二次函数图像和性质拔高题(中考真题为主)
二次函数图象性质与应用(共30道)—2023年中考数学真题(全国通用)(解析版)

二次函数图象性质与应用(30道)一、单选题1.(2023·江苏徐州·统考中考真题)在平面直角坐标系中,将二次函数2(1)3y x =++的图象向右平移2个单位长度,再向下平移1个单位长度,所得拋物线对应的函数表达式为( ) A .2(3)2y x =++ B .2(1)2y x =−+ C .2(1)4y x =−+ D .2(3)4y x =++【答案】B【分析】根据二次函数图象的平移“左加右减,上加下减”可进行求解.【详解】解:由二次函数2(1)3y x =++的图象向右平移2个单位长度,再向下平移1个单位长度,所得拋物线对应的函数表达式为2(1)2y x =−+;故选B .【点睛】本题主要考查二次函数图象的平移,熟练掌握二次函数图象的平移是解题的关键. 2.(2023·辽宁沈阳·统考中考真题)二次函数2(1)2y x =−++图象的顶点所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】B【详解】根据抛物线2(1)2y x =−++,可以写出该抛物线的顶点坐标,从而可以得到顶点在第几象限. 解:2(1)2y x =−++,∴顶点坐标为()1,2-, ∴顶点在第二象限.故选:B .【点睛】本题主要考查了二次函数的性质,掌握二次函数的性质是解题的关键.3.(2023·甘肃兰州·统考中考真题)已知二次函数()2323y x =−−−,下列说法正确的是( ) A .对称轴为2x =− B .顶点坐标为()2,3 C .函数的最大值是-3 D .函数的最小值是-3【答案】C【分析】根据二次函数的图象及性质进行判断即可. 【详解】二次函数()2323y x =−−−的对称轴为2x =,顶点坐标为()2,3−∵30−<∴二次函数图象开口向下,函数有最大值,为=3y − ∴A 、B 、D 选项错误,C 选项正确 故选:C【点睛】本题考查二次函数的图象及性质,熟练掌握二次函数图象和性质是解题的关键.4.(2023·贵州·统考中考真题)已知,二次数2y ax bx c =++的图象如图所示,则点(),P a b 所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】D【分析】首先根据二次函数的图象及性质判断a 和b 的符号,从而得出点(),P a b 所在象限. 【详解】解:由图可知二次函数的图象开口向上,对称轴在y 轴右侧, ∴0a >,02ba −>,∴0b <,∴(),P a b 在第四象限,故选D .【点睛】本题考查二次函数的图象与系数的关系,以及判断点所在象限,解题的关键是根据二次函数的图象判断出a 和b 的符号.5.(2023·辽宁营口·统考中考真题)如图.抛物线()20y ax bx c a =++≠与x 轴交于点()30A −,和点()10B ,,与y 轴交于点C .下列说法:①<0abc ;②抛物线的对称轴为直线=1x −;③当30x −<<时,20ax bx c ++>;④当1x >时,y 随x 的增大而增大;⑤2am bm a b +≤−(m 为任意实数)其中正确的个数是( )A .1个B .2个C .3个D .4个【答案】C【分析】根据抛物线开口向下,与y 轴交于正半轴,可得00a c <>,,根据()30A −,和点()10B ,可得抛物线的对称轴为直线=1x −,即可判断②;推出20b a =<,即可判断①;根据函数图象即可判断③④;根据当=1x −时,抛物线有最大值a b c −+,即可得到2am bm a b +≤−,即可判断⑤.【详解】解:∵抛物线开口向下,与y 轴交于正半轴, ∴00a c <>,, ∵抛物线与x 轴交于点()30A −,和点()10B ,,∴抛物线对称轴为直线3112x −+==−,故②正确;∴12b a −=−, ∴20b a =<,∴0abc >,故①错误;由函数图象可知,当30x −<<时,抛物线的函数图象在x 轴上方,∴当30x −<<时,20ax bx c ++>,故③正确;∵抛物线对称轴为直线=1x −且开口向下,∴当1x >−时,y 随x 的增大而减小,即当1x >时,y 随x 的增大而减小,故④错误; ∵抛物线对称轴为直线=1x −且开口向下, ∴当=1x −时,抛物线有最大值y a b c =−+,∴2am bm c a b c ++≤−+,∴2am bm a b +≤−,故⑤正确;综上所述,正确的有②③⑤, 故选C .【点睛】本题主要考查了抛物线的图象与系数的关系,抛物线的性质等等,熟练掌握抛物线的相关知识是解题的关键.6.(2023·陕西·统考中考真题)在平面直角坐标系中,二次函数22y x mx m m =++−(m 为常数)的图像经过点(06),,其对称轴在y 轴左侧,则该二次函数有( )【答案】D【分析】将(06),代入二次函数解析式,进而得出m 的值,再利用对称轴在y 轴左侧,得出3m =,再利用二次函数的顶点式即可求出二次函数最值.【详解】解:将(06),代入二次函数解析式22y x mx m m =++−得:26m m =−,解得:13m =,22m =−, ∵二次函数22y x mx m m =++−,对称轴在y 轴左侧,即022b m x a =−=−<,∴0m >, ∴3m =,∴223153624y x x x ⎛⎫=++=++⎪⎝⎭, ∴当23x =−时,二次函数有最小值,最小值为154,故选:D .【点睛】此题主要考查了二次函数的性质以及二次函数的最值,正确得出m 的值是解题关键.7.(2023·湖北鄂州·统考中考真题)如图,已知抛物线()20y ax bx c a =++≠的对称轴是直线1x =,且过点()1,0−,顶点在第一象限,其部分图象如图所示,给出以下结论:①0ab <;②420a b c ++>;③30a c +>;④若()11,A x y ,()22,B x y (其中12xx <)是抛物线上的两点,且122x x +>,则12y y >,其中正确的选项是( )A .①②③B .①③④C .②③④D .①②④【答案】D【分析】根据二次函数的性质可得a<0,2b a =−,0b >,可判断结论①;由2x =处的函数值可判断结论②;由=1x −处函数值可判断结论③;根据122x x +>得到点()11,A x y 到对称轴的距离小于点()22,B x y 到对称轴的距离可判断结论④.【详解】解:二次函数开口向下,则a<0,二次函数对称轴为1x =,则12b a −=,2b a =−,0b >,∴0ab <,故①正确; ∵过点()1,0−,∴由对称性可得二次函数与x 轴的另一交点为()3,0,由函数图象可得2x =时0y >, ∴420a b c ++>,故②正确;1x =−时0y =,0a b c ∴−+=,2b a =−代入得:30a c +=,故③错误;∵对称轴是直线1x =,∴若1212x x +=,即122x x +=时,12y y =,∴当122x x +>时,点()11,A x y 到对称轴的距离小于点()22,B x y 到对称轴的距离∵二次函数开口向下 ∴12y y >,故④正确.综上所述,正确的选项是①②④. 故选: D .【点睛】本题考查了二次函数的综合,掌握二次函数的图象与各项系数符号的关系是解题关键.8.(2023·山东日照·统考中考真题)在平面直角坐标系xOy 中,抛物线2(0)y ax bx a =+≠,满足300a b a b +>⎧⎨+<⎩,已知点(3,)m −,(2,)n ,(4,)t 在该抛物线上,则m ,n ,t 的大小关系为( ) A .t n m << B .m t n <<C .n t m <<D .n m t <<【答案】C【分析】利用解不等式组可得3a b a −<<−且0a >,即可判断二次函数的对称轴位置,再利用函数的增减性判断即可解题.【详解】解不等式组可得:3a b a −<<−,且0a >所以对称轴2b x a =−的取值范围在1322x <<,由对称轴位置可知到对称轴的距离最近的是(2,)n ,其次是(4,)t ,最远的是(3,)m −, 即根据增减性可得n t m <<, 故选C .【点睛】本题考查二次函数的图像和性质,求不等组的解集,掌握二次函数的图像和性质是解题的关键.A .4B .3C .2D .1【答案】D【分析】根据二次函数图象可知:a<0,02ba −>,0c >,得出0ab c <,故①不正确;将点()2,0−,()3,0代入,得出:0a b +=,再求出2c b =−,故②不正确;根据函数图象可得213y y y <<,故③正确;根据方程20cx bx a ++=,()()22244270b ac b b b b ∆=−=−⨯−⨯−=−<,可知方程无解,故④不正确.【详解】解:根据二次函数图象可知:a<0,02b a −>,0c >,∴0b >,∴0abc <,故①不正确;将点()2,0−,()3,0代入得出:40930a b c a b c −+=⎧⎨++=⎩①②,②-①得出:0a b +=,∴a b =−,再代入①得出:2c b =−,故②不正确; ∵1302−<−<,∴20y <,30y >, ∵502>,∴10y >,根据图象可知:213y y y <<,故③正确;∵方程20cx bx a ++=,∴()()22244270b ac b b b b ∆=−=−⨯−⨯−=−<,∴方程20cx bx a ++=无解,故④不正确;正确的个数是1个, 故选:D .【点睛】本题考查二次函数,掌握二次函数的性质是解题的关键.A .1B .2C .3D .4【答案】B【分析】由图象得 a<0,0c >,由对称轴12b x a =−=得20b a =−>,20a b +=,0bc >;抛物线与x 轴的一个交点位于()2,0,()3,0两点之间,由对称性知另一个交点在(1,0)−,(0,0)之间,得0y a b c =−+<,于是13a c <−,进一步推知30ca -<<,由根与系数关系知1230x x -<<;【详解】解:开口向下,得 a<0,与y 轴交于正半轴,0c >,对称轴12bx a =−=,20b a =−>,20a b +=,故①20a b +>错误;0bc > 故②0bc <错误;抛物线与x 轴的一个交点位于()2,0,()3,0两点之间,对称轴为1x =,故知另一个交点在(1,0)−,(0,0)之间,故=1x −时,0y a b c =−+<∴(2)0a a c −−+<,得13a c <−,故③13a c<−正确; 由13a c <−,a<0,0c >知30ca -<<,∵1x ,2x 为方程20ax bx c ++=的两个根,∴12c x x a =∴1230x x -<<,故④正确; 故选:B【点睛】本题考查二次函数图象性质,一元二次方程根与系数关系,不等式变形,掌握函数图象性质,注意利用特殊点是解题的关键.11.(2023·四川雅安·统考中考真题)如图,二次函数2y ax bx c =++的图象与x 轴交于()2,0A −,B 两点,对称轴是直线2x =,下列结论中,①0a >;②点B 的坐标为()6,0;③3c b =;④对于任意实数m ,都有242+≥+a b am bm ,所有正确结论的序号为( )A .①②B .②③C .②③④D .③④【答案】C【分析】根据抛物线开口方向可得a 的符号,可对①进行判断;根据抛物线的对称轴2x =,由二次函数的对称性可得B 点坐标,由图象即可对②进行判断;根据点A ()2,0−,点B()6,0代入解析式利用加减消元法可得2480b c −=,从而判定③,再由2x =时函数取最大值判定④. 【详解】解:∵抛物线开☐向下, ∴0a <,故①错误, ∵抛物线与y 轴交于正半轴, ∴0c >, ∴0ac <, 设点B 坐标为()2,0B x∵抛物线对称轴为直线2x =,点A 的坐标为()2,0−,∴2222x −+=,解得:26x =,∴点B 的坐标为()6,0,故②正确,∵点A 的坐标为()2,0−,点B 的坐标为()6,0,∴4203660a b c a b c −+=⎧⎨++=⎩①②∴由9⨯②-①得2480b c −=,即3c b =,故③正确; ∵0a <,抛物线对称轴为直线2x =, ∴当2x =时,42y a b c =++时函数最大值,当x m =时,2y am bm c =++,∴242a b c am bm c ++≥++,即242+≥+a b am bm ,综上所述:正确的结论有②③④, 故选:C .【点睛】本题主要考查二次函数图象与二次函数系数之间的关系,掌握数形结合思想的应用和二次函数图象与系数的关系,掌握二次函数的对称性是解题关键.12.(2023·湖南娄底·统考中考真题)已知二次函数2y ax bx c =++的图象如图所示,给出下列结论:①0abc <;②420a b c −+>;③()a b m am b −>+(m 为任意实数);④若点()13,y −和点()23,y 在该图象上,则12y y >.其中正确的结论是( )A .①②B .①④C .②③D .②④【答案】D【分析】由抛物线的开口向下,与y 轴交于正半轴,对称轴在y 轴的左边,可得a<0,0c >, 0b <,故①不符合题意;当0x =与2x =−时的函数值相等,可得420a b c c −+=>,故②符合题意;当=1x −时函数值最大,可得()a b m am b −≥+,故③不符合题意;由点()13,y −和点()23,y 在该图象上,而()()()314132−−=>−−−=,且离抛物线的对称轴越远的点的函数值越小,可得④符合题意.【详解】解:∵抛物线的开口向下,与y 轴交于正半轴,对称轴在y 轴的左边, ∴a<0,0c >,02b x a =−<,∴0b <,∴0abc >,故①不符合题意; ∵对称轴为直线=1x −,∴当0x =与2x =−时的函数值相等, ∴420a b c c −+=>,故②符合题意; ∵当=1x −时函数值最大,∴2a b c am bm c −+≥++,∴()a b m am b −≥+;故③不符合题意;∵点()13,y −和点()23,y 在该图象上,而()()()314132−−=>−−−=,且离抛物线的对称轴越远的点的函数值越小,∴12y y >.故④符合题意; 故选:D .【点睛】本题考查的是二次函数的图象与性质,熟记二次函数的开口方向,与y 轴的交点坐标,对称轴方程,增减性的判定,函数的最值这些知识点是解本题的关键.13.(2023·四川绵阳·统考中考真题)将二次函数2y x =的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一次函数y =2x +b 的图象有公共点,则实数b 的取值范围是( )A .b >8B .b >﹣8C .b ≥8D .b ≥﹣8【答案】D【分析】先根据平移原则:上加下减,左加右减写出解析式,再列方程组,有公共点则△≥0,则可求出b 的取值.【详解】解:由题意得:平移后得到的二次函数的解析式为:2=(3)1y x −−, 则2(3)12y x y x b ⎧=−−⎨=+⎩,2(3)12−−=+x x b , 2880−+−=x x b ,△=(﹣8)2﹣4×1×(8﹣b )≥0, b≥﹣8, 故选:D .【点睛】主要考查的是二次函数图象的平移和两函数的交点问题,二次函数与一次函数图象有公共点.【答案】C【分析】根据题意可得:BC=,AP t BQ==,,设mAB a=,则mBC,作PE BC⊥交CB 的延长线于点E,作AF BC⊥交CB的延长线于点F,则可得mAF AB==,))mPE AB PA a t==−=−,从而得到22334216PBQaS t a⎛⎫=−−+⎪⎝⎭,根据PBQS的最大值为3,求出a的值,从而得到4mAB BC AF===,,,最后由平行四边形的面积公式进行计算即可得到答案.【详解】解:根据题意可得:BC,AP t BQ==,,设mAB a=,则mBC ,作PE BC⊥交CB的延长线于点E,作AF BC⊥交CB的延长线于点F,,120ABC∠=︒,60ABF∴∠=︒,mAF AB∴==,))mPE PB AB PA a t==−=−,)22211333322444216PBQaS BQ PE a t t at t a⎛⎫∴=⋅⋅=−=−+=−−+⎪⎝⎭,由图象可得PBQS的最大值为3,23316a∴=,解得:4a=或4a=−(舍去),4a∴=,4mAB BC AF∴===,,,∴平行四边形ABCD 的面积为:224m BC AF ⋅=,故选:C .【点睛】本题主要考查了平行四边形的性质、解直角三角形、二次函数的图象与性质,熟练掌握平行四边形的性质、二次函数的图象与性质,添加适当的辅助线构造直角三角形,是解题的关键. 二、多选题15.(2023·山东潍坊·统考中考真题)已知抛物线253y ax x =−−经过点()1,4−,则下列结论正确的是( )【答案】BC 【分析】将点()1,4−代入可求出二次函数的解析式,再根据二次函数的图象与性质、二次函数与一元二次方程的联系逐项判断即可得. 【详解】解:将点()1,4−代入253y ax x =−−得:534a +−=,解得2a =,22549253248y x x x ⎛⎫∴=−−=−−⎪⎝⎭∴抛物线的开口向上,抛物线的对称轴是54x =,选项A 错误,选项B 正确;方程22530x x −−=的根的判别式()()25423490∆=−−⨯⨯−=>,∴方程22530x x −−=有两个不相等的实数根,∴抛物线与x 轴有两个交点,选项C 正确;由二次函数的性质可知,这个抛物线的开口向上,且当54x =时,y 取得最小值498−,∴当498t <−时,253y ax x =−−与y t =没有交点, ∴当498t <−时,关于x 的一元二次方程2530ax x t −−−=没有实根,选项D 错误;故选:BC .【点睛】本题考查了二次函数的图象与性质、二次函数与一元二次方程的联系,熟练掌握二次函数的图象与性质是解题关键.三、解答题(1)求方案一中抛物线的函数表达式;(2)在方案一中,当3m AB =时,求矩形框架ABCD 的面积1S 并比较【答案】(1)21493y x x=−+ (2)218m ,12S S >【分析】(1)利用待定系数法则,求出抛物线的解析式即可;(2)在21493y x x=−+中,令3y =得:214393x x =−+,求出3x =或9x =,得出()936m BC =−=,求出()213618m S AB BC ⋅=⨯==,然后比较大小即可.