有限元动力学分析知识点
有限元分析-动力学分析PPT课件

目录
• 引言 • 有限元分析基础 • 动力学分析基础 • 有限元分析在动力学中的应用 • 案例分析 • 结论与展望
01 引言
目的和背景
01
介绍有限元分析在动力学分析中 的应用和重要性。
02
阐述本课件的目标和内容,帮助 读者了解有限元分析在动力学分 析中的基本概念、方法和应用。
随着工程复杂性和精确度要求的提高,有限元分析在动力学分析中的 应用将更加重要和必要。
02
未来需要进一步研究有限元分析算法的改进和优化,以提高计算效率 和精度。
03
未来需要加强有限元分析与其他数值计算方法的结合,如有限差分、 有限体积等,以实现更复杂的动力学模拟和分析。
04
未来需要加强有限元分析在多物理场耦合和多尺度模拟中的应用,以 更好地解决工程实际问题。
有限元分析的优点和局限性
• 精确性:对于某些问题,可以得到相当精确的结 果。
有限元分析的优点和局限性
数值误差
由于离散化的近似性,结果存在一定的数值误 差。
计算成本
对于大规模问题,计算成本可能较高。
对模型简化的依赖
结果的准确性很大程度上依赖于模型的简化程度。
03 动力学分析基础
动力学简介
动力学是研究物体运 动过程中力与运动关 系的科学。
THANKS FOR WATCHING
感谢您的观看
ห้องสมุดไป่ตู้
求解等。
02 有限元分析基础
有限元方法概述
01
有限元方法是一种数值分析方法,通过将复杂的物理系统离散化为有 限个简单元(或称为元素)的组合,来模拟和分析系统的行为。
02
它广泛应用于工程领域,如结构分析、流体动力学、热传 导等领域。
有限元动力学分析知识点

有限元动力学分析知识点复习目录一、模型输入、建模A 输入几何模型1、两种方法:No defeaturing 和 defeaturing(Merge合并选项、Solid实体选项、Small选项)2、产品接口。
输入IGES 文件的方法虽然很好,但是双重转换过程CAD > IGES > ANSYS 在很多情况下并不能实现100%的转换.ANSYS 的产品接口直接读入“原始”的CAD 文件,解决了上面提到的问题.3、输入有限元模型。
除了实体几何模型外, ANSYS 也可输入由某些软件包生成的有限元单元模型数据(节点和单元)。
B 实体建模1、定义实体建模:建立实体模型的过程。
(两种途径)1)自上而下建模:首先建立体(或面),对这些体或面按一定规则组合得到最终需要的形状.✓开始建立的体或面称为图元.✓工作平面用来定位并帮助生成图元.✓对原始体组合形成最终形状的过程称为布尔运算✓总体直角坐标系 [csys,0] 总体柱坐标系[csys,1]总体球坐标系[csys,2] 工作平面 [csys,4]2)自下而上建模:按照从点到线,从线到面,从面到体的顺序建立模型。
B 网格划分1、网格划分三步骤:定义单元属性、指定网格的控制参数、生成网格2、单元属性(单元类型 (TYPE)、实常数 (REAL)、材料特性(MAT))3、单元类型单元类型是一个重要选项,它决定如下单元特性:自由度(DOF)设置、单元形状、维数、假设的位移形函数。
1)线单元(梁单元、杆单元、弹簧单元)2)壳用来模拟平面或曲面。
3)二维实体用于模拟实体截面4)三维实体✓用于几何属性,材料属性,荷载或分析要求考虑细节,而无法采用更简单的单元进行建模的结构。
✓也用于从三维CAD系统转化而来的几何模型,而这些几何模型转化成二维模型或壳体会花费大量的时间和精力4、单元阶次与形函数•单元阶次是指单元形函数的多项式阶次。
•什么是形函数?–形函数是指给出单元内结果形态的数值函数。
有限元静力学及动力学分析课件

03
操作步骤
利用有限元软件建立动力学模型, 进行瞬态模拟,将模拟结果与实
验结果进行对比分析。
02
实验设计
设计动力学实验,如自由落体冲 击实验,选用合适的实验设备和
试样。
04
结果分析
对比实验数据和模拟结果,评估 有限元分析方法在处理动力学问
题时的性能和准确性。
工程案例分析
案例背景
介绍汽车碰撞事故的背景,阐述有限元分析在汽车碰撞研 究中的重要性。
实验设计
