如结构分析、流体动力学、热传 导等领域。
有限元 第9讲 动力学问题有限单元法

有限元第9讲动力学问题有限单元法动力学问题是指研究物体在运动中的受力和受力作用下的运动状态,常见的应用是结构工程学中的振动分析。
有限单元法是解决结构工程学中动力学问题的常用方法之一。
本文将介绍动力学问题和有限单元法的基本概念,并介绍其应用。
动力学问题的定义动力学是研究质点或刚体运动情况的分支学科,在结构工程学中是指结构在做振动时所受的力和运动状态。
动力学问题可以分为两种类型:稳态动力学问题和非稳态动力学问题。
稳态动力学问题是指结构在振动状态下所受的恒定力,而非稳态动力学问题则是指结构所受的变化的力,例如冲击力或地震力。
动力学问题的求解包括两个方面:一是确定受力情况;二是求解结构的运动状态。
确定受力情况通常需要通过实验或计算确定,求解结构运动状态则可以通过有限单元法来解决。
在结构工程学中,动力学问题的应用非常广泛。
例如,建筑物抗震设计需要对建筑物在地震作用下的反应进行分析,桥梁工程需要对桥梁在行车作用或风力作用下的振动响应进行分析。
有限单元法的基本概念有限单元法是一种将结构离散成若干小单元的数值分析方法,将结构分割成细小的单元,每个单元内部假设为均匀且连续的,通过对单元本身的运动状态进行求解,进而推知整个结构的运动状态。
有限元法用于解决的问题包括静力学问题、动力学问题、热力学问题和流体问题等。
有限单元法求解动力学问题的步骤主要包括如下几个步骤:1.离散化:将连续结构离散化成有限的小单元,每个单元内部运动状态通过定义一定数量的节点来确定。
2.建立单元的动力学方程:根据单元的形状和材料性质,建立单元的动力学方程,并计算单元的振动特性,例如频率和模态。
3.组装单元的方程:将单个单元的方程组装成整个结构的方程。
4.边界条件的处理:利用结构的边界条件(例如支撑、铰支等),将结构自由度减少到实际问题所需要的自由度。
5.求解结构的运动状态:通过求解整个结构的方程,得到结构的运动状态。
6.后处理:根据求解结果,进行结果的可视化和分析。
动力学有限元

6.2结构动力有限元法理论与模型一、基本原理在实际问题的求解中,应用最广的是基于位移的有限元素法。
此法的基本思想是把本来为连续的工程结构分割成在结点上相联的单元组合体。
取这些结点的位移为基本未知量,并假定每个单元中的位移用单元位移函数来描述,这实质上是假定了单元的模态。
在此基础上,利用能量变分原理进行单元分析的全结构分析,得到全结构的振动平衡方程,从而把连续体的动力学问题化为多自由度系统的振动问题。
有限元动力分析的基本过程是首先将工程结构离散化,通过选择合理的单元确定出分析模型,在此基础上选择位移函数,进行单元分析,确定单元的刚度、质量、阻尼、载荷矩阵,再经过坐标变换,通过能量变分原理,进行全结构分析,建立系统的振动平衡方程。
最后运用有限元数值方法进行方程的求解。
结构动力有限元法采用的单元位移函数与静力分析相同,基本原理和求解过程也与静力分析相同,不同之处仅在分析模型的确定与运动方程的建立方面。
二、动态分析模型的确定由于结构动态分析中除考虑弹性力外,还要考虑惯性力和阻尼力,其运动方程是常微分方程组,所以动态分析的复杂程度高,计算工作量大,有限元分析模型要尽量精炼、简单。
1.模型确定的基本原则•分析模型应与分析的目的相适应。
动力分析的目的各不相同,有的是为了提供固有特性计算动态响应或供控制系统用;有的是为了舱内提供振动环境。
不同的目的,通常要求不同的模态数与计算精度。
显然,用于估算基本固有频率的模型应当比计算冲击响应的模型简单。
用于设计计算的模型应当比用于校核计算的模型简单。