【详解】(1)解:由题意知,方案一中抛物线的顶点()64P ,,设抛物线的函数表达式为()264y a x =−+,把()00O ,代入得:()20064a =−+,解得:19a =−,∴()2211464993y x x x =−−+=−+;∴方案一中抛物线的函数表达式为21493y x x=−+; (2)解:在21493y x x =−+中,令3y =得:214393x x=−+, 解得3x =或9x =, ∴()936m BC =−=,∴()213618m S AB BC ⋅=⨯==;∵18> ∴12S S >.【点睛】本题主要考查了二次函数的应用,求二次函数解析式,解题的关键是熟练掌握待定系数法则,求出函数解析式.(1)求y 关于x 的函数表达式;(2)求运动员从起跳点到入水点的水平距离【答案】(1)y 关于x 的函数表达式为2210y x x =−++(2)运动员从起跳点到入水点的水平距离OB 的长为(1m【分析】(1)由题意得抛物线的对称轴为1x =,经过点()010,,()37,,利用待定系数法即可求解;(2)令0y =,解方程即可求解.【详解】(1)解:由题意得抛物线的对称轴为1x =,经过点()010,,()37,,设抛物线的表达式为2y ax bx c =++,∴1210937ba c abc ⎧−=⎪⎪=⎨⎪++=⎪⎩,解得1210a b c =−⎧⎪=⎨⎪=⎩,∴y 关于x 的函数表达式为2210y x x =−++;(2)解:令0y =,则22100x x −++=,解得1x =,∴运动员从起跳点到入水点的水平距离OB的长为(1m .【点睛】本题考查了二次函数在实际问题中的应用,数形结合并熟练掌握运用待定系数法求抛物线的解析式是解题的关键.(1)求y 与x 之间的函数关系式;(2)当护眼灯销售单价定为多少元时,商店每月出售这种护眼灯所获的利润最大?最大月利润为多少元? 【答案】(1)140y x =−+(2)护眼灯销售单价定为80元时,商店每月出售这种护眼灯所获的利润最大,最大月利润为2400元 【分析】(1)用待定系数法求解即可;(2)设销售利润为W 元,列出W 关于x 的函数关系式,即可求得最大利润. 【详解】(1)解:由题意设(0)y kx b k =+≠,由表知,当50x =时,90y =;当60x =时,80y =;以上值代入函数解析式中得:50906080k b k b +=⎧⎨+=⎩,解得:1140k b =−⎧⎨=⎩, 所以y 与x 之间的函数关系式为140y x =−+; (2)解:设销售利润为W 元, 则(40)(40)(140)W x y x x =−=−−+,整理得:21805600W x x =−+−,由于销售单价不低于进价,且不高于进价的2倍,则4080x ≤≤,∵10−<,2(90)2500W x =−−+,∴当90x ≤时,W 随x 的增大而增大,∴当80x =时,W 有最大值,且最大值为2400;答:当护眼灯销售单价定为80元时,商店每月出售这种护眼灯所获的利润最大,最大月利润为2400元.任务:(1)不等式260x x −−<的解集为_____________;(2)3种方法都运用了___________的数学思想方法(从下面选项中选1个序号即可);A .分类讨论B .转化思想C .特殊到一般D .数形结合(3)请你根据方法3的思路,画出函数图像的简图,并结合图像作出解答. 【答案】(1)23x −<< (2)D(3)图像见解析,不等式260x x −−<的解集为23x −<<【分析】(1)如图1,作26y x x =−−的图像,由方法1可知,不等式260x x −−<的解集为23x −<<; (2)由题意知,3种方法都运用了数形结合的数学思想方法; (3)如图2,作函数1y x =−与6y x =的图像,由图像可得,260x x −−<的解集为20x −<<,或03x <<,进而可得260x x −−<的解集.【详解】(1)解:如图1,作26y x x =−−的图像,由方法1可知,不等式260x x −−<的解集为23x −<<,故答案为:23x −<<;(2)解:由题意知,3种方法都运用了数形结合的数学思想方法, 故选:D ;(3)解:如图2,作函数1y x =−与6y x =的图像,由图像可得,260x x −−<的解集为20x −<<,或03x <<,综上,260x x −−<的解集为23x −<<.【点睛】本题考查了数形结合求一元二次不等式的解集,作二次函数、一次函数、反比例函数的图像.解题的关键在于理解题意并正确的作函数图象.20.(2023·辽宁·统考中考真题)电商平台销售某款儿童组装玩具,进价为每件100元,在销售过程中发现,每周的销售量y (件)与每件玩具售价x (元)之间满足一次函数关系(其中100160x ≤≤,且x 为整数).当每件玩具售价为120元时,每周的销量为80件;当每件玩具售价为140元时,每周的销量为40件. (1)求y 与x 之间的函数关系式;(2)当每件玩具售价为多少元时,电商平台每周销售这款玩具所获的利润最大?最大周利润是多少元? 【答案】(1)2320y x =−+(其中100160x ≤≤,且x 为整数)(2)当每件玩具售价为130元时,电商平台每周销售这款玩具所获的利润最大,最大周利润是1800元 【分析】(1)设y 与x 之间的函数关系式为y kx b =+,利用待定系数法求解即可;(2)设每周销售这款玩具所获的利润为W ,列出W 关于x 的二次函数关系式,化为顶点式即可求解. 【详解】(1)解:设y 与x 之间的函数关系式为y kx b =+,由已知得1208014040k b k b +=⎧⎨+=⎩,解得2320k b =−⎧⎨=⎩,因此y 与x之间的函数关系式为2320y x =−+(其中100160x ≤≤,且x 为整数); (2)解:设每周销售这款玩具所获的利润为W , 由题意得()()()2232010021301800=−+−=−−+W x x x ,20−<,∴W 关于x 的二次函数图象开口向上,100160x ≤≤,且x 为整数,∴当130x =时,W 取最大值,最大值为1800,即当每件玩具售价为130元时,电商平台每周销售这款玩具所获的利润最大,最大周利润是1800元. 【点睛】本题考查一次函数与二次函数的实际应用,列出周利润W 关于x 的二次函数关系式是解题的关键.21.(2023·江苏宿迁·统考中考真题)某商场销售AB 、两种商品,每件进价均为20元.调查发现,如果售出A 种20件,B 种10件,销售总额为840元;如果售出A 种10件,B 种15件,销售总额为660元.(1)求A B 、两种商品的销售单价.(2)经市场调研,A 种商品按原售价销售,可售出40件,原售价每降价1元,销售量可增加10件;B 种商品的售价不变,A 种商品售价不低于B 种商品售价.设A 种商品降价m 元,如果AB 、两种商品销售量相同,求m 取何值时,商场销售AB 、两种商品可获得总利润最大?最大利润是多少? 【答案】(1)A 的销售单价为30元、B 的销售单价为24元(2)当5m =时,商场销售AB 、两种商品可获得总利润最大,最大利润是810元 【分析】(1)设A 的销售单价为x 元、B 的销售单价为y 元,根据题中售出A 种20件,B 种10件,销售总额为840元;售出A 种10件,B 种15件,销售总额为660元列方程组求解即可得到答案; (2)设利润为w ,根据题意,得到()2105810w m =−−+,结合二次函数性质及题中限制条件分析求解即可得到答案.【详解】(1)解:设A 的销售单价为x 元、B 的销售单价为y 元,则20108401015660x yx y +=⎧⎨+=⎩,解得3024x y =⎧⎨=⎩,答:A 的销售单价为30元、B 的销售单价为24元; (2)解:A 种商品售价不低于B 种商品售价,3024m ∴−≥,解得6m ≤,即06m ≤≤,设利润为w ,则()()()401030202420w m m =+⨯−−+−⎡⎤⎣⎦210100560m m =−++()2105810m =−−+,100−<,w ∴在5m =时能取到最大值,最大值为810,∴当5m =时,商场销售AB 、两种商品可获得总利润最大,最大利润是810元.【点睛】本题考查二元一次方程组及二次函数解实际应用题,读懂题意,根据等量关系列出方程组,根据函数关系找到函数关系式分析是解决问题的关键.素材2根据体育老师建议,第二次练习时,小林在正前方 问题解决 任务1 【答案】任务一:4m ;任务二:m 15;任务三:应该尽量提高掷出点的高度、尽量提高掷出点的速度、选择适当的掷出仰角【分析】任务一:建立直角坐标系,由题意得:抛物线的顶点坐标为()1,1.8,设抛物线的解析式为()21 1.8y a x =−+,过点()0,1.6,利用待定系数法求出解析式,当0y =时求出x 的值即可得到OB ;任务二:建立直角坐标系,求出任务二的抛物线解析式,得到顶点纵坐标,与任务一的纵坐标相减即可; 任务三:根据题意给出合理的建议即可.【详解】任务一:建立如图所示的直角坐标系,由题意得:抛物线的顶点坐标为()1,1.8,设抛物线的解析式为()21 1.8y a x =−+,过点()0,1.6,∴ 1.8 1.6a +=, 解得0.2a =−, ∴()20.21 1.8y x =−−+,当0y =时,()20.21 1.80x −−+=,得14,2x x ==−(舍去),∴素材1中的投掷距离OB 为4m ; (2)建立直角坐标系,如图,设素材2中抛物线的解析式为2y ax bx c =++, 由题意得,过点()()()0,1.6,1,2.45,8,0,∴1.62.456480c a b c a b c =⎧⎪++=⎨⎪++=⎩,解得0.1511.6a b c =−⎧⎪=⎨⎪=⎩,∴20.15 1.6y x x =−++∴顶点纵坐标为()()2240.15 1.61449440.1515ac b a ⨯−⨯−−==⨯−,49221.81515−=(m ),∴素材2和素材1中球的最大高度的变化量为22m 15;任务三:应该尽量提高掷出点的高度、尽量提高掷出点的速度、选择适当的掷出仰角.【点睛】此题考查了二次函数的实际应用,求函数解析式,求抛物线与坐标轴的距离,正确理解题意建立恰当的直角坐标系是解题的关键.(1)从21(0)y ax a =+≠,(0)ky k x=≠,20.04y x bx c =−++中,选择适当的函数模型分别模拟两种场景下x 变化的函数关系,并求出相应的函数表达式;(2)查阅文献可知,该化学试剂发挥作用的最低质量为3克.在上述实验中,该化学试剂在哪种场景下发挥作用的时间更长?【答案】(1)场景A 中y 随x 变化的函数关系为20.040.121y x x =−−+,场景B 中y 随x 变化的函数关系为21y x =−+(2)场景B【分析】(1)由图象可知,场景A 中y 随x 变化的函数关系为20.04y x bx c =−++,将()10,16,()20,3代入20.04y x bx c =−++,进而可得20.040.121y x x =−−+;场景B 中y 随x 变化的函数关系为21(0)y ax a =+≠,将()20,1代入,进而可得21y x =−+;(2)场景A 中当3y =时,20x =;场景B 中,将3y =代入21y x =−+,解得,24x =,判断作答即可.【详解】(1)解:由图象可知,场景A 中y 随x 变化的函数关系为20.04y x bx c =−++, 将()10,16,()20,3代入20.04y x bx c =−++,得220.041010160.0420203b c b c ⎧−⨯++=⎨−⨯++=⎩,解得0.121b c =−⎧⎨=⎩,∴20.040.121y x x =−−+;场景B 中y 随x 变化的函数关系为21(0)y ax a =+≠, 将()20,1,代入21y ax =+,得20211a +=,解得1a =−,∴21y x =−+;(2)解:场景A 中当3y =时,20x =;场景B 中,将3y =代入21y x =−+,得321x =−+,解得24x =, ∵2420>,∴该化学试剂在场景B 下发挥作用的时间更长.【点睛】本题考查了函数图象,一次函数解析式,二次函数解析式.解题的关键在于对知识的熟练掌握与灵活运用.【答案】(1)4万元 (2)8m =(3)当A ,B 两个项目分别投入28万,4万元时,一年后获得的收益之和最大,最大值是16万元. 【分析】(1)把10x =代入25A y x=可得答案;(2)当x m =时,可得221255m m m=−+,再解方程可得答案;(3)设投入到B 项目的资金为x 万元,则投入到A 项目的资金为()32x −万元,设总收益为y 万元,A By y y =+21864555x x =−++,而032x ≤≤,再利用二次函数的性质可得答案.【详解】(1)解:∵投资A 项目一年后的收益A y (万元)与投入资金x (万元)的函数表达式为:25A y x =,当10x =时,21045A y =⨯=(万元); (2)∵对A ,B 两个项目投入相同的资金m (0m >)万元,一年后两者获得的收益相等, ∴221255m m m=−+,整理得:280m m −=,解得:18m =,20m =(不符合题意), ∴m 的值为8. (3)2125B y x x=−+设投入到B 项目的资金为x 万元,则投入到A 项目的资金为()32x −万元,设总收益为y 万元,∴A B y y y =+()22132255x x x =−−+ 21864555x x =−++, 而032x ≤≤,∴当854125x =−=⎛⎫⨯− ⎪⎝⎭时,132641616555y =−⨯++=最大(万元);∴当A ,B 两个项目分别投入28万,4万元时,一年后获得的收益之和最大,最大值是16万元. 【点睛】本题考查的是正比例函数的性质,一元二次方程的解法,列二次函数的解析式,二次函数的性质,理解题意,选择合适的方法解题是关键.25.(2023·贵州·统考中考真题)如图①,是一座抛物线型拱桥,小星学习二次函数后,受到该图启示设计了一建筑物造型,它的截面图是抛物线的一部分(如图②所示),抛物线的顶点在C 处,对称轴OC 与水平线OA 垂直,9OC =,点A 在抛物线上,且点A 到对称轴的距离3OA =,点B 在抛物线上,点B 到对称轴的距离是1.(1)求抛物线的表达式;(2)如图②,为更加稳固,小星想在OC 上找一点P ,加装拉杆,PA PB ,同时使拉杆的长度之和最短,请你帮小星找到点P 的位置并求出坐标;(3)为了造型更加美观,小星重新设计抛物线,其表达式为221(0)y x bx b b =−++−>,当46x ≤≤时,函数y 的值总大于等于9.求b 的取值范围.【答案】(1)29y x =−+(2)点P 的坐标为()0,6(3)4613b ≥【分析】(1)设抛物线的解析式为2y ax k =+,将()09C ,,()3,0A 代入即可求解; (2)点B 关于y 轴的对称点B ',则PA PB PA PB AB ''+=+≥,求出直线AB '与y 轴的交点坐标即可; (3)分05b <≤和5b >两种情况,根据最小值大于等于9列不等式,即可求解. 【详解】(1)解:抛物线的对称轴与y 轴重合,∴设抛物线的解析式为2y ax k =+,9OC =,3OA =,∴()09C ,,()3,0A ,将()09C ,,()3,0A 代入2y ax k =+,得:2930k a k =⎧⎨⋅+=⎩,解得91k a =⎧⎨=−⎩,∴抛物线的解析式为29y x =−+;(2)解:抛物线的解析式为29y x =−+,点B 到对称轴的距离是1, 当1x =时,198y =−+=, ∴()1,8B ,作点B 关于y 轴的对称点B ',则()1,8B '−,B P BP '=,∴PA PB PA PB AB ''+=+≥,∴当B ',B ,A 共线时,拉杆,PA PB 长度之和最短,设直线AB '的解析式为y mx n =+,将()1,8B '−,()3,0A 代入,得038m n m n =+⎧⎨=−+⎩,解得26m n =−⎧⎨=⎩, ∴直线AB '的解析式为26y x =−+,当0x =时,6y =,∴点P 的坐标为()0,6,位置如下图所示:(3)解:221(0)y x bx b b =−++−>中10a =−<,∴抛物线开口向下,当05b <≤时,在46x ≤≤范围内,当6x =时,y 取最小值,最小值为:262611337b b b −+⨯+−=−则13379b −≥, 解得4613b ≥,∴46513b ≤≤; 当5b >时,在46x ≤≤范围内,当4x =时,y 取最小值,最小值为:24241917b b b −+⨯+−=−则9179b −≥, 解得269b ≥,∴5b >;综上可知,46513b ≤≤或5b >, ∴b 的取值范围为4613b ≥.【点睛】本题考查二次函数的实际应用,涉及求二次函数解析式,求一次函数解析式,根据对称性求线段的最值,抛物线的增减性等知识点,解题的关键是熟练掌握二次函数的图象和性质,第3问注意分情况讨论.四、填空题26.(2023·黑龙江牡丹江·统考中考真题)将抛物线()23y x =+向下平移1个单位长度,再向右平移 个单位长度后,得到的新抛物线经过原点. 【答案】2或4/4或2 【分析】先求出抛物线()23y x =+向下平移1个单位长度后与x 的交点坐标,然后再求出新抛物线经过原点时平移的长度. 【详解】解:抛物线()23y x =+向下平移1个单位长度后的解析式为()231y x =+−,令0y =,则()2310x +−=, 解得,122,4x x =−=−,∴抛物线()231y x =+−与x 的交点坐标为()2,0−和()4,0−,∴将抛物线()231y x =+−向右平移2个单位或4个单位后,新抛物线经过原点.故答案为:2或4.【点睛】此题考查了二次函数图象的平移与几何变换,利用抛物线解析式的变化规律:左加右减,上加下减是解题关键.【答案】4【分析】利用配方法把二次函数一般式化为顶点式,即可求解. 【详解】解:利用配方法,将一般式化成顶点式: 234y x x =−−+232524x =−++()二次函数开口向下,。
中考数学复习《二次函数的图象与性质》经典题型及测试题(含答案)

