第七章 向量空间的正交性
学空间向量与立体几何空间向量的正交分解及其坐标表示

合成与分解、波动传播的方向和速度等。
空间向量在计算机图形学中的应用
图形变换
空间向量在计算机图形学中广泛应用于图形的变换,例如平移 、旋转和缩放等操作。
光照与阴影
空间向量在光照与阴影的计算中也起着关键作用,例如计算光 线方向、反射和折射等。
动画与游戏
空间向量在动画和游戏开发中也经常被使用,例如物体移动、 视角转换和角色控制等。
THANK YOU.
2023
《学空间向量与立体几何 空间向量的正交分解及其
坐标表示》
目录
• 空间向量与立体几何概述 • 空间向量的正交分解 • 空间向量的坐标表示 • 空间向量与立体几何的应用 • 总结与展望
01
空间向量与立体几何概述
空间向量的定义与性质
空间向量的定义
空间向量是一种具有大小和方向的量,通常用一条有向线段表示,其大小由线段的长度表示,方向由 线段的方向表示。
03
空间向量的坐标表示
坐标系的建立
01
建立空间直角坐标系
通过原点和三个互相垂直的单位向量 确定空间直角坐标系。
02
坐标系的特点
03
坐标系的单位向量
坐标系具有三个互相垂直的轴,分别 为x轴、y轴、z轴,每个轴上的单位长 度为1。
x轴上的单位向量为i,y轴上的单位向 量为j,z轴上的单位向量为k。
空间向量的坐标表示
空间向量的定义
空间向量是一个有方向和大小的 量,可以用一个有序实数组表示 。
空间向量的表示方法
在空间直角坐标系中,空间向量 可以用三个分量来表示,即 (x,y,z)。
空间向量的模
空间向量的模等于其分量平方和 的平方根。
空间向量坐标的运算
线性空间的正交性与最小二乘法

线性空间的正交性与最小二乘法线性空间是数学中一个重要的概念,它在各个领域的应用非常广泛。
在线性空间中,正交性是一个重要的概念,它在向量的运算和分析中起着重要的作用。
而最小二乘法则是利用正交性来解决线性方程组的一种有效方法。
1. 正交性的概念在线性空间中,两个向量的正交性是指它们的内积为零。
内积是向量的一种运算,可以看作是两个向量之间的乘积。
如果两个向量的内积为零,那么它们在空间中是相互垂直的。
这种垂直关系在几何学中很容易理解,但在抽象的线性空间中也同样适用。
2. 正交性的性质正交性具有一些重要的性质。
首先,如果两个向量是正交的,那么它们的线性组合也是正交的。
这个性质在向量的运算中非常有用,可以简化计算过程。
其次,如果一个向量与一组正交向量都正交,那么它与这组向量的线性组合也正交。
这个性质可以用来证明正交向量的线性组合是最优解的重要性质。
3. 最小二乘法的基本思想最小二乘法是一种通过最小化误差平方和来求解线性方程组的方法。
它的基本思想是,通过构造一个与方程组的解最接近的向量来近似求解方程组。
这个向量可以通过正交向量的线性组合得到,因为正交向量的线性组合具有最小的误差平方和。
4. 最小二乘法的应用最小二乘法在各个领域都有广泛的应用。
在物理学中,它可以用来拟合实验数据,找到最符合实验结果的曲线。
在经济学中,它可以用来估计经济模型的参数,从而预测未来的经济走势。
在工程学中,它可以用来解决信号处理、图像处理等问题。
最小二乘法的应用不仅仅局限于线性方程组,还可以推广到非线性问题。
5. 正交性与最小二乘法的关系正交性是最小二乘法的基础。
通过构造正交向量的线性组合,最小二乘法可以得到一个与方程组的解最接近的向量。
这个向量的构造依赖于正交向量的性质,即正交向量的线性组合具有最小的误差平方和。