•分析模型要与选用的计算工具与计算条件相适应。
计算机软件种类日益丰富,选择分析模型要与所用程序、所用计算机容量相适应。
如对于容量大的计算机,可选用较为复杂的有限元模型,而对于容量小的计算机则在能反映结构动态性能的前提下尽量简化模型,使求解规模尽量小。
对于大模型,可选用子结构模型,采用模态综合方法求解。
应注意, 不一定模型愈精细精度就愈高。
结构动力学问题的有限元法

K Q
K Q
对于结构动力学问题,节点载荷阵还包括惯性力和阻尼力。
e e e K Q (M C ) e e 1 m
或改写为:
C K M Q
代入:
dV Q N u
T T T
M N N dV
dV N N
e T
e
e dV Q N u
e T T
N N dV C
其中:
M M C C
e
e
质量阵和阻尼阵的叠加方法与刚度阵的叠加方法相同,也 是对称稀疏阵。
三、动力方程的简化
M e N T N dV
称为一致质量矩阵,是稀疏带状阵。
如果将单元质量阵近似作为对角阵,则方程变成彼此独立,避免 联立,称为集中质量阵或团聚质量阵。 解耦 例如长度为L,截面积为A,密度为ρ的梁单元。 i
A,ρ
L
j
x
1 A L 0 集中质量阵: m 2 0 0
0 0 0 0
0 0 1 0
0 0 0 0
156 22L 22L 2 一致质量阵: 4 L AL m 13L 420 54 2 13 L 3 L
54 13L 13L 3L2 156 22L 2 22L 4 L
ˆ P K P K
T
在变换[K]和[M]的过程中,有时使用一次雅克比变换将一个 非对角线元素化为零以后,它在另一次变换中会重新变为非零 元素,但在素质上有所减小。这说明需要反复使用雅克比变换, 最终非对角线元素将趋于零。 在实际求解过程中,不必严格地把矩阵[K]和[M]所有的非对 角线元素变换为零,通常在完成一次变换后进行判断是否达到预 l 1 (l ) 设的精度:
动力学问题的有限元法

❖ 结构动力学问题在工程中具有普遍性。
3) 弹塑性动力学问题
❖ 这是连续介质变形体动力学问题的另一个重要领域。 涉及许多科学和工程领域,如高速碰撞,爆炸冲击, 人工地震勘探,无损探伤等。
力学问题。对等效系统应用虚功原理:
T
V
dV VuT(fu u)dV SuTTdS
• 将前面位移空间离散表达式和单元的几何方程、物理方 程代入上式虚功方程,并考虑到变分的任意性,得到离
散系统控制方程——结构有限元动力学方程:
Ma(t)Ca(t)Ka(t)Q(t)
方程中的系数矩阵分别为:系统质量矩阵,阻尼 矩阵,整体刚度矩阵。右端项为整体节点载荷向量。
u N ae
u(x, y, z,t) u来自v(x,
y,
z, t)
w( x, y, z, t)
a
e
a a
1 2
a n
ai
uvii
(t) (t)
(i
1,2,, n)
wi (t)
• 为建立有限元动力学响应控制方程,利用达朗倍尔原
理,在每个时刻 t,将连续介质中质点加上惯性力 u 和阻尼力 u ,则系统的动力学问题转化为等效静
• 如果忽略阻尼,则结构动力学方程简化为:
Ma(t) Ka(t) Q(t)
• 上式动力学方程的右端项为零时就得到结构自由振动 方程。
• 从动力学方程导出过程可以看出,动力学问题的有限元 分析中,由于平衡方程中出现了惯性力和阻尼力,从而 引入了质量矩阵和阻尼矩阵,运动方程是耦合的二阶常 微分方程组,而不是代数方程组。该方程又称为有限元 半离散方程,因为对空间是有限元离散的,对时间是连 续的。
有限元分析-动力学分析

1.为何傅里叶变换要换成正弦函数余弦函数这样的三角级数? 2. 谐振运动的特征是什么?谐振运动有阻尼存在吗?