中考数学复习《二次函数的图象与性质》经典题型及测试题(含答案)知识点一:二次函数的概念及解析式 1.一次函数的定义形如y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的函数,叫做二次函数. 例:如果函数y =(a -1)x 2是二次函数,那么a 的取值范围是a ≠0. 2.解析式(1)三种解析式:①一般式:y=ax 2+bx+c;②顶点式:y=a(x-h)2+k(a ≠0),其中二次函数的顶点坐标是(h ,k ); ③交点式:y=a(x-x 1)(x-x 2),其中x 1,x 2为抛物线与x 轴交点的横坐标.(2)待定系数法:巧设二次函数的解析式;根据已知条件,得到关于待定系数的方程(组);解方程(组),求出待定系数的值,从而求出函数的解析式.变式练习:如图,对称轴为直线x =2的抛物线y =x 2+bx +c 与x 轴交于点A 和点B ,与y 轴交于点C ,且点A 的坐标为(-1,0). (1)求抛物线的解析式;(2)直接写出B ,C 两点的坐标; (3)求过O ,B ,C 三点的圆的 面积.(结果用含π的代数式表示)解:(1)由A(-1,0),对称轴为x =2,可得⎩⎪⎨⎪⎧-b 2=2,1-b +c =0,解得⎩⎨⎧b =-4,c =-5,∴抛物线解析式为y =x 2-4x -5(2)由A 点坐标为(-1,0),且对称轴方程为x =2,可知AB =6,∴OB =5,∴B 点坐标为(5,0),∵y =x 2-4x -5, ∴C 点坐标为(0,-5)(3)如图,连接BC ,则△OBC 是直角三角形,∴过O ,B ,C 三点的圆的直径是线段BC 的长度,在Rt △OBC 中,OB =OC =5,∴BC =52, ∴圆的半径为522,注意:若已知条件是图象上的三个点或三对对应函数值,可设一般式;若已知顶点坐标或对称轴方程与最值,可设顶点式;若已知抛物线与x 轴的两个交点坐标,可设交点式.∴圆的面积为π(522)2=252π知识点二 :二次函数的图象与性质变式练习2:当0≤x ≤5时,抛物线y=x 2+2x+7的最小值为7 .变式练习2:二次函数y =ax 2+bx +c (a ≠0)的大致图象如图所示,关于该二次函数,下列说法错误的是( ) A. 函数有最小值B. 对称轴是直线x =12C. 当x <12时,y 随x 的增大而减小 D. 当-1<x <2时,y >0【解析】A.由抛物线的开口向上,可知a >0,函数有最小值,正确,故本选项不顶点坐标 24,24b ac b a a ⎛⎫-- ⎪⎝⎭增减性 当x >2ba -时,y 随x 的增大而增大;当x <2b a-时,y 随x 的增大而减小. 当x >2ba-时,y 随x 的增大而减小;当x<2b a-时,y 随x 的增大而增大.最值x=2ba -,y 最小=244ac b a -.x =2ba -,y 最大=244ac b a-. 注意:(1)比较二次函数函数值大小的方法:①直接代入求值法;②性质法:当自变量在对称轴同侧时,根据函数的性质判断;当自变量在对称轴异侧时,可先利用函数的对称性转化到同侧,再利用性质比较;④图象法:画出草图,描点后比较函数值大小.失分点警示(2)在自变量限定范围求二次函数的最值时,首先考虑对称轴是否在取值范围内,而不能盲目根据公式求解.符合题意;B.由图象可知,对称轴为x =12,正确,故本选项不符合题意;C.因为a >0,所以,当x <12时,y 随x 的增大而减小,正确,故本选项不符合题意;D.由图象可知,当-1<x <2时,y <0,错误,故本选项符合题意. 2.系数a 、b 、c 的关系注意某些特殊形式代数式的符号: ① a ±b+c 即为x=±1时,y的值;②4a ±2b+c 即为x=±2时,y 的值. ③ 2a+b 的符号,需判断对称 某些特殊形式代数式的符号: ② a ±b+c 即为x=±1时,y的值;②4a ±2b+c 即为x=±2时,y 的值. ④ 2a+b 的符号,需判断对称 ③ a ±b+c 即为x=±1时,y的值;②4a ±2b+c 即为x=±2时,y 的值.轴-b/2a 与1的大小.若对称轴在直线x=1的左边,则-b/2a >1,再根据a 的符号即可得出结果.④2a-b 的符号,需判断对称轴与-1的大小.3.已知函数y =ax 2-2ax -1(a 是常数,a ≠0),下列结论正确的是( D ) A .当a =1时,函数图象过点(-1,1)B .当a =-2时,函数图象与x 轴没有交点C .若a >0,则当x ≥1时,y 随x 的增大而减小系数a 、b 、c a 决定抛物线的开口方向及开口大小当a >0时,抛物线开口向上;当a <0时,抛物线开口向下.a 、b 决定对称轴(x=-b/2a )的位置当a ,b 同号,-b/2a <0,对称轴在y 轴左边;当b =0时, -b/2a=0,对称轴为y 轴;当a ,b 异号,-b/2a >0,对称轴在y 轴右边. c决定抛物线与y 轴的交点的位置当c >0时,抛物线与y 轴的交点在正半轴上;当c =0时,抛物线经过原点; 当c <0时,抛物线与y 轴的交点在负半轴上.b 2-4ac 决定抛物线与x 轴的交点个数b 2-4ac >0时,抛物线与x 轴有2个交点; b 2-4ac =0时,抛物线与x 轴有1个交点;b 2-4ac <0时,抛物线与x 轴没有交点D .若a <0,则当x ≤1时,y 随x 的增大而增大知识点三 :二次函数的平移平移与解析式的关系平移|k |个单位平移|h |个单位向上(k >0)或向下(k <0)向左(h <0)或向右(h >0)y =a (x -h )2+k 的图象y =a (x -h )2的图象y =ax 2的图象变式练习1:将抛物线y=x 2沿x 轴向右平移2个单位后所得抛物线的解析式是y=(x -2)2. 变式练习2:如果将抛物线y =x 2+2向下平移1个单位,那么所得新抛物线的表达式是( C )A .y =(x -1)2+2B .y =(x +1)2+2C .y =x 2+1D .y =x 2+3变式练习3:已知二次函数y =x 2-4x +a ,下列说法错误的是( ) A. 当x <1时,y 随x 的增大而减小 B. 若图象与x 轴有交点,则a ≤4C. 当a =3时,不等式x 2-4x +a >0的解集是1<x <3D. 若将图象向上平移1个单位,再向左平移3个单位后过点(1, -2),则a =-3【解析】C ∵y =x 2-4x +a ,∴对称轴x =2,画二次函数的草图如解图,A.当x <1时,y 随x 的增大而减小,所以A 选项正确;B.∵b 2-4ac =16-4a ≥0,即a ≤4时,二次函数和x 轴有交点,所以B 选项正确;C.当a =3时,不等式x 2-4x +a >0的解集是x <1或x >3,所以C 选项错误;D.y =x 2-4x +a 配方后是y =(x -2)2+a -4,向上平移1个单位,再向左平移3个单位后,函数解析式是y =(x +1)2+a -3,把(1,-2)代入函数解析式,易求a =-3,所以D 选项正确,故选C.知识点四 :二次函数与一元二次方程以及不等式注意:1)二次函数的平移实质是顶点坐标的平移,因此只要找出原函数顶点的平移方式即可确定平移后的函数解析式2)抛物线平移规律是“上加下减,左加右减”,左右平移易弄反.无论是什么函数,左右移影响着x 的变化,左移x 加,右移x 减;上下移影响着y 的变化,上移y 减,下移y 加。
二次函数的图象与性质大题(五大题型)—2024年中考数学(全国通用)解析版

二次函数的图象与性质大题(五大题型)通用的解题思路:题型一.二次函数的性质二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c (a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.③抛物线y=ax2+bx+c(a≠0)的图象可由抛物线y=ax2的图象向右或向左平移|﹣|个单位,再向上或向下平移||个单位得到的.题型二.二次函数图象与系数的关系二次函数y=ax2+bx+c(a≠0)①二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;|a|还可以决定开口大小,|a|越大开口就越小.②一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab<0),对称轴在y轴右侧.(简称:左同右异)③.常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).④抛物线与x轴交点个数.△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac <0时,抛物线与x轴没有交点.题型三.待定系数法求二次函数解析式(1)二次函数的解析式有三种常见形式:①一般式:y=ax2+bx+c(a,b,c是常数,a≠0);②顶点式:y=a(x﹣h)2+k(a,h,k是常数,a≠0),其中(h,k)为顶点坐标;③交点式:y=a(x﹣x1)(x﹣x2)(a,b,c是常数,a≠0);(2)用待定系数法求二次函数的解析式.在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.题型四.抛物线与x轴的交点求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x 的一元二次方程即可求得交点横坐标.(1)二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系.△=b2﹣4ac决定抛物线与x轴的交点个数.△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.(2)二次函数的交点式:y=a(x1)(x﹣x2)(a,b,c是常数,a≠0),可直接得到抛物线与x轴的交点坐标(x1,0),(x2,0).题型五.二次函数综合题(1)二次函数图象与其他函数图象相结合问题解决此类问题时,先根据给定的函数或函数图象判断出系数的符号,然后判断新的函数关系式中系数的符号,再根据系数与图象的位置关系判断出图象特征,则符合所有特征的图象即为正确选项.(2)二次函数与方程、几何知识的综合应用将函数知识与方程、几何知识有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件.(3)二次函数在实际生活中的应用题从实际问题中分析变量之间的关系,建立二次函数模型.关键在于观察、分析、创建,建立直角坐标系下的二次函数图象,然后数形结合解决问题,需要我们注意的是自变量及函数的取值范围要使实际问题有意义.题型一.二次函数的性质(共3小题)1.(2024•石景山区校级模拟)在平面直角坐标系xOy 中,1(A x ,1)y ,2(B x ,2)y 是抛物线2(0)y x bx b =−+≠上任意两点,设抛物线的对称轴为直线x h =. (1)若抛物线经过点(2,0),求h 的值;(2)若对于11x h =−,22x h =,都有12y y >,求h 的取值范围;(3)若对于121h x h −+……,221x −−……,存在12y y <,直接写出h 的取值范围. 【分析】(1)根据对称轴2bx a=−进行计算,得2b h =,再把(2,0)代入2(0)y x bx b =−+≠,即可作答.(2)因为1(A x ,1)y ,2(B x ,2)y 是抛物线2(0)y x bx b =−+≠上的点,所以把11x h =−,22x h =分别代入,得出对应的1y ,2y ,再根据12y y >联立式子化简,计算即可作答;(3)根据121h x h −+……,221x −−……,存在12y y <,得出当221h −<−<−或者211h −<+<−,即可作答. 【解答】解:(1)抛物线的对称轴为直线x h =, 22b bh ∴=−=−, 即2b h =,∴抛物线22y x hx =−+,把(2,0)代入22y x hx =−+, 得0422h =−+⨯, 解得1h =;(2)由(1)知抛物线22y x hx =−+,1(A x ,1)y ,2(B x ,2)y 是抛物线22y x hx =−+上任意两点,221(1)2(1)1y h h h h ∴=−−+−=−,22(2)220y h h h =−+⨯=,对于11x h =−,22x h =,都有12y y >, 210h ∴−>,解得1h >或1h <−;(3)1(A x ,1)y ,2(B x ,2)y 是抛物线22y x hx =−+上任意两点,对于121h x h −+……,221x −−……,存在12y y <,且1(2,)h y −关于直线x h =的对称点为1(2,)h y +,1(1,)h y +关于直线x h =的对称点为1(1,)h y −,∴当221h −<−<−时,存在12y y <,解得01h <<,当221h −<+<−时,存在12y y <, 解得43h −<<−,当211h −<+<−时,存在12y y <, 解得32h −<<−,当211h −<−<−时,存在12y y <, 解得10h −<<,综上,满足h 的取值范围为41h −<<且0h ≠.【点评】本题考查了二次函数的图象性质、增减性,熟练掌握二次函数的图象和性质是解决本题的关键. 2.(2024•鹿城区校级一模)已知二次函数223y x tx =−++. (1)若它的图象经过点(1,3),求该函数的对称轴. (2)若04x ……时,y 的最小值为1,求出t 的值.(3)如果(2,)A m n −,(,)C m n 两点都在这个二次函数的图象上,直线2y mx a =+与该二次函数交于1(M x ,1)y ,2(N x ,2)y 两点,则12x x +是否为定值?若是,请求出该定值;若不是,请说明理由.【分析】(1)把(1,3)代入解析式求出12t =,再根据对称轴公式求出对称轴; (2)根据抛物线开口向下,以及0x =时3y =,由函数的性质可知,当4x =时,y 的最小值为1,然后求t 即可;(3)(2,)A m n −,(,)C m n 两点都在这个二次函数的图象上,有对称轴公式得出1m t −=,再令2232x tx mx a −++=+,并转化为一般式,然后由根与系数的关系求出122x x +=−.【解答】解:(1)将(1,3)代入二次函数223y x tx =−++,得3123t =−++, 解得12t =, ∴对称轴直线为21122t x t =−==−⨯; (2)当0x =时,3y =,抛物线开口向下,对称轴为直线x t =, ∴当x t =时,y 有最大值,04x ……时,y 的最小值为1,∴当4x =时,16831y t =−++=,解得74t =; (3)12x x +是定值,理由:(2,)A m n −,(,)C m n 两点都在这个二次函数的图象上, 212m mx t m −+∴===−, 1m t ∴−=,令2232x tx mx a −++=+, 整理得:22()30x m t x a +−+−=,直线2y mx a =+与该二次函数交于1(M x ,1)y ,2(N x ,2)y 两点, 1x ∴,2x 是方程22()30x m t x a +−+−=的两个根,122()2()21m t x x m t −∴+=−=−−=−是定值. 【点评】本题考查了二次函数的性质,二次函数图象上点的坐标特征等知识,关键是掌握二次函数的性质. 3.(2024•拱墅区一模)在平面直角坐标系中,抛物线2(2)2y ax a x =−++经过点(2,)A t −,(,)B m p . (1)若0t =,①求此抛物线的对称轴;②当p t <时,直接写出m 的取值范围;(2)若0t <,点(,)C n q 在该抛物线上,m n <且5513m n +<−,请比较p ,q 的大小,并说明理由. 【分析】(1)①当0t =时,点A 的坐标为(2,0)−,将其代入函数解析式中解得1a =−,则函数解析式为抛物线的解析式为22y x x =−−+,再根据求对称轴的公式2bx a=−即可求解; ②令0y =,求出抛物线与x 轴交于(2,0)−和(1,0),由题意可得0p <,则点B 在x 轴的下方,以此即可解答; (2)将点A 坐标代入函数解析式,通过0t <可得a 的取值范围,从而可得抛物线开口方向及对称轴,根据点B ,C 到对称轴的距离大小关系求解.【解答】解:(1)①当0t =时,点A 的坐标为(2,0)−,抛物线2(2)2y ax a x =−++经过点(2,0)A −, 42(2)20a a ∴+++=,1a ∴=−,∴抛物线的解析式为22y x x =−−+, ∴抛物线的对称轴为直线112(1)2x −=−=−⨯−;②令0y =,则220x x −−+=, 解得:11x =,22x =−,∴抛物线与x 轴交于(2,0)−和(1,0),点(2,0)A −,(,)B m p ,且0p <, ∴点(,)B m p 在x 轴的下方,2m ∴<−或1m >.(2)p q <,理由如下:将(2,)t −代入2(2)2y ax a x =−++得42(2)266t a a a =+++=+,0t <, 660a ∴+<, 1a ∴<−,∴抛物线开口向下,抛物线对称轴为直线(2)1122a x a a −+=−=+, 1a <−,110a∴−<<, 1111222a ∴−<+<, m n <且5513m n +<−,∴1312102m n +<−<−, ∴点(,)B m p 到对称轴的距离大于点(,)C n q 到对称轴的距离,p q ∴<.【点评】本题考查二次函数的综合应用,解题关键是掌握二次函数的性质,掌握二次函数与方程及不等式的关系.题型二.二次函数图象与系数的关系(共8小题)4.(2023•南京)已知二次函数223(y ax ax a =−+为常数,0)a ≠. (1)若0a <,求证:该函数的图象与x 轴有两个公共点. (2)若1a =−,求证:当10x −<<时,0y >.(3)若该函数的图象与x 轴有两个公共点1(x ,0),2(x ,0),且1214x x −<<<,则a 的取值范围是 .【分析】(1)证明240b ac −>即可解决问题. (2)将1a =−代入函数解析式,进行证明即可. (3)对0a >和0a <进行分类讨论即可.【解答】证明:(1)因为22(2)43412a a a a −−⨯⨯=−, 又因为0a <,所以40a <,30a −<, 所以24124(3)0a a a a −=−>,所以该函数的图象与x 轴有两个公共点. (2)将1a =−代入函数解析式得,2223(1)4y x x x =−++=−−+,所以抛物线的对称轴为直线1x =,开口向下. 则当10x −<<时,y 随x 的增大而增大, 又因为当1x =−时,0y =, 所以0y >.