因此,正交性是最小二乘法能够有效求解线性方程组的关键。
6. 正交性的推广正交性不仅仅适用于线性空间中的向量,还可以推广到其他对象上。
向量正交公式范文

向量正交公式范文在线性代数中,向量的正交是指两个向量的内积为零,也就是说两个向量之间的夹角为90度。
正交性在许多数学和物理问题中起着重要的作用。
本文将介绍向量正交的定义、性质以及一些应用。
向量正交的定义如下:对于实数域或复数域上的向量空间中的两个向量,如果它们的内积为零,则称这两个向量是正交的。
设有两个向量u和v,它们的内积为0表示为u·v=0。
换句话说,u与v的内积为零意味着它们互相垂直。
下面我们来看一些向量正交的性质。
首先,零向量与向量空间中的任何向量都是正交的,因为对于任何向量u,都有0·u=0。
这是因为零向量与其他向量之间没有方向,所以它与其他向量之间的夹角为90度。
其次,向量的正交性可以从数与向量的乘积来看。
对于实数或复数a和向量u,我们有a·u=0当且仅当a=0或u=0。
这是因为如果a不等于零,则a与u的内积只能为零当且仅当u为零向量。
同样地,如果u不等于零,则a与u的内积只能为0当且仅当a为零。
然后,正交性也可以通过向量的分量来表示。
设u=(u1,u2,...,un)和v=(v1,v2,...,vn)是一个向量空间中的两个向量。
它们是正交的当且仅当它们的对应分量的乘积的和为0,即u1v1+u2v2+...+unvn=0。
这是因为两个向量的内积可以表示为它们对应分量的乘积的和。
另外,正交性还满足加法和标量乘法的封闭性。
设u和v是一个向量空间中的两个正交向量,若a是一个实数或复数,则au和u+v也是正交向量。
这是因为(au)·u=a(u·u)=0,以及(u+v)·u=(u·u)+(v·u)=0+(v·u)=0,其中·表示内积。
最后,正交性还满足向量长度的性质。
如果两个向量u和v是正交的,那么它们的长度乘积等于它们的内积的绝对值,即,u,·,v,=,u·v。
这是正交性的推论,通过向量的长度和方向来表示它们正交的程度。
向量正交公式范文

向量正交公式范文在平面几何中,我们可以通过计算两个向量的点积来确定它们是否正交。
设向量A(x1,y1)和向量B(x2,y2),它们的点积为A·B=x1x2+y1y2、根据正交的定义,当A·B=0时,向量A和向量B是正交的。
此外,向量正交还有一个重要的性质,即如果两个向量A和B正交,那么它们的线性组合也是正交的。
具体来说,对于向量A(x1,y1)和向量B(x2,y2),以及任意实数k和l,线性组合kA+lB也是正交的。
这可以通过计算线性组合的点积来证明:(kA+lB)·A=k(A·A)+l(B·A)=0,(kA+lB)·B=k(A·B)+l(B·B)=0。
因此,线性组合kA+lB也是正交的。
向量正交的概念在物理学、工程学和计算机图形学等领域都有广泛的应用。
例如,在物理学中,向量正交可以用于描述力的作用方向和速度的垂直关系。
在工程学中,向量正交可以用于计算力矩和刚体的旋转。
在计算机图形学中,向量正交可以用于计算光线和表面的相互作用。
除了平面几何中的向量正交,我们还可以推广到三维空间中。
在三维空间中,向量A(x1,y1,z1)和向量B(x2,y2,z2)的点积为A·B=x1x2+y1y2+z1z2、类似地,当A·B=0时,向量A和向量B是正交的。
向量正交的概念也可以推广到更高维的空间。
在n维空间中,向量A(x1, x2, ..., xn)和向量B(y1, y2, ..., yn)的点积为A·B = x1y1 + x2y2 + ... + xnyn。