设计简单的静力学实验,如悬 臂梁弯曲实验,准备相应的实
验设备和试样。
操作步骤
结果分析
利用有限元软件建立实验模型, 进行数值模拟,并将模拟结果
与实验结果进行对比分析。
通过对比实验数据和模拟结果, 评估有限元分析方法的精度和
适用性。
动力学实验验证
01
验证目的
通过动力学实验验证有限元分析 方法在处理动态问题时的准确性
模型建立
详细描述汽车碰撞有限元模型的建立过程,包括几何清理、 网格划分、材料属性赋值等步骤。
边界条件与求解设置
说明碰撞模拟中的边界条件,如初始速度、角度等,以及 求解器的选择和参数设置。
结果分析
展示碰撞过程中的变形、应力、应变等关键参数的变化情 况,并结合实验结果进行验证和讨论。最后,基于分析结 果提出汽车结构改进的建议。
自适应网格技术:结合并行计 算,实现自适应网格细化,以 在关键区域获得更精确的计算 结果,同时减少计算资源消耗。
通过这些高级有限元分析技术, 可以更准确、高效地模拟和分 析复杂工程问题,为设计和优 化提供有力支持。
PART 06
实验验证与案例分析
静力学实验验证
有限元 第9讲 动力学问题有限单元法

有限元第9讲动力学问题有限单元法动力学问题是指研究物体在运动中的受力和受力作用下的运动状态,常见的应用是结构工程学中的振动分析。
有限单元法是解决结构工程学中动力学问题的常用方法之一。
本文将介绍动力学问题和有限单元法的基本概念,并介绍其应用。
动力学问题的定义动力学是研究质点或刚体运动情况的分支学科,在结构工程学中是指结构在做振动时所受的力和运动状态。
动力学问题可以分为两种类型:稳态动力学问题和非稳态动力学问题。
稳态动力学问题是指结构在振动状态下所受的恒定力,而非稳态动力学问题则是指结构所受的变化的力,例如冲击力或地震力。
动力学问题的求解包括两个方面:一是确定受力情况;二是求解结构的运动状态。
确定受力情况通常需要通过实验或计算确定,求解结构运动状态则可以通过有限单元法来解决。
在结构工程学中,动力学问题的应用非常广泛。
例如,建筑物抗震设计需要对建筑物在地震作用下的反应进行分析,桥梁工程需要对桥梁在行车作用或风力作用下的振动响应进行分析。
有限单元法的基本概念有限单元法是一种将结构离散成若干小单元的数值分析方法,将结构分割成细小的单元,每个单元内部假设为均匀且连续的,通过对单元本身的运动状态进行求解,进而推知整个结构的运动状态。
有限元法用于解决的问题包括静力学问题、动力学问题、热力学问题和流体问题等。
有限单元法求解动力学问题的步骤主要包括如下几个步骤:1.离散化:将连续结构离散化成有限的小单元,每个单元内部运动状态通过定义一定数量的节点来确定。
2.建立单元的动力学方程:根据单元的形状和材料性质,建立单元的动力学方程,并计算单元的振动特性,例如频率和模态。
3.组装单元的方程:将单个单元的方程组装成整个结构的方程。
4.边界条件的处理:利用结构的边界条件(例如支撑、铰支等),将结构自由度减少到实际问题所需要的自由度。
5.求解结构的运动状态:通过求解整个结构的方程,得到结构的运动状态。
6.后处理:根据求解结果,进行结果的可视化和分析。
有限元静力学及动力学分析(第六章)

机械振动分析
对机械系统进行动力学分析,研 究其振动特性和稳定性,优化其 动态性能。
建筑结构地震响应
分析
采用有限元动力学分析方法,研 究建筑结构在地震作用下的响应, 评估其抗震性能和安全性。
05
有限元的优化设计
优化设计的基本概念
设计变量
01
在优化设计中需要改变的参数,如梁的截面尺寸、材料的弹性
模量等。
将连续的物理系统离散 化为有限个小的单元, 形成网格。划分网格是 有限元法的关键步骤, 直接影响计算结果的精 度和计算效率。
根据变分原理和加权余 量法,建立每个单元的 有限元方程,并将这些 方程组合成整体方程。
利用数值方法求解有限 元方程,得到每个节点 的位移和应力等结果。
对计算结果进行可视化 处理、分析和评估,为 工程设计和优化提供依 据。
结果后处理
对求解结果进行后处理,如绘制应力云图、生成 位移曲线等,以便进行结构分析和优化。
静力学分析的实例
桥梁结构静力学分析