(3)因为抛物线的对称轴为直线212ax a−=−=,且过定点(0,3), 又因为该函数的图象与x 轴有两个公共点1(x ,0),2(x ,0),且1214x x −<<<, 所以当0a >时,230a a −+<, 解得3a >, 故3a >.当0a <时,230a a ++<,解得1a <−, 故1a <−.综上所述,3a >或1a <−. 故答案为:3a >或1a <−.【点评】本题考查二次函数的图象和性质,熟知二次函数的图象和性质是解题的关键.5.(2024•南京模拟)在平面直角坐标系xOy 中,点1(1,)y ,2(3,)y 在抛物线222y x mx m =−+上. (1)求抛物线的顶点(,0)m ; (2)若12y y <,求m 的取值范围;(3)若点0(x ,0)y 在抛物线上,若存在010x −<<,使102y y y <<成立,求m 的取值范围. 【分析】(1)利用配方法将已知抛物线解析式转化为顶点式,可直接得到答案; (2)由12y y <,得到221296m m m m −+<−+,解不等式即可; (3)由题意可知012032m m +⎧<⎪⎪⎨+⎪>⎪⎩或112132m m −+⎧<⎪⎪⎨−+⎪>⎪⎩,解不等式组即可.【解答】解:(1)抛物线222()y x mx m x m =−+=−. ∴抛物线的顶点坐标为(,0)m .故答案为:(,0)m ;(2)点1(1,)y ,2(3,)y 在抛物线222y x mx m =−+上,且12y y <, 221296m m m m ∴−+<−+,2m ∴<;(3)点0(x ,0)y 在抛物线上,存在010x −<<,使102y y y <<成立, ∴012032m m +⎧<⎪⎪⎨+⎪>⎪⎩或112132m m −+⎧<⎪⎪⎨−+⎪>⎪⎩,解得302m <<. 【点评】本题考查了二次函数与系数的关系,二次函数图象上点的坐标特征,熟知二次函数的性质是解题的关键.6.(2024•北京一模)在平面直角坐标系中,已知抛物线23y ax bx =++经过点(2,3)a −. (1)求该抛物线的对称轴(用含有a 的代数式表示);(2)点(2,)M t m −,(2,)N t n +,(,)P t p −为该抛物线上的三个点,若存在实数t ,使得m n p >>,求a 的取值范围.【分析】(1)将点(2,3)a −代入抛物线23y ax bx =++中,然后根据二次函数的对称轴公式代入数值,即可得出答案;(2)分类讨论当0a >和0a <,利用数形结合以及二次函数的性质就可以得出a 的取值范围. 【解答】解(1)抛物线23y ax bx =++经过点(2,3)a −, ∴把(2,3)a −代入23y ax bx =++得2(2)233a a ab ⨯−−+=,22b a ∴=,2223y ax a x ∴=++,∴抛物线的对称轴222a x a a=−=−,答:抛物线的对称轴为:x a =−;(2)①当0a >时,抛物线开口方向向上,对称轴0x a =−<,在x 轴的负半轴上,所以越靠近对称轴函数值越小, ∴当0t <时,(2,)M t m −,(2,)N t n +,(,)P t p −在抛物线上,22t t ∴−<+,∴此时p m n >>与题干m n p >>相矛盾,故舍去, ∴当0t >时,(2,)M t m −,(2,)N t n +,(,)P t p −在抛物线上,22t t ∴−<+,∴此时m n <与题干m n p >>相矛盾,故舍去;②当0a <时,抛物线开口方向向下,对称轴0x a =−>,在x 轴的正半轴上,所以越靠近对称轴函数值越大, ∴当0t >时,点M 、N 分别在对称轴同侧时,(2,)M t m −,(2,)N t n +,(,)P t p −在抛物线上,22t t ∴−<+, .m n p >>,∴此时02a t <−<−,即20t a −<<,2t ∴>,∴当0t >时,点M 、N 分别在对称轴两侧时,(2,)M t m −,(2,)N t n +,(,)P t p −在抛物线上,22t t t ∴−<<+,p m n ∴>>与题干m n p >>相矛盾,故舍去,∴当0t <时,且点M 、N 分别在对称轴两侧时,(2,)M t m −,(2,)N t n +,(,)P t p −在抛物线上,22t t t ∴−<<+,n m ∴>与题干m n p >>相矛盾,故舍去,当0t <时,且点M 、N 分别在对称轴同侧时, (2,)M t m −,(2,)N t n +,(,)P t p −在抛物线上,22t t t ∴−<<+,n m ∴>与题干m n p >>相矛盾,故舍去,答:a 的取值范围为20(2)t a t −<<>.7.(2024•张家口一模)某课外小组利用几何画板来研究二次函数的图象,给出二次函数解析式2y x bx c =++,通过输入不同的b ,c 的值,在几何画板的展示区内得到对应的图象.(1)若输入2b =,3c =−,得到如图①所示的图象,求顶点C 的坐标及抛物线与x 轴的交点A ,B 的坐标; (2)已知点(1,10)P −,(4,0)Q .①若输入b ,c 的值后,得到如图②的图象恰好经过P ,Q 两点,求出b ,c 的值;②淇淇输入b ,嘉嘉输入1c =−,若得到二次函数的图象与线段PQ 有公共点,求淇淇输入b 的取值范围.【分析】(1)将2b =,3c =−,代入函数解析式,进行求解即可; (2)①待定系数法进行求解即可;②将1c =−代入解析式,得到抛物线必过点(0,1)−,求出1x =−和4x =的函数值,根据抛物线与线段PQ 有公共点,列出不等式进行求解即可. 【解答】解:(1)2y x bx c =++,解:当2b =,3c =−时,2223(1)4y x x x =+−=+−, ∴顶点C 的坐标为:(1,4)−−;当0y =时,2230x x +−=,即(3)(1)0x x +−=, 解得:13x =−,21x =, (3,0)A ∴−,(1,0)B ;(2)①抛物线恰好经过P ,Q则:1101640b c b c −+=⎧⎨++=⎩,解得:54b c =−⎧⎨=⎩;②当1c =−时,21y x bx =+−, 当0x =时,1y =−, ∴抛物线过(0,1)−,当1x =−时,11y b b =−−=−,当点(1,)b −−在点P 上方,或与点P 重合时,抛物线与线段PQ 有公共点,即:10b −…, 解得:10b −…;当4x =时,1641415y b b =+−=+,当点(4,154)b +在点Q 上方,或与点Q 重合时,抛物线与线段PQ 有公共点,即:1540b +…,154b ≥−; 综上:10b −…或154b ≥−. 【点评】本题考查二次函数的综合应用.正确的求出函数解析式,熟练掌握二次函数的图象和性质是解题的关键.8.(2024•浙江模拟)设二次函数24(y ax ax c a =−+,c 均为常数,0)a ≠,已知函数值y 和自变量x 的部分对应取值如下表所示:(1)判断m ,n 的大小关系,并说明理由; (2)若328m n −=,求p 的值;(3)若在m ,n ,p 这三个数中,只有一个数是负数,求a 的取值范围.【分析】(1)根据所给函数解析式,可得出抛物线的对称轴为直线2x =,据此可解决问题. (2)根据(1)中发现的关系,可求出m 的值,据此即可解决问题. (3)根据m 和n 相等,所以三个数中的负数只能为p ,据此可解决问题. 【解答】解:(1)m n =.因为二次函数的解析式为24y ax c =+, 所以抛物线的对称轴为直线422ax a−=−=, 又因为1522−+=, 所以点(1,)m −与(5,)n 关于抛物线的对称轴对称, 故m n =.(2)因为m n =,328m n −=, 所以8m =.将(0,3)和(1,8)−代入函数解析式得:348c a a c =⎧⎨++=⎩,解得13a c =⎧⎨=⎩所以二次函数的解析式为243y x x =−+.将2x =代入函数解析式得,224231p =−⨯+=−.(3)由(1)知,m n =, 所以m ,n ,p 中只能p 为负数. 将(0,3)代入函数解析式得,3c =, 所以二次函数解析式为243y ax ax =−+. 将1x =−代入函数解析式得,53m a =+. 将2x =代入函数解析式得,43p a =−+.则430530a a −+<⎧⎨+≥⎩,解得34a >,所以a 的取值范围是34a >. 【点评】本题考查二次函数图象与系数的关系及二次函数图象上点的坐标特征,熟知二次函数的图象和性质是解题的关键.9.(2024•北京模拟)在平面直角坐标系xOy 中,抛物线2(26)1y x m x =+−+经过点1(,)m y −,2(,)m y ,3(2,)m y +.(1)若13y y =,求抛物线的对称轴; (2)若231y y y <<,求m 的取值范围. 【分析】(1)利用对称轴意义即可求解;(2m 的不等式组,解不等式组即可.【解答】解:(1)抛物线2(26)1y x m x =+−+经过点1(,)m y −,2(,)m y ,3(2,)m y +,13y y =, ∴该抛物线的对称轴为:直线22m m x −++=,即直线1x =; (2)当0m >时,可知点1(,)m y −,2(,)m y ,3(2,)m y +从左至右分布, 231y y y <<,∴232232m m m m m m ++⎧−<⎪⎪⎨−++⎪−>⎪⎩,解得12m <<; 当0m <时,3m m m ∴<−<−+,21y y ∴>,不合题意,综上,m 的取值范围是12m <<.【点评】本题考查了二次函数图象上点的坐标特征,二次函数的性质,熟练掌握二次函数的性质是解题的关键.10.(2024•浙江模拟)在平面直角坐标系xOy 中,抛物线2(y ax bx c a =++,b ,c 为常数,且0)a ≠经过(2,4)A −−和(3,1)B 两点.(1)求b 和c 的值(用含a 的代数式表示);(2)若该抛物线开口向下,且经过(23,)C m n −,(72,)D m n −两点,当33k x k −<<+时,y 随x 的增大而减小,求k 的取值范围;(3)已知点(6,5)M −,(2,5)N ,若该抛物线与线段MN 恰有一个公共点时,结合函数图象,求a 的取值范围.【分析】(1)把(2,4)A −−和(3,1)B 代入2y ax bx c =++,即可求解;(2)先求出对称轴为:直线2x =,结合开口方向和增减性列出不等式即可求解; (3)分0a >时,0a <时,结合图象即可求解.【解答】解:(1)把(2,4)A −−和(3,1)B 代入2y ax bx c =++,得:424931a b c a b c −+=−⎧⎨++=⎩,解得:162b a c a =−⎧⎨=−−⎩;(2)抛物线经过(23,)C m n −,2,)m n −两点, ∴抛物线的对称轴为:直线237222m mx −+−==,抛物线开口向下,当33k x k −<<+时,y 随x 的增大而减小,32k ∴−…,即5k …; (3)①当0a >时,6x =−,5y …,即2(6)(1)(6)625a a a ⨯−+−⨯−−−…, 解得:1336a …,抛物线不经过点N ,如图①,抛物线与线段MN 只有一个交点,结合图象可知:1336a …;②当0a <时,若抛物线的顶点在线段MN 上时,则2244(62)(1)544ac b a a a a a−−−−−==,解得:11a =−,2125a =−, 当11a =−时,111112222(1)a −=−=⨯−, 此时,定点横坐标满足116222a−−……,符合题意; 当11a =−时,如图②,抛物线与线段MN 只有一个交点,如图③,当2125a =−时,11111312222()25a −=−=⨯−,此时顶点横坐标不满足116222a−−……,不符合题意,舍去; 若抛物线与线段MN 有两个交点,且其中一个交点恰好为点N 时,把(2,5)N 代入2(1)62y ax a x a =+−−−,得:252(1)262a a a =⨯+−⨯−−, 解得:54a =−,当54a =−时,如图④,抛物线和线段MN 有两个交点,且其中一个交点恰好为点N ,结合图象可知:54a <−时,抛物线与线段MN 有一个交点,综上所述:a 的取值范围为:1336a …或1a =−或54a <−.【点评】本题考查二次函数的性质和图象,根据题意画出图象,分类讨论是解题的关键.11.(2024•海淀区校级模拟)在平面直角坐标系xOy 中,点(0,3),1(6,)y 在抛物线2(0)y ax bx c a =++≠上. (1)当13y =时,求抛物线的对称轴;(2)若抛物线2(0)y ax bx c a =++≠经过点(1,1)−−,当自变量x 的值满足12x −……时,y 随x 的增大而增大,求a 的取值范围;(3)当0a >时,点2(4,)m y −,2(,)m y 在抛物线2y ax bx c =++上.若21y y c <<,请直接写出m 的取值范围.【分析】(1)当13y =时,(0,3),(6,3)为抛物线上的对称点,根据对称性求出对称轴;(2)把(0,3),(1,1)−−代入抛物线解析式得出a ,b 的关系,然后求出对称轴,再分0a >和0a <,由函数的增减性求出a 的取值范围;(3)先画出函数图象,再根据21y y c <<确定m 的取值范围. 【解答】解:(1)当13y =时,(0,3),(6,3)为抛物线上的对称点, 0632x +∴==, ∴抛物线的对称轴为直线3x =;(2)2(0)y ax bx c a =++≠过(0,3),(1,1)−−,3c ∴=,31a b −+=−, 4b a =+,∴对称轴为直线422b a x a a+=−=−,①当0a >时,12x −……时,y 随x 的增大而增大,∴412a a+−−…, 解得4a …,04a ∴<…;②当0a <时,12x −……时,y 随x 的增大而增大,∴422a a+−…, 解得45a −…, ∴405a −<…,综上:a 的取值范围是405a −<… 或04a <…;(3)点(0,3)在抛物线2y ax bx c =++上,3c ∴=,点2(4,)m y −,2(,)m y 在抛物线2y ax bx c =++上, ∴对称轴为直线422m mx m −+==−, ①如图所示:21y y c <<,6m ∴<且06232m +−>=, 56m ∴<<;②如图所示:21y y c <<,46m ∴−>, 10m ∴>,综上所述,m 的取值范围为56m <<或10m >.【点评】本题考查二次函数图象与系数的关系以及二次函数图象上点的坐标特征,关键是利用数形结合和分类讨论的思想进行解答.题型三.待定系数法求二次函数解析式(共3小题)12.(2024•保山一模)如图,抛物线2y ax bx c =++过(2,0)A −,(3,0)B ,(0,6)C 三点;点P 是第一象限内抛物线上的动点,点P 的横坐标是m ,且132m <<. (1)试求抛物线的表达式;(2)过点P 作PN x ⊥轴并交BC 于点N ,作PM y ⊥轴并交抛物线的对称轴于点M ,若12PM PN =,求m 的值.【分析】(1)将A ,B ,C 三点坐标代入函数解析式即可解决问题. (2)用m 表示出PM 和PN ,建立关于m 的方程即可解决问题. 【解答】解:(1)由题知,将A ,B ,C 三点坐标代入函数解析式得,4209306a b c a b c c −+=⎧⎪++=⎨⎪=⎩,解得116a b c =−⎧⎪=⎨⎪=⎩,所以抛物线的表达式为26y x x =−++.(2)将x m =代入抛物线得表达式得,26y m m =−++, 所以点P 的坐标为2(,6)m m m −++. 令直线BC 的函数解析式为y px q =+,则306p q q +=⎧⎨=⎩,解得26p q =−⎧⎨=⎩,所以直线BC 的函数解析式为26y x =−+. 因为132m <<,且抛物线的对称轴为直线12x =,所以12PM m =−. 又因为点N 坐标为(,26)m m −+,所以226(26)3PN m m m m m =−++−−+=−+. 因为12PM PN =, 所以211(3)22m m m −=−+,解得m =, 又因为132m <<,所以m =. 【点评】本题考查待定系数法求二次函数解析式及二次函数的图象和性质,熟知待定系数法及二次函数的图象和性质是解题的关键.13.(2024•东营区校级一模)如图,在平面直角坐标系xOy 中,直线28y x =−+与抛物线2y x bx c =−++交于A ,B 两点,点B 在x 轴上,点A 在y 轴上. (1)求抛物线的函数表达式;(2)点C 是直线AB 上方抛物线上一点,过点C 分别作x 轴,y 轴的平行线,交直线AB 于点D ,E .当38DE AB =时,求点C 的坐标.【分析】(1)根据一次函数解析式求出A ,B 两点坐标,再将A ,B 两点坐标代入二次函数解析式即可解决问题.(2)根据AOB ECD ∆∆∽得到CD 与OB 的关系,建立方程即可解决问题. 【解答】解:(1)令0x =得,8y =, 所以点A 的坐标为(0,8); 令0y =得,4x =, 所以点B 的坐标为(4,0);将A ,B 两点坐标代入二次函数解析式得,81640c b c =⎧⎨−++=⎩,解得28b c =⎧⎨=⎩,所以抛物线的函数表达式为228y x x =−++. (2)因为//CD x 轴,//CE y 轴, 所以AOB ECD ∆∆∽, 则CD DEOB AB=. 因为38DE AB =,4OB =, 所以32CD =. 令点C 坐标为2(,28)m m m −++, 则点D 坐标为21(2m m −,228)m m −++所以2211()222CD m m m m m =−−=−+,则213222m m −+=,解得1m =或3.当1m =时,2289m m −++=; 当3m =时,2285m m −++=; 所以点C 的坐标为(1,9)或(3,5).【点评】本题考查待定系数法求二次函数解析式及二次函数图象上点的坐标特征,熟知待定系数法及二次函数的图象和性质是解题的关键.14.(2024•南关区校级二模)已知二次函数2y x bx c =++的图象经过点(0,3)A −,(3,0)B .点P 在抛物线2y x bx c =++上,其横坐标为m .(1)求抛物线的解析式;(2)当23x −<<时,求y 的取值范围;(3)当抛物线2y x bx c =++上P 、A 两点之间部分的最大值与最小值的差为34时,求m 的值; (4)点M 在抛物线2y x bx c =++上,其横坐标为1m −.过点P 作PQ y ⊥轴于点Q ,过点M 作MN x ⊥轴于点N ,分别连结PM ,PN ,QM ,当PQM ∆与PNM ∆的面积相等时,直接写出m 的值. 