同样地,当A·B = 0时,向量A和向量B是正交的。
向量正交公式在实际问题中有很大的用途。
例如,当我们需要找到两个向量之间的夹角时,可以首先计算它们的点积,然后应用向量正交公式,将点积和向量的大小代入公式来求解夹角。
这样可以简化计算过程,并提高计算的效率。
向量的正交分解

向量的正交分解向量的正交分解是在数学中讨论向量空间时经常用到的一个概念。
正交分解是指将一个向量空间中的任意向量表示为与该向量空间的一个子空间正交的两个子空间上的向量的和。
在了解向量的正交分解之前,我们首先需要了解几个相关的概念。
1.向量空间:向量空间是指一个集合,其中的元素被称为向量,并且满足加法运算和标量乘法运算的封闭性、结合律、分配律、单位元等一系列规定的条件。
2.子空间:子空间是指向量空间的一个子集,符合向量空间的定义条件,也就是满足加法运算和标量乘法运算的封闭性、结合律、分配律、单位元等条件。
3.正交:两个向量的内积为0时,我们称这两个向量是正交的。
内积为0意味着两个向量之间夹角为90度,也就是垂直于彼此。
现在我们来讨论向量的正交分解。
假设V是一个n维的向量空间,W是V的一个子空间,那么我们可以将V进行正交分解为两个子空间上的向量的和:V = W⊕W⊥其中,W⊥表示与W正交的向量构成的一个子空间。
具体来说,对于V中的任意一个向量v,存在唯一的,满足下面两个条件的向量v1和v2:1. v1属于W,表示v1是W中的一个向量;2. v2属于W⊥,表示v2是与W正交的向量。
那么我们可以得到v = v1 + v2。
也就是说,每个向量v都可以写成子空间W中的一个向量和与W正交的向量之和。
这个正交分解的过程可以通过Gram-Schmidt正交化方法来进行。
Gram-Schmidt正交化方法是一种用来将一个线性无关的向量组正交化的方法。
假设有一组线性无关的向量{v1, v2, ..., vn},我们希望将它们正交化得到{u1, u2, ..., un}。
那么可以按照如下步骤进行:1.令u1 = v1;2.对于i = 2, 3, ..., n,执行如下操作:a.令ui = vi - proj(vi, u1) - proj(vi, u2) - ... - proj(vi, ui-1);b.其中,proj(vi, uk)表示向量vi在向量uk上的投影,计算方式为proj(vi, uk) = (vi・uk) / (uk・uk) * uk;c.注意,这里的"・"表示点乘运算。
空间向量的正交分解

a b (a 1 b1 , a2 b2 , a3 b3 ) ;
a
(a1 , a2 , a3 ),( R) ;
a b a1b1 a2b2 a3b3
;
a // b a1 b1 , a2 b2 , a3 b3 ( R) ; a1 / b1 a2 / b2 a2 / b2 .
C
z
D1 A1 F1 E1 B1 C1
D
O
A
x
17 17 | BE1 | , | DF1 | . 4 4 15 B BE1 DF1 15 16 cos BE1 , DF1 . | BE1 | | DF1 | 17 17 17 4 4
y
练习一:
1.求下列两个向量的夹角的余弦:
注意:
(1)当 cos a , b 1 时, a 与 b 同向;
a 与 b 反向; (2)当 cos a , b 1 时,
(3)当cos a , b 0 时,a b 。 思考:当 0 cos a , b 1 及 1 cos a , b 0 时, 的夹角在什么范围内?