通过建立桥梁的有限元模型,施加车 辆载荷等静力载荷,求解平衡方程, 得到桥梁的位移和应力分布,评估其 承载能力和安全性。
建筑结构静力学分析
通过建立建筑的有限元模型,施加风 载、雪载等静力载荷,求解平衡方程 ,得到建筑的位移和应力分布,评估 其稳定性和安全性。
THANKS
感谢观看
建立数学模型
根据物理问题和约束条件,建立有限元分 析的数学模型。
目标函数评估
根据有限元分析结果,评估目标函数的值 。
有限元分析
对建立的数学模型进行有限元分析,得到 各设计变量的响应。
优化设计的实例
飞机机翼的优化设计
通过改变机翼的截面尺寸和材料属性,使机翼的重量最小化 。
有限元动力学分析知识点

有限元动力学分析知识点复习目录一、模型输入、建模A 输入几何模型1、两种方法:No defeaturing 和 defeaturing(Merge合并选项、Solid实体选项、Small选项)2、产品接口。
输入IGES 文件的方法虽然很好,但是双重转换过程CAD > IGES > ANSYS 在很多情况下并不能实现100%的转换.ANSYS 的产品接口直接读入“原始”的CAD 文件,解决了上面提到的问题.3、输入有限元模型。
除了实体几何模型外, ANSYS 也可输入由某些软件包生成的有限元单元模型数据(节点和单元)。
B 实体建模1、定义实体建模:建立实体模型的过程。
(两种途径)1)自上而下建模:首先建立体(或面),对这些体或面按一定规则组合得到最终需要的形状.✓开始建立的体或面称为图元.✓工作平面用来定位并帮助生成图元.✓对原始体组合形成最终形状的过程称为布尔运算✓总体直角坐标系 [csys,0] 总体柱坐标系[csys,1]总体球坐标系[csys,2] 工作平面 [csys,4]2)自下而上建模:按照从点到线,从线到面,从面到体的顺序建立模型。
B 网格划分1、网格划分三步骤:定义单元属性、指定网格的控制参数、生成网格2、单元属性(单元类型 (TYPE)、实常数 (REAL)、材料特性(MAT))3、单元类型单元类型是一个重要选项,它决定如下单元特性:自由度(DOF)设置、单元形状、维数、假设的位移形函数。
1)线单元(梁单元、杆单元、弹簧单元)2)壳用来模拟平面或曲面。
3)二维实体用于模拟实体截面4)三维实体✓用于几何属性,材料属性,荷载或分析要求考虑细节,而无法采用更简单的单元进行建模的结构。
✓也用于从三维CAD系统转化而来的几何模型,而这些几何模型转化成二维模型或壳体会花费大量的时间和精力4、单元阶次与形函数•单元阶次是指单元形函数的多项式阶次。
•什么是形函数?–形函数是指给出单元内结果形态的数值函数。
有限元静力学及动力学分析

1.2静力学分析步骤
基于ANSYS进行静力分析的基本步骤与ANSYS典型分析的 过程相同,一般包括建模、加载求解和检查分析结果等3个基本 步骤。
1.建模 2.加载求解 3.检查分析结果
2.1动力学有限元分析原理
1) 动力学分析的原因 2) 动力学有限元分析引例 3) 动力学分析的定义和目的 4) 动力学分析类型
1) 动力学分析的原因
静力分析也许能确保一个结
构可以承受稳定载荷的条件,但 这些还远远不够,尤其在载荷随 时间变化时更是如此。
umax= 位移幅值 =位移函数的相位角 u1 = 实部, umaxcos u2 = 虚部, umaxsin
3、 ANSYS谐响应分析步骤
频率 影响
要输 密度
前处理:定类型,画模型,设属性,分网格。 求 解:添约束,加载荷,查错误,求结果。 后处理:列结果,绘图形,显动画,下结论。
读结果 列固有频率 绘振型 制作振型动画
i j
(t) (t)
Fi (t)e [K ]e{ (t)}e
(3)整体分析
(4)通用运动方程
1.结构离散 与静力分析相同,选用适当的单元类型将连
续的弹性体离散成有限多个单元和节点。 2.单元分析
从离散的弹性体中任 意取出一个单元。利用给 定的位移插值方式表示单 元 内 任 一 点 的 位 移 {δ(t)}e, 进而确定节点的速度和加 速度。 3.整体分析 利用各节点处的变形协调条件和动力平衡条件即达朗贝尔原理,建立整体刚 度方程;
1. 基本方程和术语