【分析】(1)依据题意,将A 、B 两点代入解析式求出b ,c 即可得解;(2)依据题意,结合(1)所求解析式,再配方可得抛物线的最值,进而由23x −<<可以判断得解; (3)依据题意,分类讨论计算可以得解;(4)分别写出P 、Q 、M 、N 的坐标,PQM ∆与PNM ∆的面积相等,所以Q 到PM 的距离等于N 到PM 的距离,可得m 的值.【解答】解:(1)由题意,将(0,3)A −,(3,0)B 代入解析式2y x bx c =++得,3c =−,930b c ++=,2b ∴=−,3c =−,∴抛物线的解析式为223y x x =−−;(2)由题意,抛物线2223(1)4y x x x =−−=−−,∴抛物线223y x x =−−开口向上,当1x =时,y 有最小值为4−,当2x =−时,5y =;当3x =时,0y =, ∴当23x −<<时,45y −<…;(3)由题意得,2(,23)P m m m −−,(0,3)A −,①当0m <时,P 、A 两点之间部分的最大值为223m m −−,最小值为3−, 2323(3)4m m ∴−−−−=,解得:1m =−②当02m ……时,P 、A 两点之间部分的最大值为3−,最小值为223m m −−或4−, 显然最小值是4−时不合题意, ∴最小值为223m m −−, 233(23)4m m ∴−−−−=, 解得:32m =或12m =, 32m =时,P 、A 两点之间部分的最小值为4−,故舍去, ③当2m <时,P 、A 两点之间部分的最大值为223m m −−,最小值为4−, 2323(4)4m m ∴−−−−=,解得:1m =+,12+<,故舍去,综上,满足题意得m 的值为:1或12; (4)由题意得,2(1,4)M m m −−,(1,0)N m −,2(0,23)Q m m −−, 设PM y kx b =+,代入P 、M 两点, 2223(1)4mk b m m m k b m ⎧+=−−⎨−+=−⎩, 解得:1k =−,23b m m =−−,23PM y x m m =−+−−,PQM ∆与PNM ∆的面积相等,Q ∴到23PM y x m m =−+−−的距离与N 到23PM y x m m =−+−−的距离相等,Q 到23PM y x m m =−+−−的距离=,N 到23PMy x m m =−+−−的距离=, 2|||4|m m ∴−=−+,当2m <−时,24m m −=−,解得:m =,当20m −……时,24m m −=−,解得:m =,当02m <…时,24m m =−,解得:m =当2m <时,24m m =−,解得:m =综上,满足题意得m . 【点评】本题考查了二次函数,关键是注意分类讨论. 题型四.抛物线与x 轴的交点(共14小题)15.(2024•秦淮区校级模拟)已知函数2(2)2(y mx m x m =−−−为常数). (1)求证:不论m 为何值,该函数的图象与x 轴总有公共点.(2)不论m . (3)在22x −……的范围中,y 的最大值是2,直接写出m 的值. 【分析】(1)分两种情况讨论,利用判别式证明即可;(2)当1x =时,0y =,当0x =时,2y =−,即可得到定点坐标;(3)利用抛物线过两个定点,得到函数y 随x 增大而增大,代入解析式求出m 值即可. 【解答】解:(1)①当0m =时,函数解析式为22y x =−,此一次函数与x 轴有交点; ②当0m ≠时,函数解析式为2(2)2y mx m x =−−−,令0y =,则有2(2)20mx m x −−−=,△2222(2)4(2)44844(2)0m m m m m m m m =−−⨯−=−++=++=+…. ∴不论m 为何值,该函数的图象与x 轴总有公共点.(2)222(2)222()22y mx m x mx mx x m x x x =−−−=−+−=−+−, 当1x =时,0y =, 当0x =时,2y =−,∴不论m 为何值,该函数的图象经过的定点坐标是(1,0).(0,2)−故答案为:(1,0),(0,2)−,(3)若0m =,函数22y x =−,y 随x 增大而增大,当2x =时,2y =,与题干条件符; 当0m ≠时,函数2(2)2y mx m x =−−−是二次函数,①当0m >时,抛物线过(1,0),(0,2)−两点,当22x −……的范围中时,y 随x 的增大而增大, ∴当2x =时,2y =,即242(2)2m m =−−−,解得0m =(舍去).②当0m <时,抛物线过(1,0),(0,2)−两点,其增减性依旧是y 随x 的增大而增大和①相同.综上分析,0m =.【点评】本题考查了二次函数的图象与性质,熟练掌握二次函数的性质是解答本题的关键.16.(2024•柳州模拟)如图,在平面直角坐标系中,二次函数2y x bx c =++的图象与x 轴交于A ,B 两点,B 点的坐标为(3,0),与y 轴交于点(0,3)C −,点D 为抛物线的顶点. (1)求这个二次函数的解析式; (2)求ABD ∆的面积【分析】(1)利用待定系数法求解即可; (2)先求出点A 和点D 坐标,再根据||2D ABD AB y S ∆⋅=解析求解即可.【解答】解:(1)将(3,0)B ,(0,3)C −代入2y x bx c =++得0933b c c =++⎧⎨=−⎩,解得23b c =−⎧⎨=−⎩,∴二次函数的解析式为:223y x x =−−;(2)将223y x x =−−配方得顶点式2(1)4y x =−−, ∴顶点(1,4)D −,在223y x x =−−中,当2230y x x =−−=时, 解得1x =−或3x =, (1,0)A ∴−,4AB ∴=, ∴||44822D ABD AB y S ∆⋅⨯===. 【点评】本题主要考查了抛物线与x 轴的交点,二次函数的性质,二次函数图象上点的坐标特征,待定系数法求二次函数解析式,熟练掌握二次函数的性质是解答本题的关键.17.(2024•安阳模拟)如图,在平面直角坐标系xOy 中,抛物线2y ax bx c =++与抛物线21y x x =−+−的形状相同,且与x 轴交于点(1,0)−和(4,0).直线2y kx =+分别与x 轴、y 轴交于点A ,B ,交抛物线2y ax bx c =++于点C ,D (点C 在点D 的左侧). (1)求抛物线的解析式;(2)点P 是直线2y kx =+上方抛物线上的任意一点,当2k =时,求PCD ∆面积的最大值; (3)若抛物线2y ax bx c =++与线段AB 有公共点,结合函数图象请直接写出k 的取值范围.【分析】(1)根据题意直接求出二次函数解析式即可;(2)求出直线与抛物线的交点C ,D 坐标,过点P 作y 轴的平行线交CD 于点H ,交x 轴于点G ,设点P坐标为(m ,234)(12)m m m −++−<<,则点(,22)H m m +,求出PH ,由三角形的面积公式求出关于m 的函数解析式,再根据函数的性质求最值; (3)分0k >和0k <两种情况讨论即可.【解答】解:(1)抛物线2y ax bx c =++与抛物线21y x x =−+−的形状相同,1a ∴=−,抛物线2y ax bx c =++与x 轴交于点(1,0)−和(4,0), ∴抛物线的解析式为2(1)(4)34y x x x x =−+−=−++;(2)当2k =时,联立方程组22234y x y x x =+⎧⎨=−++⎩,解得10x y =−⎧⎨=⎩或26x y =⎧⎨=⎩, (1,0)C ∴−,(2,6)D ,过点P 作y 轴的平行线交CD 于点H ,交x 轴于点G ,如图,设点P 坐标为(m ,234)(12)m m m −++−<<, ∴点(,22)H m m +,2234(22)2PH m m m m m ∴=−++−+=−++,221331273(2)()22228PCD S PH m m m ∆∴=⨯=−++=−−+, 302−<,12m −<<, ∴当12m =时,S 有最大值,最大值为278. PCD ∴∆面积的最大值为278; (3)令0x =,则2y =, ∴点B 坐标为(0,2),令0y =,则20kx +=, 解得2x k=−,∴点A 坐标为2(k−,0), 若抛物线2y ax bx c =++与线段AB 有公共点, 当0k >时,如图所示,则21k−<−, 解得02k <<; 当0k <时,如图所示:则24k−>, 解得102k −<<;综上所述,k 的取值范围为02k <<或102k −<<.【点评】本题考查抛物线与x 轴的交点,待定系数法求函数解析式,二次函数图象上点的坐标特征,一次函数图象上点的坐标特征,二次函数的最值等知识,关键是对这些知识的掌握和运用.18.(2024•西湖区校级模拟)已知21()y ax a b x b =+++和22()(y bx a b x a a b =+++≠且0)ab ≠是同一直角坐标系中的两条抛物线.(1)当1a =,3b =−时,求抛物线21()y ax a b x b =+++的顶点坐标; (2)判断这两条抛物线与x 轴的交点的总个数,并说明理由;(3)如果对于抛物线21()y ax a b x b =+++上的任意一点(,)P m n 均有22n a b +….当20y …时,求自变量x 的取值范围.【分析】(1)把a ,b 的值代入配方找顶点即可解题;(2)分别令10y =,20y =,解方程求出方程的解,然后根据条件确定交点的个数即可解题;(3)现根据题意得到0a <,且24()224ab a b a b a−+=+,然后得到30b a =−>,借助图象求出不等式的解集即可.【解答】解:(1)当1a =,3b =−时,2221()23(1)4y ax a b x b x x x =+++=−−=−−, ∴顶点坐标为(1,4)−;(2)3个,理由为:令10y =,则2()0ax a b x b +++=, 即()(1)0ax b x ++=, 解得:1bx a=−,21x =−, 令20y =,则2()0bx a b x a +++=, 即()(1)0bx a x ++=, 解得:1ax b=−,21x =−, 又a b ≠且0ab ≠,∴两条抛物线与x 轴的交点总个数为3个;(3)抛物线21()y ax a b x b =+++上的任意一点(,)P m n 均有22n a b +…,0a ∴<,且24()224ab a b a b a−+=+,整理得:30b a =−>,∴22()y bx a b x a =+++的开口向上,且抛物线与x 轴交点的横坐标为113x =,21x =−, 如图所示,借助图象可知当13x …或1x −…时,20y ….【点评】本题考查二次函数的图象和性质,掌握配方法求顶点坐标,二次函数和一元二次方程的关系是解题的关键.19.(2024•三元区一模)抛物线23y ax bx =++与x 轴相交于点(1,0)A ,(3,0)B ,与y 轴正半轴相交于点C . (1)求抛物线的解析式;(2)点1(M x ,1)y ,2(N x ,2)y 是抛物线上不同的两点. ①当1x ,2x 满足什么数量关系时,12y y =; ②若12122()x x x x +=−,求12y y −的最小值. 【分析】(1)用待定系数法即可求解;(2)①若12y y =,则M 、N 关于抛物线对称轴对称,即可求解;②22121122121212(43)(43)()()4()y y x x x x x x x x x x −=−+−−+=+−+−,而12122()x x x x +=−,得到12y y −的函数表达式,进而求解.【解答】解:(1)设抛物线的表达式为:12()()y a x x x x =−−, 即2(1)(3)(43)y a x x a x x =−−=−+, 即33a =, 解得:1a =,故抛物线的表达式为:243y x x =−+;(2)如图,。
人教版九年级数学中考二次函数的图像与性质专项练习及参考答案

人教版九年级数学中考二次函数的图像与性质专项练习1.(2018·德州中考)给出下列函数:①y=-3x +2;②y=3x;③y=2x 2;④y=3x ,上述函数中符合条件“当x>1时,函数值y 随自变量x 增大而增大”的是( )A .①③B .③④C .②④D .②③2.(2018·威海中考)抛物线y =ax 2+bx +c(a≠0)图象如图所示,下列结论错误的是( )A .abc<0B .a +c<bC .b 2+8a>4ac D .2a +b>03.(2018·潍坊中考)已知二次函数y =-(x -h)2(h 为常数),当自变量x 的值满足2≤x≤5时,与其对应的函数值y 的最大值为-1,则h 的值为( )A .3或6B .1或6C .1或3D .4或64.(2018·烟台中考)如图,二次函数y =ax 2+bx +c 的图象与x 轴交于点A(-1,0),B(3,0).下列结论:①2a-b =0;②(a+c)2<b 2;③当-1<x <3时,y <0;④当a =1时,将抛物线先向上平移2个单位,再向右平移1个单位,得到抛物线y =(x -2)2-2.其中正确的是( )A .①③B .②③C .②④D .③④5.(2018·天津中考)已知抛物线y =ax 2+bx +c(a ,b ,c 为常数,a≠0)经过点(-1,0 (0,3),其对称轴在y 轴右侧.有下列结论:①抛物线经过点(1,0);②方程ax 2+bx +c =2有两个不相等的实数根;③-3<a +b <3.其中,正确结论的个数为( )A .0B .1C .2D .36.(2018·广州中考)已知二次函数y =x 2,当x >0时,y 随x 的增大而____________(填“增大”或“减小”).7.(2018·自贡中考)若函数y =x 2+2x -m 的图象与x 轴有且只有一个交点,则m 的值为____________.8.(2018·淄博中考)已知抛物线y =x 2+2x -3与x 轴交于A ,B 两点(点A 在点B 的左侧),将这条抛物线向右平移m(m>0)个单位,平移后的抛物线与x 轴交于C ,D 两点(点C 在点D 的左侧).若B ,C 是线段AD 的三等分点,则m 的值为______________.9.(2018·宁波中考)已知抛物线y =-12x 2+bx +c 经过点(1,0 (0,32). (1)求该抛物线的函数表达式;(2)将抛物线y =-12x 2+bx +c 平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.参考答案1.B 2.D 3.B 4.D 5.C6.增大 7.-1 8.2或89.解:(1)把(1,0),(0,32)代入抛物线表达式得 ⎩⎪⎨⎪⎧-12+b +c =0,c =32,解得⎩⎪⎨⎪⎧b =-1,c =32, 则抛物线的函数表达式为y =-12x 2-x +32. (2)y =-12x 2-x +32=-12(x +1)2+2, 将抛物线向右平移1个单位,向下平移2个单位,表达式变为y =-12x 2.。
人教版九年级上册数学《二次函数y=ax2 bx c的图像与性质》靶向专题提升练习(解析版)

人教版九年级上册数学《二次函数y=ax2+bx+c的图像与性质》靶向专题提升练习一.选择题.1. 二次函数y=x2+2x-3的开口方向、顶点坐标分别是( )A.开口向上,顶点坐标为(-1,-4)B.开口向下,顶点坐标为(1,4)C.开口向上,顶点坐标为(1,4)D.开口向下,顶点坐标为(-1,-4)2. 若抛物线y=x2-2x+3不动,将平面直角坐标系xOy先沿水平方向向右平移一个单位,再沿垂直方向向上平移三个单位,则原抛物线图象的解析式应变为( )A.y=(x-2)2+3B.y=(x-2)2+5C.y=x2-1D.y=x2+43. 在同一平面直角坐标系中,函数y=ax+b与y=ax2-bx的图象可能是( )4. 抛物线y=x2+2x+3的对称轴是( )A.直线x=1B.直线x=-1C.直线x=-2D.直线x=25. 已知二次函数y=x2+(m-1)x+1,当x>1时,y随x的增大而增大,则m的取值范围是( )A.m=-1B.m=3C.m≤-1D.m≥-16. 如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc=0;②a+b+c>0;③a>b;④4ac-b2<0,其中正确的结论有 ( )A.1个B.2个C.3个D.4个二.填空题.1. 二次函数y=x2-2x+3的图象的顶点坐标是________.2. 二次函数y=x2-2x+3的图象的顶点坐标是________.3. 若二次函数y=2x2-4x-1的图象与x轴交于A(x1,0),B(x2,0)两点,则1x1+1x2的值为________.4. 在平面直角坐标系中,把一条抛物线先向上平移3个单位长度,然后绕原点旋转180°得到抛物线y=x2+5x+6,则原抛物线的表达式是________.5. 如图,在平面直角坐标系中,菱形OABC的顶点A在x轴正半轴上,顶点C的坐标为(4,3),D是抛物线y=-x2+6x上一点,且在x轴上方,则△BCD面积的最大值为________.6. 如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(-3,0),对称轴为直线x=-1,给出以下结论:①abc<0;②b2-4ac>0;③4b+c<0;④若B(−52,y1),C(−12,y2)为函数图象上的两点,则y1>y2;⑤当-3≤x≤1时,y≥0.其中正确的结论是(填写代表正确结论的序号)________.三.解答题.1. 已知二次函数y=x2-4x+3,求解下列问题:(1)开口方向.(2)顶点坐标,对称轴.(3)最值.(4)抛物线和x轴、y轴的交点坐标.(5)作出函数图象.(6)当x取何值时,y>0,y<0?(7)当x取何值时,y随x的增大而增大,y随x的增大而减小?(8)怎样由y=x2-4x+3的图象得到y=x2的图象?2. 已知点A(-2,n)在抛物线y=x2+bx+c上.(1)若b=1,c=3,求n的值.(2)若此抛物线经过点B(4,n),且二次函数y=x2+bx+c的最小值是-4,请画出点P(x-1,x2+bx+c)的纵坐标随横坐标变化的图象,并说明理由.3. 如图,在平面直角坐标系中,正方形OABC的边长为4,顶点A,C分别在x轴、y轴的正半轴,抛物线y=-1x2+bx+c经过B,C两点,点D为抛物线的顶点,连接2AC,BD,CD.(1)求此抛物线的表达式.(2)求此抛物线顶点D的坐标和四边形ABDC的面积.4. 