梁结构瞬态动力学分析实例
A steel beam of length and geometric properties shown in Problem Specifications is supporting a concentrated mass, m. The beam is subjected to a dynamic load F(t) with a rise time tr and a maximum value F1. If the weight of the beam is considered to be negligible, determine the time of maximum displacement response tmax and the response ymax. Also determine the maximum bending stress σbend in the beam.
谱分析
谱分析是一种将模态分析结果与已知的谱分析联系起来的 计算位移和应力的分析技术。它主要用于时间历程分析,以 便确定结构在任意时间变化载荷下的动力学响应,简单而言 就是载荷的谱不再是简谐运动。
简支梁的两端作垂直运动,也就是地震时的作用,确定其 响应频率。
梁对地基地震时的谱分析
A simply supported beam of length , mass per unit length m, and section properties shown in Problem Specifications, is subjected to a vertical motion of both supports. The motion is defined in terms of a seismic displacement response spectrum. Determine the nodal displacements, reactions forces, and the element solutions.
力学中的数值模拟方法

力学中的数值模拟方法力学是自然科学中研究物体运动和相互作用的学科。
力学的研究对象包括刚体、弹性体、流体等物质,而这些物质的运动和相互作用往往是非常复杂的。
为了更深入地了解这些现象,研究者们常常采用数值模拟方法。
本文将介绍在力学中常用的数值模拟方法和其应用。
1. 有限元法有限元法是解决力学问题的一种常用数值方法。
它将复杂的物体划分成有限个小元素,在每个小元素上进行基本方程的数值求解。
这些小元素可以是输入自然或几何区域的任意形状和大小。
通过将整个物体分解为由许多这样的小元素组成的形式,有限元法可以轻松处理具有复杂边界和几何形状的问题。
有限元法的一个重要优点是可以模拟多种不同的问题,例如,静力学问题,热力学问题和流体力学问题。
在建筑和航空航天科学中有限元法广泛应用,设计和优化桥梁、飞机机翼和汽车车身。
2. 边界元法边界元法是另一种广泛用于力学课题研究的数值模拟方法。
与有限元法相比,它的计算成本和计算时间更低。
其基本思想是借助几何中的经典定理——格林公式,将原方程转换为涉及单独表面积分的一组方程。
这些方程的求解是通过构造矩阵并进行数值求解得到的。
边界元法在流体动力学中的应用非常广泛,例如模拟液体流动和超声波传播等。
3. 分子动力学模拟分子动力学模拟是一种基于牛顿力学构建计算统计物理学的方法。
它通过建模粒子之间的相互作用来模拟分子系统的力学行为。
由于该方法可以与巨分子水平的化学反应联系起来,这使得它可以在化学和材料科学中应用得非常广泛。
通过使用物理特征的数值模拟,研究者们可以了解更多基于分子层面的成分内部运作和物理过程。
4. 自适应Mesh网格算法有些力学问题中变量可能有非常高的梯度,为解决这种问题,自适应Mesh算法应运而生。