化简整理,得 4 x 6 y 8z 7 0
即到 A 、B 两点距离相等的点的坐标 ( x , y , z ) 满
足的条件是 4 x 6 y 8z 7 0
例2
B1 E1 如图,在正方体 ABCD A1B1C1 D1 中,
A1B1 D1F1 4
,求 BE1 与 DF1 所成的角的余弦值。
z
a
A(x,y,z) O j y
k i x
三、空间向量基本定理
前面我们定义了空间向量的加、减 、数乘、数量积四 种运算,从而空间的有关问题可以转化为空间向量的这四 种运算来处理. 另外,我们还发现类似平面向量基本定理,空间也有 空间向 量基本定理,也就 是说: 已知三个不共面 向量 a 、 b、 c ,那么对于空间任一向量 p ,都存在有序实数组
向量空间的正交化_图文_图文

在空间 中,若一组基
满足标准正交
向量组的条件,即
则称
为标准正交基。
例如 是 中的一组标准正交基,而 中的自然基
也是标准正交基。 设
三、Schmidt正交化方法
空间中的线性无关 向量组。 (当r=n时,就是Rn空间里的一组基)
但是,这组向量组不定是(标准)正交向量组; (当r=n时,这组向量组不定是(标准)正交基) 下述方法称为Schmidt正交化方法,它是把线性无关向量组, 转变为正交向量组的方法。
长度不为1,则可取
称 为与
同向的单位向量, 从
的过程也称为
向量的单位化。
定义3
,则称向量 正交。 零向量与任何向量都正交。
例1 求与 解:设
都正交的单位向量。
与
都正交
则
对系数矩阵A作初等行变换
所以 再单位化得
为所求向量。
二 向量的正交性
设一个向量组
,若它们两两正交,
称这个向量组为正交向量组。 又若每一个向量
所得向量组是正交向量Fra bibliotek。当时,Schmidt 正交化方法就可以将一组基
化为正交基
然后单位化:
则
书例2
即为标准正交基。
四、 正交矩阵
定义 设A是n阶的实矩阵,若 A是正交矩阵。 正交矩阵的性质:若A为正交阵,则
,则称
(1) (2)
(3) 也为正交阵 (4)若A,B为正交阵,则AB也为正交阵
向量空间的正交化_图文_图文.ppt
一 向量的内积 定义1 对n 维向量空间 中的向量
定义 中内积
为
注:
当
到实数集R的函数,
上述定义中给出的内积满足: (1)交换性: (2)线性性:
空间向量的正交分解及其坐标表示

[精解详析] 连接 BO,则 BF =12 BP =12(BO+OP )=12 ( BA+ AO+OP )=12(c-b-a)=-12a-12b+12c.
BE = BC +CE =-a+12CP =-a+12(CO+OP )=-a-12b+12c.
∵{e1,e2,e3}是空间的一个基底, ∴e1,e2,e3 不共面,
∴- x+3xy=+2y= ,1, 2x-y=-1.
此方程组无解,
即不存在实数 x,y 使OA=xOB+yOC .
∴OA,OB,OC 不共面.
故{OA,OB,OC }能作为空间的一个基底.
[例 2] 四棱锥 P-OABC 的底面为一矩形,PO⊥平面 OABC.设OA=a,OC =b,OP =c,E,F 分别是 PC 和 PB 的 中点,试用 a,b,c 表示BF ,BE , AE , EF .
空间向量的正交分解及其坐标表示
1.空间向量基 任一向量p,存在有序实数组{x,y,z},使得 p=xa+yb +zc,其中{a,b,c}叫做空间的一个基底,a,b,c 都叫
做基向量.
2.空间向量的正交分解及其坐标表示
(1)单位正交基底 三个有公共起点O的 两两垂直 的单位向量e1,e2, e3称为单位正交基底.
xe1+ye2+ze3 .把 x,y,z 称作向量p在单位正交基底e1,
e2,e3下的坐标,记作
p=(x,y,.z)
1.空间任意三个不共面的向量都可以作为空间向量 的一个基底.
2. 0与任意一个非零向量共线,与任意两个非零向 量共面,所以三个向量不共面,就隐含着它们都不是0.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
−
1 ⎟, e3 6⎟
⎜⎝
2 6
⎟⎠
=
1 | b3
| b3
=
⎜ ⎜ ⎜
2
−
3 2
3 1
3
⎟ ⎟ ⎟
,
⎜⎝ −
1 23
⎟⎠
那么 e1 , e2 , e3 为与 a1 , a 2 , a3 等价的标准正交向量组.
五、正交矩阵
定义 7.5 设 A 是 n 阶实矩阵,如果满足 AΤ A = AAΤ = I ,那么 A 称为正交矩阵.
定义 7.3
θ
=
arccos (a,b)
| a || b |
称为非零向量 a
与 b 间的夹角;如果θ
=
π
2
,那么 a 与 b
正交,规定零向量与任意向量正交.
例 1 设向量 a = (1,−1,2,1)Τ ,b = (− 3,0,−1,3)Τ ,c = (2,3,1,−1)Τ ,计算 (a,b), (a,c)及 a 与
从而有
( ) k j a j ,a j = 0 .
186
但是
( ) a j ,a j =| a j |2 ≠ 0 ,
故
k j = 0 (j = 1,2,", m) .