如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值.(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值..人教版九年级上册数学《二次函数y=ax2+bx+c的图像与性质》靶向专题提升练习(解析版)一.选择题.1. 二次函数y=x2+2x-3的开口方向、顶点坐标分别是( )A.开口向上,顶点坐标为(-1,-4)B.开口向下,顶点坐标为(1,4)C.开口向上,顶点坐标为(1,4)D.开口向下,顶点坐标为(-1,-4)【解析】选A.∵二次函数y=x2+2x-3的二次项系数为a=1>0,∴函数图象开口向上,∵y=x2+2x-3=(x+1)2-4,∴顶点坐标为(-1,-4).2. 若抛物线y=x2-2x+3不动,将平面直角坐标系xOy先沿水平方向向右平移一个单位,再沿垂直方向向上平移三个单位,则原抛物线图象的解析式应变为( )A.y=(x-2)2+3B.y=(x-2)2+5C.y=x2-1D.y=x2+4【解析】选C.将平面直角坐标系xOy先沿水平方向向右平移一个单位,再沿垂直方向向上平移三个单位,相当于把抛物线向左平移一个单位,再向下平移3个单位,∵y=(x-1)2+2,∴原抛物线图象的解析式应变为y=(x-1+1)2+2-3=x2-1. 3. 在同一平面直角坐标系中,函数y=ax+b与y=ax2-bx的图象可能是( )【解析】选C.A.对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物>0,应在y轴的右侧,故不合题意,图形错误;B.对线y=ax2-bx来说,对称轴x=b2a于直线y=ax+b来说,由图象可以判断,a<0,b>0;而对于抛物线y=ax2-bx来说,对称轴x=b<0,应在y轴的左侧,故不合题意,图形错误;C.对于直线y=ax+b来说,2a由图象可以判断,a>0,b>0;而对于抛物线y=ax2-bx来说,图象开口向上,对称轴x=b>0,应在y轴的右侧,故符合题意;D.对于直线y=ax+b来说,由图象可以判2a断,a>0,b>0;而对于抛物线y=ax2-bx来说,图象开口向下,a<0,故不合题意,图形错误.4. 抛物线y=x2+2x+3的对称轴是( )A.直线x=1B.直线x=-1C.直线x=-2D.直线x=2【解析】选B.∵y=x2+2x+3=(x+1)2+2,∴抛物线的对称轴为直线x=-1.5. 已知二次函数y=x2+(m-1)x+1,当x>1时,y随x的增大而增大,则m的取值范围是( )A.m=-1B.m=3C.m≤-1D.m≥-1【解析】选D.抛物线的对称轴为直线x=-m−1,2∵当x>1时,y的值随x值的增大而增大,∴-m−1≤1,解得m≥-1.26. 如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc=0;②a+b+c>0;③a>b;④4ac-b2<0,其中正确的结论有 ( )A.1个B.2个C.3个D.4个【解析】选C.∵二次函数y=ax2+bx+c的图象经过原点,∴c=0,∴abc=0,∴①正确;∵x=1时,y<0,∴a+b+c<0,∴②不正确;∵抛物线开口向下,∴a<0,∵抛物线的对称轴是x=-32,∴-b2a =-32,b<0,∴b=3a,又∵a<0,b<0,∴a>b,∴③正确;∵二次函数y=ax 2+bx+c 的图象与x 轴有两个交点, ∴Δ>0,∴b 2-4ac>0,4ac-b 2<0,∴④正确. 综上,可得正确结论有3个:①③④. 二.填空题.1. 二次函数y=x 2-2x+3的图象的顶点坐标是________.【解析】因为y=x 2-2x+3=x 2-2x+1+2=(x-1)2+2,所以顶点为(1,2). 答案:(1,2)2. 二次函数y=x 2-2x+3的图象的顶点坐标是________.【解析】因为y=x 2-2x+3=x 2-2x+1+2=(x-1)2+2,所以顶点为(1,2). 答案:(1,2)3. 若二次函数y=2x 2-4x-1的图象与x 轴交于A(x 1,0),B(x 2,0)两点,则1x 1+1x 2的值为________.【解析】设y=0,则2x 2-4x-1=0,∴一元二次方程的解分别是点A 和点B 的横坐标,即x 1,x 2, ∴x 1+x 2=-−42=2,x 1·x 2=-12, ∴1x 1+1x 2=x 1+x 2x 1·x 2=2−12=-4.答案:-44. 在平面直角坐标系中,把一条抛物线先向上平移3个单位长度,然后绕原点旋转180°得到抛物线y=x 2+5x+6,则原抛物线的表达式是________.5. 如图,在平面直角坐标系中,菱形OABC 的顶点A 在x 轴正半轴上,顶点C 的坐标为(4,3),D 是抛物线y=-x 2+6x 上一点,且在x 轴上方,则△BCD 面积的最大值为________.6. 如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(-3,0),对称轴为直线x=-1,给出以下结论:①abc<0;②b2-4ac>0;③4b+c<0;④若B(−52,y1),C(−12,y2)为函数图象上的两点,则y1>y2;⑤当-3≤x≤1时,y≥0.其中正确的结论是(填写代表正确结论的序号)________.【解析】由题干中图象可知,a<0,b<0,c>0,∴abc>0,故①错误.∵抛物线与x轴有两个交点,∴b2-4ac>0,故②正确.∵抛物线对称轴为x=-1,与x轴交于A(-3,0), ∴抛物线与x轴的另一个交点为(1,0),∴a+b+c=0,-b2a=-1,∴b=2a,c=-3a,∴4b+c=8a-3a=5a<0,故③正确.∵B(−52,y1),C(−12,y2)为函数图象上的两点,又点C离对称轴近,∴y1<y2,故④错误,由题干中图象可知,-3≤x≤1时,y≥0,故⑤正确. ∴②③⑤正确.答案:②③⑤三.解答题.1. 已知二次函数y=x2-4x+3,求解下列问题:(1)开口方向.(2)顶点坐标,对称轴.(3)最值.(4)抛物线和x轴、y轴的交点坐标.(5)作出函数图象.(6)当x取何值时,y>0,y<0?(7)当x取何值时,y随x的增大而增大,y随x的增大而减小?(8)怎样由y=x2-4x+3的图象得到y=x2的图象?【解析】(1)∵a=1>0,∴开口向上.(2)y=x2-4x+3=x2-4x+4-1=(x-2)2-1,∴顶点坐标为(2,-1),对称轴为x=2.(3)∵抛物线开口向上,函数有最小值,其值为-1.(4)若x=0,则y=3,∴抛物线与y轴交点为(0,3),若y=0,则x2-4x+3=0,∴x1=1,x2=3,∴抛物线与x轴的交点为(1,0)和(3,0).(5)图象如下:(6)由图象知,当x<1或x>3时y>0,当1<x<3时y<0.(7)当x>2时,y随x的增大而增大,当x<2时,y随x的增大而减小.(8)将抛物线y=x2-4x+3的图象向左平移2个单位长度,再向上平移1个单位长度,得到y=x2的图象.2. 已知点A(-2,n)在抛物线y=x2+bx+c上.(1)若b=1,c=3,求n的值.(2)若此抛物线经过点B(4,n),且二次函数y=x2+bx+c的最小值是-4,请画出点P(x-1,x2+bx+c)的纵坐标随横坐标变化的图象,并说明理由.【解析】(1)∵b=1,c=3,A(-2,n)在抛物线y=x2+bx+c上.∴n=4+(-2)×1+3=5.(2)∵此抛物线经过点A(-2,n),B(4,n),=1,∴抛物线的对称轴x=−2+42∵二次函数y=x2+bx+c的最小值是-4,∴抛物线的表达式为y=(x-1)2-4,令x-1=x′,∴点P(x-1,x2+bx+c)的纵坐标随横坐标变化的关系式为y=x′2-4, 点P(x-1,x2+bx+c)的纵坐标随横坐标变化的图象如图:3. 如图,在平面直角坐标系中,正方形OABC的边长为4,顶点A,C分别在x轴、x2+bx+c经过B,C两点,点D为抛物线的顶点,连接y轴的正半轴,抛物线y=-12AC,BD,CD.(1)求此抛物线的表达式.(2)求此抛物线顶点D的坐标和四边形ABDC的面积.【解析】(1)由已知得:C(0,4),B(4,4),把B 与C 坐标代入y=-12x 2+bx+c 得:{4b +c =12,c =4,解得:b=2,c=4,则表达式为y=-12x 2+2x+4.(2)∵y=-12x 2+2x+4=-12(x-2)2+6,∴抛物线顶点坐标为D(2,6),则S 四边形ABDC =S △ABC +S △BCD=12×4×4+12×4×2=8+4=12.4. 如图,二次函数y=ax 2+bx 的图象经过点A(2,4)与B(6,0).(1)求a,b 的值.(2)点C 是该二次函数图象上A,B 两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB 的面积S 关于点C 的横坐标x 的函数表达式,并求S 的最大值.【解析】(1)将A(2,4)与B(6,0)代入y=ax 2+bx,得{4a +2b =4,36a +6b =0,解得{a =−12,b =3.(2)如图,过A 作x 轴的垂线,垂足为D(2,0),连接CD,过C 作CE ⊥AD,CF ⊥x 轴,垂足分别为E,F,S △OAD =12OD ·AD=12×2×4=4;S△ACD =12AD·CE=12×4×(x-2)=2x-4;S△BCD =12BD·CF=12×4×(−12x2+3x)=-x2+6x,则S=S△OAD +S△ACD+S△BCD=4+2x-4-x2+6x=-x2+8x,∴S关于x的函数表达式为S=-x2+8x(2<x<6),∵S=-x2+8x=-(x-4)2+16,∴当x=4时,四边形OACB的面积S有最大值,最大值为16..。
中考数学真题《二次函数图象性质与应用》专项测试卷(附答案)

中考数学真题《二次函数图象性质与应用》专项测试卷(附答案)学校:___________班级:___________姓名:___________考号:___________(55题)一 、单选题1.(2023·甘肃兰州·统考中考真题)已知二次函数()2323y x =--- 下列说法正确的是( ) A .对称轴为2x =-B .顶点坐标为()2,3C .函数的最大值是-3D .函数的最小值是-32.(2023·广西·统考中考真题)将抛物线2y x 向右平移3个单位 再向上平移4个单位 得到的抛物线是( )A .2(3)4y x =-+B .2(3)4y x =++C .2(3)4y x =+-D .2(3)4y x =--3.(2023·湖南·统考中考真题)如图所示 直线l 为二次函数2(0)y ax bx c a =++≠的图像的对称轴,则下列说法正确的是( )A .b 恒大于0B .a b 同号C .a b 异号D .以上说法都不对4.(2023·辽宁大连·统考中考真题)已知抛物线221y x x =--,则当03x ≤≤时 函数的最大值为( )A .2-B .1-C .0D .25.(2023·四川成都·统考中考真题)如图,二次函数26y ax x =+-的图象与x 轴交于(3,0)A - B 两点 下列说法正确的是( )A .抛物线的对称轴为直线1x =B .抛物线的顶点坐标为1,62⎛⎫-- ⎪⎝⎭C .A B 两点之间的距离为5D .当1x <-时 y 的值随x 值的增大而增大6.(2023·河南·统考中考真题)二次函数2y ax bx =+的图象如图所示,则一次函数y x b =+的图象一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限7.(2023·内蒙古通辽·统考中考真题)如图,抛物线()20y ax bx c a =++≠与x 轴交于点()()1020x ,,, 其中101x << 下列四个结论:①0abc < ①0a b c ++> ①230b c +< ①不等式22cax bx c x c ++<-+的解集为02x <<.其中正确结论的个数是( )A .1B .2C .3D .48.(2023·四川自贡·统考中考真题)经过23,()41,),(A b m B b c m -+-两点的抛物线22122y x bx b c =-+-+(x为自变量)与x 轴有交点,则线段AB 长为( ) A .10B .12C .13D .159.(2023·四川达州·统考中考真题)如图,拋物线2y ax bx c =++(,,a b c 为常数)关于直线1x =对称.下列五个结论:①0abc > ①20a b += ①420a b c ++> ①2am bm a b +>+ ①30a c +>.其中正确的有( )A .4个B .3个C .2个D .1个10.(2023·四川泸州·统考中考真题)已知二次函数223y ax ax =-+(其中x 是自变量) 当03x <<时对应的函数值y 均为正数,则a 的取值范围为( ) A .01a <<B .1a <-或3a >C .30a -<<或0<<3aD .10a -≤<或0<<3a11.(2023·四川凉山·统考中考真题)已知抛物线()20y ax bx c a =++≠的部分图象如图所示,则下列结论中正确的是( )A .<0abcB .420a b c -+<C .30a c +=D .20am bm a ++≤(m 为实数)12.(2023·四川南充·统考中考真题)抛物线254y x kx k =-++-与x 轴的一个交点为(,0)A m 若21m -≤≤,则实数k 的取值范围是( ) A .2114k -≤≤ B .k ≤214-或1k ≥ C .5k -≤≤98D .5k ≤-或k ≥9813.(2023·安徽·统考中考真题)已知反比例函数()0ky k x=≠在第一象限内的图象与一次函数y x b =-+的图象如图所示,则函数21y x bx k =-+-的图象可能为( )A .B .C .D .14.(2023·四川广安·统考中考真题)如图所示 二次函数2(y ax bx c a b c =++、、为常数 0)a ≠的图象与x 轴交于点()()3,0,1,0A B -.有下列结论:①0abc > ①若点()12,y -和()20.5,y -均在抛物线上,则12y y < ①50a b c -+= ①40a c +>.其中正确的有( )A .1个B .2个C .3个D .4个15.(2023·四川遂宁·统考中考真题)抛物线()20y ax bx c a =++≠的图象如图所示 对称轴为直线2x =-.下列说法:①0abc < ①30c a -> ①()242a ab at at b -+≥(t 为全体实数) ①若图象上存在点()11,A x y 和点()22,B x y 当123m x x m <<<+时 满足12y y =,则m 的取值范围为52m -<<-.其中正确的个数有( )A .1个B .2个C .3个D .4个16.(2023·四川眉山·统考中考真题)如图,二次函数()20y ax bx c a =++≠的图象与x 轴的一个交点坐标为()1,0 对称轴为直线=1x - 下列四个结论:①<0abc ①420a b c -+< ①30a c += ①当31x -<<时20ax bx c ++< 其中正确结论的个数为( )A .1个B .2个C .3个D .4个17.(2023·浙江宁波·统考中考真题)已知二次函数2(31)3(0)y ax a x a =-++≠ 下列说法正确的是( ) A .点(1,2)在该函数的图象上 B .当1a =且13x -≤≤时 08y ≤≤ C .该函数的图象与x 轴一定有交点D .当0a >时 该函数图象的对称轴一定在直线32x =的左侧 18.(2023·新疆·统考中考真题)如图,在平面直角坐标系中 直线1y mx n =+与抛物线223y ax bx =+-相交于点A B .结合图象 判断下列结论:①当23x -<<时 12y y > ①3x =是方程230ax bx +-=的一个解①若()11,t - ()24,t 是抛物线上的两点,则12t t < ①对于抛物线 223y ax bx =+- 当23x -<<时 2y 的取值范围是205y <<.其中正确结论的个数是( )A .4个B .3个C .2个D .1个19.(2023·山东东营·统考中考真题)如图,抛物线()20y ax bx c a =++≠与x 轴交于点A B 与y 轴交于点C 对称轴为直线=1x - 若点A 的坐标为()4,0-,则下列结论正确的是( )A .20a b +=B .420a b c -+>C .2x =是关于x 的一元二次方程()200ax bx c a ++=≠的一个根D .点()11,x y ()22,x y 在抛物线上 当121x x >>-时120y y <<20.(2023·四川乐山·统考中考真题)如图,抛物线2y ax bx c =++经过点(1,0)(,0)A B m -、 且12m << 有下列结论:①0b < ①0a b +> ①0a c <<- ①若点1225,,,33C y D y ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭在抛物线上,则12y y >.其中 正确的结论有( )A .4个B .3个C .2个D .1个21.(2023·湖南岳阳·统考中考真题)若一个点的坐标满足(),2k k 我们将这样的点定义为“倍值点”.若关于x 的二次函数()()212y t x t x s =++++(,s t 为常数 1t ≠-)总有两个不同的倍值点,则s 的取值范围是( ) A .1s <- B .0s < C .01s << D .10s -<<22.(2023·山东烟台·统考中考真题)如图,抛物线2y ax bx c =++的顶点A 的坐标为1,2m ⎛⎫- ⎪⎝⎭与x 轴的一个交点位于0合和1之间,则以下结论:①0abc > ①20b c +> ①若图象经过点()()123,,3,y y -,则12y y > ①若关于x 的一元二次方程230ax bx c ++-=无实数根,则3m <.其中正确结论的个数是( )A .1B .2C .3D .423.(2023·湖南·统考中考真题)已知0m n >> 若关于x 的方程2230x x m +--=的解为()1212,x x x x <.关于x 的方程2230x x n +--=的解为3434,()x x x x <.则下列结论正确的是( ) A .3124x x x x <<<B .1342x x x x <<<C .1234x x x x <<<D .3412x x x x <<<24.