通用运动方程: 假定为自由振动并忽略阻尼:
精选有限元法基础动力学问题讲义

q,t t
称为逐步积分法。
如果质量矩阵M是对角的,C也是对角或可以忽略
,则利用递推公式求解时不需求解方程,直接可得下
一时间步的预测值。
显示时间积分(Explicit Time Integral)
第十七页,共68页。
17
有限元法基础
12. 动力学问题
(2)当t=0时,需要 q0和 qt,因此必须用专门的起
团聚质量矩阵 假定质量集中在节点上,导出的质量 Lumped Mass 矩阵是对角线矩阵,可提高计算效率。
9
第九页,共68页。
有限元法基础
12. 动力学问题
团聚质量矩阵的计算方法
(1)
M
e l
中每一行主元等于
Me
中该行所有元素之和
Mle
ne
ij
k 1 0
Me
ik
i j i j
(2)
写成矩阵形式
i 1
u Nqe
u(x, y, z,t)
u
=
v(x,
y,
z,
t
)
w(x, y, z,t)
q1
qe
qn
ui (t)
qi
vi
(t
)
wi (t)
N [N1 N2 Ni Ni I33
Nn]
6
第六页,共68页。
有限元法基础
12. 动力学问题 (五)有限元方程
将插值函数代入Galerkin积分表达式,由 q的任
第二十页,共68页。
20
有限元法基础
12. 动力学问题 (5)中心差分的显示算法,适合于由冲击、碰撞、爆 炸类型的载荷引起的波传播问题的求解。
因为这些问题本身就是在初始扰动后,按一定的 波速C逐步在介质中传播。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复习目录一、模型输入、建模A 输入几何模型1、两种方法:No defeaturing 与defeaturing(Merge合并选项、Solid实体选项、Small选项)2、产品接口。
输入IGES 文件的方法虽然很好,但就是双重转换过程CAD > IGES > ANSYS 在很多情况下并不能实现100%的转换、ANSYS 的产品接口直接读入“原始”的CAD 文件,解决了上面提到的问题、3、输入有限元模型。
除了实体几何模型外, ANSYS 也可输入由某些软件包生成的有限元单元模型数据(节点与单元)。
B 实体建模1、定义实体建模:建立实体模型的过程。
(两种途径)1)自上而下建模:首先建立体(或面),对这些体或面按一定规则组合得到最终需要的形状、✓开始建立的体或面称为图元、✓工作平面用来定位并帮助生成图元、✓对原始体组合形成最终形状的过程称为布尔运算✓总体直角坐标系 [csys,0] 总体柱坐标系[csys,1]总体球坐标系[csys,2] 工作平面 [csys,4]2)自下而上建模:按照从点到线,从线到面,从面到体的顺序建立模型。
B 网格划分1、网格划分三步骤:定义单元属性、指定网格的控制参数、生成网格第1页2、单元属性(单元类型(TYPE)、实常数(REAL)、材料特性(MAT))3、单元类型单元类型就是一个重要选项,它决定如下单元特性:自由度(DOF)设置、单元形状、维数、假设的位移形函数。
1)线单元(梁单元、杆单元、弹簧单元)2)壳用来模拟平面或曲面。
3)二维实体用于模拟实体截面4)三维实体✓用于几何属性,材料属性,荷载或分析要求考虑细节,而无法采用更简单的单元进行建模的结构。
✓也用于从三维CAD系统转化而来的几何模型,而这些几何模型转化成二维模型或壳体会花费大量的时间与精力4、单元阶次与形函数•单元阶次就是指单元形函数的多项式阶次。
•什么就是形函数?–形函数就是指给出单元内结果形态的数值函数。
因为FEA 的解答只就是节点自由度值,需要通过形函数用节点自由度的值来描述单元内任一点的值。
–形函数根据给定的单元特性给出。
–每一个单元的形函数反映单元真实特性的程度,直接影响求解精度,这一点将在下边说明。
5、网格密度•有限单元法的基本原则就是:单元数(网格密度)越多,所得的解越逼近真实值。
第2页•然而,随单元数目增加,求解时间与所需计算机资源急剧增加。
6、单元属性种类1)实常数与截面特性。
实常数用于描述那些用单元几何形状不能完全确定的几何参数。