所以 a1 , a2 ,", am 线性无关.
证毕
在维数为 r 的向量空间V 中,如果 a1 , a2 ,", ar 是正交向量组,那么由定理 7.1 知,
⎜⎛ ⎜
0 0
⎟⎞ ⎟
为一个标准正交基.
⎜⎝ 0⎟⎠ ⎜⎝ 0⎟⎠ ⎜⎝1⎟⎠
四、施密特正交化过程
我们知道维数为 r 的向量空间V 中任意 r 个线性无关的向量 a1 ,a2 ,",ar 都可以作为 V 的一个基,这个基不一定是标准正交基.但是,可以找到的V 一个标准正交基 e1 ,e2 ,",er , 使 向 量 组 e1 ,e2 ,",er 与 a1 ,a2 ,",ar 等 价 . 这 个 过 程 称 为 把 基 a1 , a2 ,", ar 规范正交化.
=
⎜⎛ 1 ⎟⎞
⎜0⎟ ⎜⎜⎜⎝ 10 ⎟⎟⎟⎠
−
⎜⎛ 1 ⎟⎞
1 ⎜0⎟
2
⎜ ⎜⎜⎝
10⎟⎟⎟⎠
=
⎜⎛
1 2
⎟⎞
⎜ ⎜ ⎜⎜⎝
0 −1 1
2
⎟ ⎟ ⎟⎟⎠
;
设
b3 = a3 + k1b1 + k2b2 ,
由
(b3 , b1 ) = 0,(b3 , b 2 ) = 0 得
k1
=
−
(b1 (b1
, ,
关.
证
设有一组数 k1 ,k2 ,",km ,使得
m
∑kiai = 0 .
i =1
那么
∑ ( ) ⎜⎛
⎝
m i =1
kiai
,a
j
⎟⎞ ⎠
=
0, a j
=0
利用向量的内积的运算规律,可得
(j = 1,2,", m) ,
∑ ( ) m ki ai ,a j = 0 .
i =1
( ) 由于 a1 , a2 ,", am 是正交向量组, 故 当 i ≠ j 时 ai , a j = 0 ,
⎟ ⎟⎟⎠
−
1 2
3 2
⎜0⎟
⎜ ⎜⎜⎝
−
1 2
1
⎟ ⎟⎟⎠
=
⎜1⎟
⎜ ⎜⎜⎝
− −
1 3
1 3
⎟ ⎟⎟⎠
再把 b1, b 2 , b3 单位化,得
188
⎜⎛
1 2
⎟⎞
⎜⎛
1 6
⎟⎞
⎜⎛
1 23
⎟⎞
e1
=
1 | b1
| b1
=
⎜ ⎜ ⎜⎜⎝
0
1
⎟⎟, e2
2
0
⎟⎟⎠
=
1 | b2
|b2
=
⎜0⎟
⎜ ⎜
−2 133
⎟⎟⎠⎞
.
三、向量的正交性
定义 7.4 如果非零向量组 a1 , a2 ,", am 两两正交,那么向量组 a1 , a 2 ,", a m 称为正
交向量组;特别地,如果 a1 ,a2 ,",am 全为单位向量,那么正交向量组 a1 ,a2 ,",am 称为
标准正交向量组.
例如,
⎜⎛ 1 ⎟⎞
,an
))⎟⎟⎞
⎟
)⎟⎟⎠
.
a
Τ 1
a
n
⎟⎞
a
Τ 2
a
n
⎟
a
#
Τ n
a
n
⎟ ⎟⎟⎠
如果 A 为正交矩阵,则 AΤ A = I ,即
( ) ai ,a j
=
a
Τ i
a
j
=
⎧1,i =
⎨ ⎩0,
i
≠
j. j
这说明, A 的列向量组 a1 ,a2 ,",an 是标准正交向量组.反之,如果 A 的列向量组
a1 , a2 ,", an 是标准正交向量组,即
a ⋅ b = a1b1 + a2b2 + a3b3 .
借助于三维向量的内积,我们可以表示向量的长度和两个向量间的夹角.