(2023·湖北随州·统考中考真题)如图,已知开口向下的抛物线2y ax bx c =++与x 轴交于点(60),对称轴为直线2x =.则下列结论正确的有( ) ①0abc < ①0a b c -+>①方程20cx bx a ++=的两个根为1211,26x x ==-①抛物线上有两点()11,P x y 和()22,Q x y 若122x x <<且124x x +>,则12y y <.A .1个B .2个C .3个D .4个25.(2023·浙江杭州·统考中考真题)设二次函数()()(0,,y a x m x m k a m k =--->是实数),则( ) A .当2k =时 函数y 的最小值为a - B .当2k =时 函数y 的最小值为2a - C .当4k =时 函数y 的最小值为a - D .当4k =时 函数y 的最小值为2a -26.(2023·湖南·统考中考真题)已知()()111222,,,P x y P x y 是抛物线243y ax ax =++(a 是常数 )0a ≠上的点 现有以下四个结论:①该抛物线的对称轴是直线2x =- ①点()0,3在抛物线上 ①若122x x >>-,则12y y > ①若12y y =,则122x x +=-其中 正确结论的个数为( )A .1个B .2个C .3个D .4个27.(2023·山东聊城·统考中考真题)已知二次函数()20y ax bx c a =++≠的部分图象如图所示 图象经过点()0,2 其对称轴为直线=1x -.下列结论:①30a c +> ①若点()14,y - ()23,y 均在二次函数图象上,则12y y > ①关于x 的一元二次方程21ax bx c ++=-有两个相等的实数根 ①满足22ax bx c ++>的x 的取值范围为20x -<<.其中正确结论的个数为( ).A .1个B .2个C .3个D .4个28.(2023·山东·统考中考真题)若一个点的纵坐标是横坐标的3倍,则称这个点为“三倍点” 如:(1,3),(2,6),(0,0)A B C --等都是三倍点” 在31x -<<的范围内 若二次函数2y x x c =--+的图象上至少存在一个“三倍点”,则c 的取值范围是( ) A .114c -≤< B .43c -≤<-C .154c -<<D .45c -≤<29.(2023·广东·统考中考真题)如图,抛物线2y ax c =+经过正方形OABC 的三个顶点A B C 点B 在y 轴上,则ac 的值为( )A .1-B .2-C .3-D .4-30.(2023·湖北·统考中考真题)拋物线2(0)y ax bx c a =++<与x 轴相交于点()()3010A B -,,,.下列结论: ①0abc < ①240b ac -> ①320b c += ①若点()()122P m y Q m y -,,,在抛物线上 且12y y <,则1m ≤-.其中正确的结论有( ) A .1个B .2个C .3个D .4个31.(2023·黑龙江齐齐哈尔·统考中考真题)如图,二次函数()20y ax bx c a =++≠图像的一部分与x 轴的一个交点坐标为()3,0 对称轴为直线1x = 结合图像给出下列结论: ①0abc > ①2b a = ①30a c +=①关于x 的一元二次方程220(0)ax bx c k a +++=≠有两个不相等的实数根①若点()1,m y ()22,y m -+均在该二次函数图像上,则12y y =.其中正确结论的个数是( )A .4B .3C .2D .132.(2023·湖北鄂州·统考中考真题)如图,已知抛物线()20y ax bx c a =++≠的对称轴是直线1x = 且过点()1,0- 顶点在第一象限 其部分图象如图所示 给出以下结论:①0ab < ①420a b c ++> ①30a c +>①若()11,A x y ()22,B x y (其中12x x <)是抛物线上的两点 且122x x +>,则12y y > 其中正确的选项是( )A .①①①B .①①①C .①①①D .①①①33.(2023·山东枣庄·统考中考真题)二次函数2(0)y ax bx c a =++≠的图象如图所示 对称轴是直线1x = 下列结论:①0abc < ①方程20ax bx c ++=(0a ≠)必有一个根大于2且小于3 ①若()1230,,,2y y ⎛⎫⎪⎝⎭是抛物线上的两点 那么12y y < ①1120a c +> ①对于任意实数m 都有()m am b a b +≥+ 其中正确结论的个数是( )A .5B .4C .3D .234.(2023·湖北十堰·统考中考真题)已知点()11,A x y 在直线319y x =+上 点()()2233,,,B x y C x y 在抛物线241y x x =+-上 若123y y y ==且123x x x <<,则123x x x ++的取值范围是( )A .123129x x x -<++<-B .12386x x x -<++<-C .12390x x x -<++<D .12361x x x -<++<35.(2023·湖北黄冈·统考中考真题)已知二次函数2(0)y ax bx c a =++<的图象与x 轴的一个交点坐标为(1,0)-对称轴为直线1x = 下列论中:①0a b c -+= ①若点()()()1233,,2,,4,y y y -均在该二次函数图象上,则123y y y << ①若m 为任意实数,则24am bm c a ++≤- ①方程210ax bx c +++=的两实数根为12,x x 且12x x <,则121,3x x <->.正确结论的序号为( )A .①①①B .①①①C .①①①D .①①36.(2023·四川·统考中考真题)已知抛物线2y ax bx c =++(a b c 是常数且a<0)过()1,0-和()0m ,两点 且34m << 下列四个结论:0abc >① 30a c +>② ③若抛物线过点()1,4,则213a -<<- ④关于x 的方程()()13a x x m +-=有实数根,则其中正确的结论有( )A .1个B .2个C .3个D .4个二 多选题37.(2023·湖南·统考中考真题)如图,抛物线2y ax bx c =++与x 轴交于点()3,0,则下列结论中正确的是( )A .0a >B .0c >C .240b ac -<D .930a b c ++=三 填空题38.(2023·内蒙古·统考中考真题)已知二次函数223(0)y ax ax a =-++> 若点(,3)P m 在该函数的图象上 且0m ≠,则m 的值为________.39.(2023·山东滨州·统考中考真题)要修一个圆形喷水池 在池中心竖直安装一根水管 水管的顶端安一个喷水头 使喷出的抛物线形水柱在与池中心的水平距离为1m 处达到最高 高度为3m 水柱落地处离池中心3m 水管长度应为____________.40.(2023·湖南郴州·统考中考真题)抛物线26y x x c =-+与x 轴只有一个交点,则c =________.41.(2023·上海·统考中考真题)一个二次函数2y ax bx c =++的顶点在y 轴正半轴上 且其对称轴左侧的部分是上升的 那么这个二次函数的解析式可以是________.42.(2023·吉林长春·统考中考真题)2023年5月8日 C919商业首航完成——中国民商业运营国产大飞机正式起步.12时31分航班抵达北京首都机场 穿过隆重的“水门礼”(寓意“接风洗尘” 是国际民航中高级别的礼仪).如图① 在一次“水门礼”的预演中 两辆消防车面向飞机喷射水柱 喷射的两条水柱近似看作形状相同的地物线的一部分.如图① 当两辆消防车喷水口A B 的水平距离为80米时 两条水柱在物线的顶点H 处相遇 此时相遇点H 距地面20米 喷水口A B 距地面均为4米.若两辆消防车同时后退10米 两条水柱的形状及喷水口A ' B '到地面的距离均保持不变,则此时两条水柱相遇点H '距地面__________米.43.(2023·福建·统考中考真题)已知抛物线22(0)y ax ax b a =-+>经过()()1223,,1,A n y B n y +-两点 若,A B 分别位于抛物线对称轴的两侧 且12y y <,则n 的取值范围是___________.44.(2023·内蒙古赤峰·统考中考真题)如图,抛物线265y x x =-+与x 轴交于点A B 与y 轴交于点C 点()2,D m 在抛物线上 点E 在直线BC 上 若2DEB DCB ∠=∠,则点E 的坐标是____________.45.(2023·湖北武汉·统考中考真题)抛物线2y ax bx c =++(,,a b c 是常数 0c <)经过(1,1),(,0),(,0)m n 三点 且3n ≥.下列四个结论:①0b <①244ac b a -<①当3n =时 若点(2,)t 在该抛物线上,则1t >①若关于x 的一元二次方程2ax bx c x ++=有两个相等的实数根,则103m <≤. 其中正确的是________(填写序号).46.(2023·四川宜宾·统考中考真题)如图,抛物线2y ax bx c =++经过点()30A -,顶点为()1,M m - 且抛物线与y 轴的交点B 在()02-,和()03-,之间(不含端点),则下列结论:①当31x -≤≤时 0y ≤①当ABM 33 3a = ①当ABM 为直角三角形时 在AOB 内存在唯一点P 使得PA PO PB ++的值最小 最小值的平方为1893+其中正确的结论是___________.(填写所有正确结论的序号)四 解答题47.(2023·浙江宁波·统考中考真题)如图,已知二次函数2y x bx c =++图象经过点(1,2)A -和(0,5)B -.(1)求该二次函数的表达式及图象的顶点坐标.y≤-时请根据图象直接写出x的取值范围.(2)当248.(2023·浙江温州·统考中考真题)一次足球训练中小明从球门正前方8m的A处射门球射向球门的路线呈抛物线.当球飞行的水平距离为6m时球达到最高点此时球离地面3m.已知球门高OB为2.44m 现以O为原点建立如图所示直角坐标系.(1)求抛物线的函数表达式并通过计算判断球能否射进球门(忽略其他因素).(2)对本次训练进行分析若射门路线的形状最大高度均保持不变,则当时他应该带球向正后方移动多少米射门才能让足球经过点O正上方2.25m处?49.(2023·湖北武汉·统考中考真题)某课外科技活动小组研制了一种航模飞机.通过实验 收集了飞机相对于出发点的飞行水平距离x (单位:m )以 飞行高度y (单位:m )随飞行时间t (单位:s )变化的数据如下表. 飞行时间/s t 0 2 4 6 8 …飞行水平距离/m x 0 10 20 30 40 …飞行高度/m y 0 22 40 54 64 …探究发现:x 与t y 与t 之间的数量关系可以用我们已学过的函数来描述.直接写出x 关于t 的函数解析式和y 关于t 的函数解析式(不要求写出自变量的取值范围).问题解决:如图,活动小组在水平安全线上A 处设置一个高度可以变化的发射平台试飞该航模飞机.根据上面的探究发现解决下列问题.(1)若发射平台相对于安全线的高度为0m 求飞机落到安全线时飞行的水平距离(2)在安全线上设置回收区域,125m,5m ==MN AM MN .若飞机落到MN 内(不包括端点,M N ) 求发射平台相对于安全线的高度的变化范围.50.(2023·河北·统考中考真题)嘉嘉和淇淇在玩沙包游戏.某同学借此情境编制了一道数学题 请解答这道题.如图,在平面直角坐标系中 一个单位长度代表1m 长.嘉嘉在点(6,1)A 处将沙包(看成点)抛出 并运动路线为抛物线21:(3)2C y a x =-+的一部分 淇淇恰在点(0)B c ,处接住 然后跳起将沙包回传 其运动路线为抛物线221:188n C y x x c =-+++的一部分.(1)写出1C 的最高点坐标 并求a c 的值(2)若嘉嘉在x 轴上方1m 的高度上 且到点A 水平距离不超过1m 的范围内可以接到沙包 求符合条件的n 的整数值.51.(2023·河南·统考中考真题)小林同学不仅是一名羽毛球运动爱好者 还喜欢运用数学知识对羽毛球比赛进行技术分析 下面是他对击球线路的分析.如图,在平面直角坐标系中 点A C 在x 轴上 球网AB 与y 轴的水平距离3m OA = 2m CA = 击球点P 在y 轴上.若选择扣球 羽毛球的飞行高度()m y 与水平距离()m x 近似满足一次函数关系0.4 2.8y x =-+ 若选择吊球 羽毛球的飞行高度()m y 与水平距离()m x 近似满足二次函数关系()21 3.2y a x =-+.(1)求点P 的坐标和a 的值.(2)小林分析发现 上面两种击球方式均能使球过网.要使球的落地点到C 点的距离更近 请通过计算判断应选择哪种击球方式.52.(2023·内蒙古赤峰·统考中考真题)乒乓球被誉为中国国球.2023年的世界乒乓球标赛中中国队包揽了五个项目的冠军成绩的取得与平时的刻苦训练和精准的技术分析是分不开的.如图,是乒乓球台的截面示意图一位运动员从球台边缘正上方以击球高度OA为28.75cm的高度将乒乓球向正前方击打到对面球台乒乓球的运行路线近似是抛物线的一部分.乒乓球到球台的竖直高度记为y(单位:cm)乒乓球运行的水平距离记为x(单位:cm).测得如下数据:(1)在平面直角坐标系xOy中描出表格中各组数值所对应的点(),x y并画出表示乒乓球运行轨迹形状的大致图象(2)①当乒乓球到达最高点时与球台之间的距离是__________cm当乒乓球落在对面球台上时到起始点的水平距离是__________cm①求满足条件的抛物线解析式(3)技术分析:如果只上下调整击球高度OA乒乓球的运行轨迹形状不变那么为了确保乒乓球既能过网又能落在对面球台上需要计算出OA的取值范围以利于有针对性的训练.如图①.乒乓球台长OB为274cm 球网高CD 为15.25cm .现在已经计算出乒乓球恰好过网的击球离度OA 的值约为1.27cm .请你计算出乒乓球恰好落在对面球台边缘点B 处时 击球高度OA 的值(乒乓球大小忽略不计).53.(2023·浙江台州·统考中考真题)【问题背景】“刻漏”是我国古代的一种利用水流计时的工具.综合实践小组准备用甲 乙两个透明的竖直放置的容器和一根带节流阀(控制水的流速大小)的软管制作简易计时装置.【实验操作】综合实践小组设计了如下的实验:先在甲容器里加满水 此时水面高度为30cm 开始放水后每隔10min 观察一次甲容器中的水面高度 获得的数据如下表: 流水时间t /min 0 10 20 30 40水面高度h /cm (观察值) 30 29 28.1 27 25.8任务1 分别计算表中每隔10min 水面高度观察值的变化量.【建立模型】小组讨论发现:“0=t 30h =”是初始状态下的准确数据 水面高度值的变化不均匀 但可以用一次函数近似地刻画水面高度h 与流水时间t 的关系.任务2 利用0=t 时 30h = 10t =时 29h =这两组数据求水面高度h 与流水时间t 的函数解析式.【反思优化】经检验 发现有两组表中观察值不满足任务2中求出的函数解析式 存在偏差.小组决定优化函数解析式 减少偏差.通过查阅资料后知道:t 为表中数据时 根据解析式求出所对应的函数值 计算这些函数值与对应h 的观察值之差的平方和......记为w w 越小 偏差越小. 任务3 (1)计算任务2得到的函数解析式的w 值.(2)请确定经过()0,30的一次函数解析式 使得w 的值最小.【设计刻度】得到优化的函数解析式后 综合实践小组决定在甲容器外壁设计刻度 通过刻度直接读取时间. 任务4 请你简要写出时间刻度的设计方案.54.(2023·黑龙江·统考中考真题)如图,抛物线23y ax bx =++与x 轴交于()()3,0,1,0A B -两点 交y 轴于点C .(1)求抛物线的解析式.(2)拋物线上是否存在一点P 使得12PBC ABC S S = 若存在 请直接写出点P 的坐标若不存在 请说明理由.55.(2023·广东深圳·统考中考真题)蔬菜大棚是一种具有出色的保温性能的框架覆膜结构 它出现使得人们可以吃到反季节蔬菜.一般蔬菜大棚使用竹结构或者钢结构的骨架 上面覆上一层或多层保温塑料膜 这样就形成了一个温室空间.如图,某个温室大棚的横截面可以看作矩形ABCD 和抛物线AED 构成 其中3m AB = 4m BC = 取BC 中点O 过点O 作线段BC 的垂直平分线OE 交抛物线AED 于点E 若以O 点为原点 BC 所在直线为x 轴 OE 为y 轴建立如图所示平面直角坐标系.请回答下列问题:(1)如图,抛物线AED 的顶点()0,4E 求抛物线的解析式(2)如图,为了保证蔬菜大棚的通风性 该大棚要安装两个正方形孔的排气装置LFGT SMNR 若0.75m FL NR == 求两个正方形装置的间距GM 的长(3)如图,在某一时刻 太阳光线透过A 点恰好照射到C 点 此时大棚截面的阴影为BK 求BK 的长.参考答案一 单选题1.(2023·甘肃兰州·统考中考真题)已知二次函数()2323y x =--- 下列说法正确的是( ) A .对称轴为2x =-B .顶点坐标为()2,3C .函数的最大值是-3D .函数的最小值是-3 【答案】C【分析】根据二次函数的图象及性质进行判断即可.【详解】二次函数()2323y x =---的对称轴为2x = 顶点坐标为()2,3-①30-<①二次函数图象开口向下 函数有最大值 为=3y -①A B D 选项错误 C 选项正确故选:C.【点睛】本题考查二次函数的图象及性质 熟练掌握二次函数图象和性质是解题的关键.2.(2023·广西·统考中考真题)将抛物线2y x 向右平移3个单位 再向上平移4个单位 得到的抛物线是( )A .2(3)4y x =-+B .2(3)4y x =++C .2(3)4y x =+-D .2(3)4y x =--【答案】A【分析】根据“左加右减 上加下减”的法则进行解答即可.【详解】解:将抛物线2y x 向右平移3个单位 再向上平移4个单位 得到的抛物线的函数表达式为:2(3)4y x =-+. 故选:A .【点睛】本题考查了二次函数图象的平移 熟知二次函数图象平移的法则是解答此题的关键.3.(2023·湖南·统考中考真题)如图所示 直线l 为二次函数2(0)y ax bx c a =++≠的图像的对称轴,则下列说法正确的是( )A .b 恒大于0B .a b 同号C .a b 异号D .以上说法都不对【答案】C 【分析】先写出抛物线的对称轴方程 再列不等式 再分a<0 >0a 两种情况讨论即可.