自适应Mesh网格将整个求解域划分成相互交叉的奇下网格或三角形网格。
然后,当解的精度要求在较高的局部变化时,通过极小化给定误差级别来改变不同的小视窗大小,以便能够应对快速变化的解。
有限元第六讲 动力学分析

5.1.2谐响应分析
谐响应分析是用于确定线性结构在承受随时间按正弦(简谐) 规律变化的载荷时的稳态响应的一种技术。分析的目的是计 算结构在几种频率下的响应并得到一些响应值(通常是位移) 对频率的曲线,从这些曲线上可找到“峰值”响应并进一步 查看峰值频率对应的应力。
这种分析技术只计算结构的稳态受追振动,发生在激励开 始时的瞬态振动不在谐响应分析中考虑。作为一种线性分析, 该分析忽略任何即使己定义的非线性特性,如塑性和接触 (间隙)单元。但可以包含非对称矩阵,如分析在流体一结构 相互作用问题。谐响应分析也可用于分析有预应力的结构, 如小提琴的弦(假定简谐应力比预加的拉伸应力小得多)
MassMatrix Formulation[LLIMPMIL]:使用该选项可以选 定采用默认的质量矩阵形成方式(和单元类型有关)或集中质 量阵近似方式,建议在大多数情况下应采用默认形成方式。
PrestressEffectsca/culation[PSTRES]:选用该选项可以计 算有预应力结构的模态。默认的分析过程不包括预应力,即 结构是处于无应力状态的。
求解结构的前几阶模态,以了解结构如何响应的情形。该方法采用集中 质量阵(LUMPM,ON); Reduced(Householder)method:使用减缩的系统矩阵求解,速度快。但 由于减缩质量矩阵识近似矩阵,所以相应精度较低; Unsymmetric method:用于系统矩阵为非对称矩阵的问题,例如流体一 结构相同作用; Damped method:用于阻尼不可忽略的问题; QR Damped method:采用减缩的阻尼阵计算复杂阻尼问题,所以比 Damped method方法有更快的计算速度和更好的计算效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• Newmark方法 ❖ 在积分区间上采用如下的速度、位移假设:
❖ 通过t+Δt时刻的运动方程来决定t+Δt时刻的位移
a 解 tt ,即:
❖ 从上面三个方程联立可推出从 t 时刻的运动参量计算 t+Δt 时刻位移的公式:
❖ 由于从上式求解 t+Δt 时刻位移时需要对非对角的等效 刚度阵求逆,因此称为隐式算法。
第五节 瞬态响应分析
• 瞬态响应分析是计算动力强迫响应分析的最一般方法。其 目的是计算结构受随时间变化激励作用下的行为。瞬态激 励定义在时间域中,每个瞬时的大小已知。激励可以是作 用力和强迫运动。
• 根据结构和载荷的性质,可以用两种不同的数值方法进行 瞬态响应分析:直接积分法和振型叠加法。前者对全耦合 的有限元离散运动方程直接进行积分;后者利用主振型对 运动方程进行变换和解耦,结构的响应根据相应于各振型 的响应累加而成。
2、阻尼矩阵
单元阻尼矩阵:
• 称为协调阻尼矩阵。这种阻尼是由阻尼力正比于质点 运动速度得到的,属于粘性阻尼。显然,这种阻尼阵 与质量矩阵成正比。
• 对结构而言,阻尼并非粘性的,而主要是由于材料内 部摩擦效应引起的能量耗散,但这种耗散机理尚未完 全清楚,更难以用数学模型表达,故通常假设这种情 况的阻尼力正比于应变速率,从而可导出比例于单元 刚度矩阵的单元阻尼阵,大多数情形下足够精确。
1) 准静态问题
❖ 指边界条件和/或体力变化缓慢,或者物体内加速度分 布均匀等类型的问题。这类变形体问题的平衡微分方程 中忽略了惯性项,但载荷是时间的函数。在某时刻t, 采用动静法将整体惯性力转化为体力,或者忽略惯性力。 对应此刻载荷的静力学解作为t时刻的解。工程上可取 随时间变化载荷的最大值的静力学解作为问题的准静态 解。