设向量 a = (a1, a2 , a3 ) ,那么 a 的长度| a |=
a⋅a =
a12
+
a
2 2
+ a32
.
设两个非零向量 a = (a1, a 2 , a 3 ) 与 b = (b1,b2 ,b3 ) 间的夹角为θ ,
由此可知 ,对正交矩阵 A ,有 A−1 = AΤ .
设 A 是 n 阶实矩阵,将 A 按列进行分块,那么
A = (a1 , a2 ,", an ) ,
⎜⎛
a
Τ 1
⎟⎞
AΤ
=
⎜ ⎜ ⎜⎜⎝
a
Τ 2
#
a
Τ n
⎟ ⎟ ⎟⎟⎠
.
因此
⎜⎛a1Τ ⎟⎞
⎜⎛
a
Τ 1
a
1
a
Τ 1
a
2
"
A
Τ
A
=
⎜ ⎜ ⎜⎜⎝
a
Τ 2
重点与难点:施密特正交化方法;
正交矩阵及其性质的应用.
重要解题方法:施密特正交化方法..
一、 引例(三维向量的内积)
在第四§2 中,我们已经定义两个向量的内积,并且给出它的坐标表示式.设两个向量
a = (a1, a2 , a3 ) , b = (b1, b2 , b3 ) ,那么向量 a 与 b 的内积可表示为
准正交向量组. 此外,正交矩阵还具有下列的性质(证明从略):
性质 1 如果 A 为正交矩阵,那么 A = ±1 ;
性质 2 如果 A 为正交矩阵,那么 A − 1 , A Τ 都是正交矩阵;
性质 3 如果 A 、 B 是同阶的正交矩阵,那么 AB, BA 也是正交矩阵.
例3 交矩阵.
设 x 是 n 维实列向量,且 xΤx = 1, H = I − 2xxΤ .证明矩阵 H 是对称的正
那么
cosθ = a ⋅ b =
a1b1 + a2b2 + a3b3
.
ab
a12 + a22 + a32 b12 + b22 + b32
二、向量的内积及其性质
下面我们将三维向量的内积推广为 n 维向量的内积(将用新的记号).
184
定义 7.1 那么实数
⎜⎛ a1 ⎟⎞ ⎜⎛ b1 ⎟⎞
设有两个
n
维实向量
下面我们介绍把V 的基 a1 , a2 ,", ar 规范正交化的过程.
取
b1 = a1 ;
设
b 2 = a2 + kb1 ,
其中待定系数 k 由 (b 2 , b1 ) = 0 确定,此时向量组 b1, b 2 正交且与向量组 a1, a2 等价;重复
这种过程,最后设
b r = a r + k1b1 + k2b 2 + " + kr−1b r−1 ,
第七章
向量空间的正交性
把几何空间作为向量空间的具体模型,人们会发现向量本身的度量:向量的长度与两个 向量间的夹角.而在解析几何中,这两个度量是通过向量的内积来表示,我们将把这些概念
推广到任意 n 维向量空间.
§1 向量空间的内积
主要知识点:向量的内积;
正交向量组; 施密特正交化方法; 正交矩阵及其性质.
对任意 k(1 ≤ k ≤ r) ,向量组 b1 , b 2 ,",b k 与 a1 , a2 ,",ak 等价.
⎜⎛ 1 ⎟⎞
⎜⎛ 1 ⎟⎞
⎜⎛ 1 ⎟⎞
例2
已知 R 4 中的向量组 a1
=
⎜ ⎜ ⎜⎜⎝
0 1 0
⎟⎟, ⎟⎟⎠
a
2
=
⎜ ⎜ ⎜⎜⎝
0 0 1
⎟⎟, ⎟⎟⎠
a
3
=
⎜ ⎜ ⎜⎜⎝
1 0 0
其中待定系数 k1 ,k2 ,",kr-1 由 (br , b1 ) = 0, (b r , b 2 ) = 0,", (br , b r−1 ) = 0 确定.
这样可以得到正交向量组 b1 , b 2 ,", br ,容易验证 b1 , b 2 ,", br 与 a1 , a2 ,", ar 等价. 再把 b1 , b 2 ,", br 单位化,即取