2)材料特性每一分析都需要输入一些材料特性:结构单元所需的杨氏模量,热单元所需的热传导系数KXX等。
7、控制网格密度•ANSYS 提供了多种控制网格密度的工具, 既可以就是总体控制也可以就是局部控制:1)总体控制(智能网格划分、总体单元、尺寸缺省尺寸)2)局部控制(关键点尺寸、线尺寸、面尺寸)8、有两种主要的网格划分方法: 自由划分与映射划分、+2•自由划分–无单元形状限制、–网格无固定的模式、–适用于复杂形状的面与体、•映射划分–面的单元形状限制为四边形,体的单元限制为六面体(方块)、–通常有规则的形式,单元明显成行、–仅适用于“规则的” 面与体, 如矩形与方块、•过渡网格划分第3页这一选择就是在六面体单元与四面体单元间的过渡区生成金字塔形单元,(“集两家之长、”将四面体与六面体网格很好地结合起来而不破坏网格的整体性)•扫掠划分9、网格拖拉当把一个面拖拉成一个体时, 您可以将面上的网格随同它一起拖拉, 得到一个已网格化的体、这称为网格拖拉、第4章ANSYS建模基本方法(耿老师)1、ANSYS建模方法•直接建模•实体建模•输入在计算机辅助设计系统中创建的实体模型•输入在计算机辅助设计系统创建的有限元模型2、直接建模•直接创建节点与单元,模型中没有实体•优点–适用于小型或简单的模型–可实现对每个结点与单元的编号完全控•缺点–需要人工处理的数据量大,效率低–不能使用自适应网格划分功能–不适合进行优化设计–容易出错第4页3、实体建模–先创建由关键点、线段、面与体构成的几何模型,然后用网格划分,生成节点与单元–优点–适合于复杂模型,尤其适合3D实体建模–需要人工处理的数据量小,效率高–允许对节点与单元实施不同的几何操作–支持布尔操作–支持ANSYS优化设计功能–可以进行自适应网格划分–可以进行进行局部网格细化–便于修改与改进•缺点–有时需要大量CPU处理时间–对小型、简单的模型有时比较繁琐–在特定条件下可能会失败4、工作平面工作平面—就是一个可以移动的二维参考平面用于定位与确定体素的方向。
5、ANSYS中坐标系分类•整体坐标系与局部坐标系(定位几何体作用)•节点坐标系第5页✓定义节点自由度的方向✓定义节点结果数据方向•单元坐标系✓规定正交材料特性的方向✓规定所施加面力的方向✓规定单元结构数据的方向•显示坐标系✓定义几何体被列表后显示•结果坐标系✓用来列表、显示或在通用后处理中节点或者单元结果转换到一个特定坐标系。
6、网格划分方法:自由划分、映射划分、延伸划分、自适应划分。
第5章加载、求解与后处理1、选择命令Selecting 功能可以将模型的一部分从整体中分离出来,为下一步工作做准备。
操作一般包括3步:•选择子集•对其所选择的图元执行操作•重新激活整个模型2、组元(Components):作为选择功能的一个延伸,通过给选中的一组图元命名,即可创建组元,组元可保存在数据库中。
集合(Assembly):集合可以由一个或者多个集合与一个或多个其她组第6页元组成。
3、静力分析与动力分析的区别•静力分析假设只有刚度力有效。
•动力分析考虑所有三种类型的力。
•如果施加的荷载随时间快速变化,则惯性力与阻尼力通常很重要。
•因此,可以通过判断载荷就是否与时间相关,选择静力分析还就是动力分析。
•如果在相对较长的时间内载荷就是一个常数,选择静力分析。
•否则,选择动力分析。
•总之,如果激励频率小于结构最低价固有频率的1/3,则可以进行静力分析。
4、线性分析与非线性分析的区别•线性分析假设忽略荷载对结构刚度变化的影响。
典型特征就是:–小变形–应力、应变在线性弹性范围内–没有诸如两物体接触或分离时的刚度突变•如果加载引起结构刚度显著变化,必须进行非线性分析。
引起结构刚度显著变化的典型原因:–应变超过弹性范围(塑性)–大变形,例如承载的钓鱼竿–两物体之间的接触第7页5、载荷分类•自由度DOF -定义节点的自由度( DOF )值(结构分析_位移)•集中载荷-点载荷(结构分析_力)•面载荷-作用在表面的分布载荷(结构分析_压力)•体积载荷-作用在体积或场域内(热分析_体积膨胀)•惯性载荷-结构质量或惯性引起的载荷(重力、角速度等)6、载荷的施加直接在实体模型加载的优点:+几何模型加载独立于有限元网格。