它们分别称为固有振型矩阵和固有频率矩阵
• 利用固有振型矩阵和固有频率矩阵,结构固有振型的 正交性质可以表示成:
原来的特征值问题可以表示成:
• 固有频率和固有振型是一个结构自由振动的基本特性, 也是结构动态特性的基本要素。
•求解结构自由振动的广义特征值问题,由于系统自由度 很多,而研究系统动态响应和动态特性时,往往只需要 少数低阶特征值和特征向量。因此在有限元分析中发展 了许多针对上述特点的效率较高的算法。其中应用最广 泛的有Lanczos法、子空间迭代法、逆迭代法等。
2)是条件稳定算法。时间步长必须小于某个临界值:
t
tcr
Tn
Tn 是有限元系统的最小固有振动周期,通常用最小尺
寸单元的最小固有振动周期代替。因此,有限元网格中最
小单元尺寸将决定中心差分法时间步长的选择。有限元网
格划分时要考虑到这个因素,避免个别单元尺寸太小。
3)中心差分法适合用于考虑波传播效应的线性、非线性 响应分析。但是对于结构动力学问题中的瞬态响应分 析,不适合采用中心差分法,因为这类问题,重要的 是较低频的响应成分,允许采用较大的时间步长。通 常采用无条件稳定的隐式算法。
❖ 这类问题的研究要深入到介质中的弹塑性波的传播过 程以及考虑波动效应前提下介质中应力应变的响应。
❖ 这类问题中载荷的特点是构件上载荷作用前沿时间远 少于应力波在构件中的传播时间。该状态通常由构件 高速碰撞或爆炸载荷产生。
• 对于上述后两类问题,描述质点平衡和运动的微分方程 相同,包含惯性力项和阻尼力项。其数值求解方法主要 是有限元法。
• 研究结构自由振动特性。设阻尼和外力均为零,则结 构自由振动有限元运动方程为:
Ma(t) Ka(t) 0
设各自由度作简谐运动:
a sin (t t0 )
其中 是n阶向量,表示有限元离散结构所有自由度的
振幅,ω是该向量振动的频率。将上式代入自由振动 方程得到:
• 该方程描述的问题称为广义特征值问题。
❖ 当算法中的参数满足一定条件时,该算法是无条件稳定 的。此时,步长的选择取决于解的精度,可以根据对结 构响应有主要贡献的若干基本振型的周期来确定。通常 可取为所要考虑的基本振型周期中最小周期的二十分之 一。
❖ 对结构动力学问题,所关心的较低阶振型的周期比全系 统的最小周期大得多,也就是无条件稳定的隐 式算法可以 采用比有条件稳定的显式算法大得多的时间步长,而采用 较大时间步长还可以滤掉不精确的高阶响应成分。
1、直接积分法
• 直接积分法的两个前提:
❖ 第一,将求解时间域0<t<T内任何时刻t都满足运动方 程的要求降低为在相隔Δt的离散时间点上满足运动方 程。
❖ 第二,在离散时间点之间的Δt区域,对位移,速度, 加速度进行假设。相当于对运动微分方程组在时间域 进行离散化,并逐点求解。
• 直接积分法概述:
1、协调质量矩阵和集中质量矩阵
上节导出的单元质量矩阵为: Me
NT NdV
Ve
• 该矩阵称为协调质量矩阵或一致质量矩阵。因为它和刚 度矩阵依据同样的原理、过程和插值函数导出,还表示 质量在单元上呈某种分布。
• 此外,有限元中还经常采用集中质量矩阵,它是一个对 角矩阵,由假定单元质量集中在节点上得到。
❖ 就结构的瞬态响应分析而言,典型的有结构在冲击载 荷下的响应问题。结构动力学中这类问题的特点是, 载荷作用前沿时间与构件的自振基频周期相近,远大 于应力波在构件中的传播时间。或者构件上长时间作 用随时间剧烈变化的载荷。
❖ 结构动力学问题在工程中具有普遍性。
3) 弹塑性动力学问题
❖ 这是连续介质变形体动力学问题的另一个重要领域。 涉及许多科学和工程领域,如高速碰撞,爆炸冲击, 人工地震勘探,无损探伤等。
——单元阻尼矩阵
Qe NTfdV NT TdS ——单元等效节点力向量
Ve
Se
• 如果忽略阻尼,则结构动力学方程简化为:
M a(t) K a(t) Q(t)
• 上式动力学方程的右端项为零时就得到结构自由振动 方程。
• 从动力学方程导出过程可以看出,动力学问题的有限元 分析中,由于平衡方程中出现了惯性力和阻尼力,从而 引入了质量矩阵和阻尼矩阵,运动方程是耦合的二阶常 微分方程组,而不是代数方程组。该方程又称为有限元 半离散方程,因为对空间是有限元离散的,对时间是连 续的。
❖ 大多数显式方法是条件稳定的:当时间步长大于结构 最小周期的一定比例时,计算得到的位移和速度将发 散或得到不正确的结果;
❖ 隐式方法往往是无条件稳定的,步长取决于精度,而 不是稳定性方面的考虑。
❖ 典型的显式方法是所谓的“中心差分法”,其基本思 想如下。
• 中心差分法 ❖ 将某时刻的加速度和速度用中心差分表示:
u N ae
u(x, y, z, t)
u
v(
x,
y,
z,
t)
w( x, y, z, t)
ae
aa 12
a n
ui (t)
ai
vi
(t) (i
1,2,, n)
wi (t)
• 为建立有限元动力学响应控制方程,利用达朗倍尔原
理,在每个时刻 t,将连续介质中质点加上惯性力 u 和阻尼力 u ,则系统的动力学问题转化为等效静
• 由于系统的固有振型对于结构质量矩阵和结构刚度矩 阵具有正交性,因此,系统振型对上述Rayleigh阻尼 矩阵也是正交的。所以这类阻尼矩阵又称为振型阻尼。
• 采用振型阻尼矩阵后,可以利用系统振型对动力学方 程进行变换,得到解耦的方程组,使每个方程可以独 立求解,给计算带来方便。
第四节 结构自振频率和振型
力学问题。对等效系统应用虚功原理:
V T
dV
V uT (
f
u u)dV
S
uT T
dS
• 将前面位移空间离散表达式和单元的几何方程、物理方 程代入上式虚功方程,并考虑到变分的任意性,得到离
散系统控制方程——结构有限元动力学方程:
M a(t) C a(t) K a(t) Q(t)
❖ 尽管这种静态情况在实际上并不存在,但作为一种基本 力学模型,在工程实践上具有重要意义。很多实际问题 可近似归入准静态问题,而满足工程上的精度要求。
❖ 通过这种近似处理,可以避免大量的动力学模型解算, 而在有限的计算机资源下,可把实际问题的模型在准静 态假设前提下考虑得更细致、更实用。在许多情况下, 由此带来的对实际情况的逼近将大大抵消由于准静态假 设产生的误差。
❖ 至于哪些问题可作准静态来处理,需要综合考虑分析目 的与精度要求,构件的尺度和动态特性(固有振动周 期),载荷的特性(上升前沿和作用时间),计算机资 源情况等。
2) 结构动力学问题
❖ 该领域研究下列问题:弹性结构(系统)的自由振动 特性(频率和振型)分析;瞬态响应分析;频率响应 分析;响应谱分析等。
2、振型叠加法
•振型叠加法是计算结构瞬态响应的另一种数值方法。该 方法利用结构固有振型对动力学方程组进行变换,缩减未 知量规模,并对运动方程组进行解耦,大幅度提高数值求 解的效率。
方程中的系数矩阵分别为:系统质量矩阵,阻尼 矩阵,整体刚度矩阵。右端项为整体节点载荷向量。
• 上述矩阵由相应的单元矩阵组集而成:
M Me K Ke C Ce Q Qe
其中:
Me NT NdV Ve
K e BT DBdV Ve
——单元质量矩阵 ——单元刚度矩阵
Ce NT NdV Ve
❖ t+Δt时刻的位移解 att 从t时刻的运动方程建立:
❖ 将加速度和速度的差分格式代入上式,得到:
❖ 上式就是求离散时间点上位移解的递推公式。但该算法 有起步问题(见P449)。
❖ 中心差分法特点如下:
1)是显式算法,并且当质量阵和阻尼阵都是对角阵时,利 用该递推公式求解运动方程时不需要进行矩阵求逆,这个 特点在非线性问题中将更有意义。
• 当求解该微分方程组,得出节点位移响应后,其它计 算步骤与静力分析相同。