重新划分网格或局部网格修改不影响载荷。
+加载的操作更加容易,尤其就是在图形中直接拾取时。
*无论采取何种加载方式,ANSYS求解前都将载荷转化到有限元模型。
因此,加载到实体的载荷将自动转化到其所属的节点或单元上。
7、载荷步及时间选项•一个载荷步就是指边界条件与载荷选项的一次设置,用户可对此进行一次或多次求解。
•一个分析过程可以包括:–单一载荷步(常常这就是足够的)–多重载荷步•有三种方法可以用来定义并求解多载荷步–多次求解方法–载荷步文件方法第8页–向量参数方法8、求解器选择及求解求解器的功能就是求解关于结构自由度的联立线性方程组。
三种求解器:波前求解器、power求解器与稀疏矩阵求解器9、求解前的模型检查•统一的单位单元类型与选项•材料性质参数–考虑惯性时应输入材料密度–热应力分析时应输入材料的热膨胀系数•实常数(单元特性)•单元实常数与材料类型的设置•实体模型的质量特性(Preprocessor > Operate > Calc Geom Items)•模型中不应存在的缝隙•壳单元的法向•节点坐标系•集中、体积载荷•面力方向求解失败原因:•约束不够! (通常出现的问题)。
•当模型中有非线性单元,整体或部分结构出现崩溃或“松第9页脱”。
•材料性质参数有负值•屈曲- 当应力刚化效应为负(压)时,在载荷作用下整个结构刚度弱化。
如果刚度减小到零或更小时,求解存在奇异性,因为整个结构已发生屈曲。
10、ANSYS的两个后处理器•通用后处理器(即“POST1”) 只能观瞧整个模型在某一时刻的结果。
•时间历程后处理器(即“POST26”) 可观瞧模型在不同时间的结果。
但此后处理器只能用于处理瞬态与/或动力分析结果。
11、结构分析常见的单元性能单元选择的基本准则:➢在结构分析中,结构的应力状态决定单元类型的选择。
➢选择维数最低的单元去获得预期的结果(尽量做到能选择点而不选择线,能选择线而不选择平面,能选择平面而不选择壳,能选择壳而不选择三维实体)、➢对于复杂结构,应当考虑建立两个或者更多的不同复杂程度的模型。
您可以建立简单模型,对结构承载状态或采用不同分析选项作实验性探讨。
1)线单元–Beam (梁)单元就是用于螺栓(杆),薄壁管件,C形截面构件,角钢或者狭长薄膜构件(只有膜应力与弯应力的情况)等模型。
–Spar(杆)单元就是用于弹簧,螺杆,预应力螺杆与薄膜桁架等模型。
–Spring单元就是用于弹簧,螺杆,或细长构件,或通过刚度等效第10页替代复杂结构等模型。
2)平面单元–X-Y 平面单元:单元定义在整体笛卡尔X-Y平面内(有限元模型必须建在此面内),分平面应力、平面应变或轴对称几种受力状态。
3)板壳单元–Shell (壳)单元用于薄面板或曲面模型。
壳单元分析应用的基本原则就是每块面板的主尺寸不低于其厚度的5~10 倍。
4)实体单元三维实体单元:–用于那些由于几何、材料、载荷或分析结果要求考虑的细节等原因造成无法采用更简单单元进行建模的结构。
–四面体模型使用CAD建模往往比使用专业的FEA分析建模更容易,也偶尔得到使用。
第6章动力学分析1①动力学绪论1、动力学分析定义动力学分析就是用来确定惯性(质量效应)与阻尼起着重要作用时结构或构件动力学特性的技术。
2、动力学特性:振动特性、随时间变化载荷的效应、周期或者随机载荷的效应3、动力学分析的类型(1)模态分析来确定结构的振动特性(2)瞬态动力学分析来计算结构对随时间变化载荷的响应第11页(3)谐分析来确定结构对稳态简谐载荷的响应(4)进行谱分析来确定结构对地震载荷的影响(5)随机振动分析来确定结构对随机震动的影响4、运动方程其中:[M] = 结构质量矩阵[C] = 结构阻尼矩阵[K] = 结构刚度矩阵{F} = 随时间变化的载荷函数{u} = 节点位移矢量{} = 节点速度矢量{ü} = 节点加速度矢量5、不同分析类型就是对这个方程的不同形式进行求解–模态分析:设定F(t)为零,而矩阵[C] 通常被忽略;–谐响应分析:假设F(t) 与u(t) 都为谐函数,例如Xsin(wt),其中,X 就是振幅, w 就是单位为弧度/秒的频率;–瞬间动态分析:方程保持上述的形式。