【详解】解:①直线l 为二次函数2(0)y ax bx c a =++≠的图像的对称轴①对称轴为直线>02b x a=-当a<0时,则>0b当>0a 时,则0b <①a b 异号故选:C .【点睛】本题考查的是二次函数的性质 熟练的利用对称轴在y 轴的右侧列不等式是解本题的关键.4.(2023·辽宁大连·统考中考真题)已知抛物线221y x x =--,则当03x ≤≤时 函数的最大值为( ) A .2-B .1-C .0D .2【答案】D 【分析】把抛物线221y x x =--化为顶点式 得到对称轴为1x = 当1x =时 函数的最小值为2- 再分别求出0x =和3x =时的函数值 即可得到答案.【详解】解:①()222112y x x x =--=--①对称轴为1x = 当1x =时 函数的最小值为2-当0x =时 2211y x x =--=- 当3x =时 232312y =-⨯-=①当03x ≤≤时 函数的最大值为2故选:D.【点睛】此题考查了二次函数的最值 熟练掌握二次函数的性质是解题的关键.5.(2023·四川成都·统考中考真题)如图,二次函数26y ax x =+-的图象与x 轴交于(3,0)A - B 两点 下列说法正确的是( )A .抛物线的对称轴为直线1x =B .抛物线的顶点坐标为1,62⎛⎫-- ⎪⎝⎭C .A B 两点之间的距离为5D .当1x <-时 y 的值随x 值的增大而增大【答案】C 【分析】待定系数法求得二次函数解析式 进而逐项分析判断即可求解.【详解】解:①二次函数26y ax x =+-的图象与x 轴交于(3,0)A - B 两点①0936a =--①1a =①二次函数解析式为26y x x =+-212524x ⎛⎫=+- ⎪⎝⎭ 对称轴为直线12x =- 顶点坐标为125,24⎛⎫-- ⎪⎝⎭ 故A B 选项不正确 不符合题意①10a => 抛物线开口向上 当1x <-时 y 的值随x 值的增大而减小 故D 选项不正确 不符合题意 当0y =时 260x x +-=即123,2x x =-=①()2,0B①5AB = 故C 选项正确 符合题意故选:C .【点睛】本题考查了二次函数的性质 待定系数法求二次函数解析式 抛物线与坐标轴的交点 熟练掌握二次函数的性质是解题的关键.6.(2023·河南·统考中考真题)二次函数2y ax bx =+的图象如图所示,则一次函数y x b =+的图象一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】D 【分析】根据二次函数图象的开口方向 对称轴判断出a b 的正负情况 再由一次函数的性质解答.【详解】解:由图象开口向下可知a<0 由对称轴b x 02a=-> 得0b >. ①一次函数y x b =+的图象经过第一 二 三象限 不经过第四象限.故选:D .【点睛】本题考查二次函数图象和一次函数图象的性质 解答本题的关键是求出a b 的正负情况 要掌握它们的性质才能灵活解题 此题难度不大.7.(2023·内蒙古通辽·统考中考真题)如图,抛物线()20y ax bx c a =++≠与x 轴交于点()()1020x ,,, 其中101x << 下列四个结论:①0abc < ①0a b c ++> ①230b c +< ①不等式22c ax bx c x c ++<-+的解集为02x <<.其中正确结论的个数是( )A .1B .2C .3D .4【答案】C【分析】根据函数图象可得出a b c 的符号即可判断① 当1x =时 0y <即可判断① 根据对称轴为12b x a=-> 0a >可判断① 21y ax bx c =++ 22c y x c =-+数形结合即可判断①. 【详解】解:①抛物线开口向上 对称轴在y 轴右边 与y 轴交于正半轴①000a b c ><>,,①0abc < 故①正确.①当1x =时 0y <①0a b c ++< 故①错误.①抛物线2y ax bx c =++与x 轴交于两点()()1020x ,,,其中101x << ①2021222b a ++<-< ①3122b a <-< 当322b a -<时 3b a >- 当2x =时 420y a bc =++=122b ac ∴=-- 1232a c a ∴-->- ①20a c ->①()234342220b c a c c a c a c +=--+=-+=--< 故①正确设21y ax bx c =++ 22c y x c =-+ 如图:由图得 12y y <时 02x << 故①正确.综上 正确的有①①① 共3个故选:C .【点睛】本题考查了二次函数的图象及性质 根据二次函数的图象及性质巧妙借助数学结合思想解决问题是解题的关键.8.(2023·四川自贡·统考中考真题)经过23,()41,),(A b m B b c m -+-两点的抛物线22122y x bx b c =-+-+(x 为自变量)与x 轴有交点,则线段AB 长为( )A .10B .12C .13D .15【答案】B【分析】根据题意 求得对称轴 进而得出1c b =- 求得抛物线解析式 根据抛物线与x 轴有交点得出240b ac ∆=-≥ 进而得出2b =,则1c = 求得,A B 的横坐标 即可求解. 【详解】解:①抛物线22122y x bx b c =-+-+的对称轴为直线1222b b x b a =-=-=⎛⎫⨯- ⎪⎝⎭①抛物线经过23,()41,),(A b m B b c m -+-两点 ①23412b bc b -++-= 即1c b =- ①22221122222y x bx b c x bx b b =-+-+=-+-+- ①抛物线与x 轴有交点①240b ac ∆=-≥ 即()22142202b b b ⎛⎫-⨯-⨯-+-≥ ⎪⎝⎭即2440b b -+≤ 即()220b -≤①2b = 1211c b =-=-=①23264,418118b b c -=-=-+-=+-=①()()41238412AB b c b =+---=--=故选:B .【点睛】本题考查了二次函数的对称性 与x 轴交点问题 熟练掌握二次函数的性质是解题的关键. 9.(2023·四川达州·统考中考真题)如图,拋物线2y ax bx c =++(,,a b c 为常数)关于直线1x =对称.下列五个结论:①0abc > ①20a b += ①420a b c ++> ①2am bm a b +>+ ①30a c +>.其中正确的有( )A .4个B .3个C .2个D .1个【答案】B 【分析】由抛物线的开口方向 与y 轴交点以及对称轴的位置可判断a b c 的符号 由此可判断①正确 由抛物线的对称轴为1x = 得到12b a-= 即可判断① 可知2x =时和0x =时的y 值相等可判断①正确 由图知1x =时二次函数有最小值 可判断①错误 由抛物线的对称轴为1x =可得2b a =- 因此22y ax ax c =-+ 根据图像可判断①正确.【详解】①①抛物线的开口向上0.a ∴>①抛物线与y 轴交点在y 轴的负半轴上0.c ∴< 由02b a->得 0b < 0abc ∴>故①正确 ①抛物线的对称轴为1x = ∴12b a-= ∴2b a =-∴20a b += 故①正确①由抛物线的对称轴为1x = 可知2x =时和0x =时的y 值相等.由图知0x =时 0y <①2x =时 0y <.即420a b c ++<.故①错误①由图知1x =时二次函数有最小值2a b c am bm c ∴++≤++2a b am bm ∴+≤+(a b m ax b +≤+)故①错误①由抛物线的对称轴为1x =可得12b a-= 2b a ∴=-①22y ax ax c =-+当=1x -时 23y a a c a c =++=+.由图知=1x -时0,y >30.a c ∴+>故①正确.综上所述:正确的是①①① 有3个故选:B .【点睛】本题主要考查了二次函数的图像与系数的关系 二次函数的对称轴及顶点位置.熟练掌握二次函数图像的性质及数形结合是解题的关键.10.(2023·四川泸州·统考中考真题)已知二次函数223y ax ax =-+(其中x 是自变量) 当03x <<时对应的函数值y 均为正数,则a 的取值范围为( )A .01a <<B .1a <-或3a >C .30a -<<或0<<3aD .10a -≤<或0<<3a 【答案】D【分析】首先根据题意求出对称轴212a x a -=-= 然后分两种情况:0a >和a<0 分别根据二次函数的性质求解即可.【详解】①二次函数223y ax ax =-+①对称轴212a x a-=-= 当0a >时①当03x <<时对应的函数值y 均为正数①此时抛物线与x 轴没有交点①()22430a a ∆=--⨯<①解得0<<3a当a<0时①当03x <<时对应的函数值y 均为正数①当3x =时 9630y a a =-+≥①解得1a ≥-①10a -≤<①综上所述当03x <<时对应的函数值y 均为正数,则a 的取值范围为10a -≤<或0<<3a .故选:D .【点睛】此题考查了二次函数的图象和性质 解题的关键是分两种情况讨论.11.(2023·四川凉山·统考中考真题)已知抛物线()20y ax bx c a =++≠的部分图象如图所示,则下列结论中正确的是( )A .<0abcB .420a b c -+<C .30a c +=D .20am bm a ++≤(m 为实数)【答案】C 【分析】根据开口方向 与y 轴交于负半轴和对称轴为直线1x =可得00a c ><, 20b a =-< 由此即可判断A 根据对称性可得当2x =-时 0y > 当=1x -时 0y = 由此即可判断B C 根据抛物线开口向上 对称轴为直线1x = 可得抛物线的最小值为a c -+ 由此即可判断D .【详解】解:①抛物线开口向上 与y 轴交于负半轴①00a c ><,①抛物线对称轴为直线1x = ①12b a-= ①20b a =-<。
中考数学总复习《二次函数的图象与性质》专项测试卷带答案

中考数学总复习《二次函数的图象与性质》专项测试卷带答案学校:___________班级:___________姓名:___________考号:___________【A层·基础过关】1.已知二次函数y=-3(x-2)2-3,下列说法正确的是( )A.对称轴为x=-2B.顶点坐标为(2,3)C.函数的最大值是-3D.函数的最小值是-32.将抛物线y=x2向右平移3个单位,再向上平移4个单位,得到的抛物线是( )A.y=(x-3)2+4B.y=(x+3)2+4C.y=(x+3)2-4D.y=(x-3)2-43.二次函数y=ax2+bx的图象如图所示,则一次函数y=x+b的图象一定不经过( )A.第一象限B.第二象限C.第三象限D.第四象限4.已知A(x1,y1),B(x2,y2),C(3,y3)是抛物线y=-(x-2)2-m+4上的三个点,若x1>x2>3,则( )A.y1>y2>y3B.y1<y2<y3C.y2>y1>y3D.y2<y3<y15.已知抛物线y=x2+bx+c过点A(m,n),B(m-4,n),且它与x轴只有一个公共点,则n 的值是( )A.4B.-4C.6D.166.(2024·内江中考)已知二次函数y=x2-2x+1的图象向左平移两个单位得到抛物线C,点P(2,y1),Q(3,y2)在抛物线C上,则y1y2(填“>”或“<”).【B层·能力提升】7.若点P(m,n)在抛物线y=ax2(a≠0)上,则下列各点在抛物线y=a(x+1)2上的是( )A.(m,n+1)B.(m+1,n)C.(m,n-1)D.(m-1,n)8.(2024·达州中考)抛物线y=-x2+bx+c与x轴交于两点,其中一个交点的横坐标大于1,另一个交点的横坐标小于1,则下列结论正确的是( )A.b+c>1B.b=2C.b2+4c<0D.c<09.(2024·陕西中考)已知一个二次函数y=ax2+bx+c的自变量x与函数y的几组对应值如下表:x…-4-2035…y…-24-80-3-15…则下列关于这个二次函数的结论正确的是( )A.图象的开口向上B.当x>0时,y的值随x值的增大而减小C.图象经过第二、三、四象限D.图象的对称轴是直线x=110.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴的一个交点坐标为(1,0),对称轴为直线x =-1,下列四个结论:①abc <0;②4a -2b +c <0;③3a +c =0;④当-3<x <1时,ax 2+bx +c <0;其中正确结论的个数为( )A.1个B.2个C.3个D.4个11.(2024·广安中考)如图,二次函数y =ax 2+bx +c (a ,b ,c 为常数,a ≠0)的图象与x 轴交于点A (-32,0),对称轴是直线x =-12,有以下结论:①abc <0;②若点(-1,y 1)和点(2,y 2)都在抛物线上,则y 1<y 2;③am 2+bm ≤14a -12b (m 为任意实数);④3a +4c =0,其中正确的有( )A.1个B.2个C.3个D.4个12.若一个函数的图象关于y 轴对称,则称这个函数为偶函数,如二次函数y =-x 2是偶函数.若二次函数y =2x 2+(3-a )x +8是偶函数,则a 的值为 . 13.如图,已知二次函数y =x 2+bx +c 图象经过点A (1,-2)和B (0,-5).(1)求该二次函数的表达式及图象的顶点坐标; (2)当y ≤-2时,请根据图象直接写出x 的取值范围.【C层·素养挑战】14.已知二次函数y=x2-2ax+1.(1)若二次函数的图象经过点(1,-2),求a的值;(2)在(1)的条件下,当m-2≤x≤2时,二次函数的最大值是6,求m的值;(3)已知点A(-2,7),B(3,2),直线AB与x轴和y轴分别交于点E,F,若y=x2-2ax+1与直线AB有两个不同的交点,其中一个交点在线段AF上(包含A,F两个端点),另一个交点在线段BE上(包含B,E两个端点),直接写出a的取值范围.参考答案【A层·基础过关】1.已知二次函数y=-3(x-2)2-3,下列说法正确的是(C)A.对称轴为x=-2B.顶点坐标为(2,3)C.函数的最大值是-3D.函数的最小值是-32.将抛物线y=x2向右平移3个单位,再向上平移4个单位,得到的抛物线是(A)A.y=(x-3)2+4B.y=(x+3)2+4C.y=(x+3)2-4D.y=(x-3)2-43.二次函数y=ax2+bx的图象如图所示,则一次函数y=x+b的图象一定不经过(D)A.第一象限B.第二象限C.第三象限D.第四象限4.已知A(x1,y1),B(x2,y2),C(3,y3)是抛物线y=-(x-2)2-m+4上的三个点,若x1>x2>3,则(B)A.y1>y2>y3B.y1<y2<y3C.y2>y1>y3D.y2<y3<y15.已知抛物线y=x2+bx+c过点A(m,n),B(m-4,n),且它与x轴只有一个公共点,则n 的值是(A)A.4B.-4C.6D.166.(2024·内江中考)已知二次函数y=x2-2x+1的图象向左平移两个单位得到抛物线C,点P(2,y1),Q(3,y2)在抛物线C上,则y1<y2(填“>”或“<”).【B层·能力提升】7.若点P(m,n)在抛物线y=ax2(a≠0)上,则下列各点在抛物线y=a(x+1)2上的是(D)A.(m,n+1)B.(m+1,n)C.(m,n-1)D.(m-1,n)8.(2024·达州中考)抛物线y=-x2+bx+c与x轴交于两点,其中一个交点的横坐标大于1,另一个交点的横坐标小于1,则下列结论正确的是(A)A.b+c>1B.b=2C.b2+4c<0D.c<09.(2024·陕西中考)已知一个二次函数y=ax2+bx+c的自变量x与函数y的几组对应值如下表:x … -4 -2 0 3 5 …y … -24-8-3-15 …则下列关于这个二次函数的结论正确的是(D) A.图象的开口向上B.当x >0时,y 的值随x 值的增大而减小C.图象经过第二、三、四象限D.图象的对称轴是直线x =110.如图,二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴的一个交点坐标为(1,0),对称轴为直线x =-1,下列四个结论:①abc <0;②4a -2b +c <0;③3a +c =0;④当-3<x <1时,ax 2+bx +c <0;其中正确结论的个数为(D)A.1个B.2个C.3个D.4个11.(2024·广安中考)如图,二次函数y =ax 2+bx +c (a ,b ,c 为常数,a ≠0)的图象与x 轴交于点A (-32,0),对称轴是直线x =-12,有以下结论:①abc <0;②若点(-1,y 1)和点(2,y 2)都在抛物线上,则y 1<y 2;③am 2+bm ≤14a -12b (m 为任意实数);④3a +4c =0,其中正确的有(B)A.1个B.2个C.3个D.4个12.若一个函数的图象关于y 轴对称,则称这个函数为偶函数,如二次函数y =-x 2是偶函数.若二次函数y =2x 2+(3-a )x +8是偶函数,则a 的值为 3 . 13.如图,已知二次函数y =x 2+bx +c 图象经过点A (1,-2)和B (0,-5).(1)求该二次函数的表达式及图象的顶点坐标; (2)当y ≤-2时,请根据图象直接写出x 的取值范围.【解析】(1)把A (1,-2)和B (0,-5)代入y =x 2+bx +c 得,{1+b +c =-2c =-5,解得{b =2c =-5∴二次函数的表达式为y =x 2+2x -5 ∵y =x 2+2x -5=(x +1)2-6 ∴顶点坐标为(-1,-6); (2)如图:∵点A (1,-2)关于对称轴直线x =-1的对称点C 为(-3,-2) ∴当y ≤-2时,x 的取值范围是-3≤x ≤1.【C 层·素养挑战】14.已知二次函数y =x 2-2ax +1.(1)若二次函数的图象经过点(1,-2),求a 的值;(2)在(1)的条件下,当m -2≤x ≤2时,二次函数的最大值是6,求m 的值;(3)已知点A (-2,7),B (3,2),直线AB 与x 轴和y 轴分别交于点E ,F ,若y =x 2-2ax +1与直线AB 有两个不同的交点,其中一个交点在线段AF 上(包含A ,F 两个端点),另一个交点在线段BE 上(包含B ,E 两个端点),直接写出a 的取值范围. 【解析】(1)∵二次函数的图象经过点(1,-2) ∴-2=1-2a +1 ∴a =2.(2)由(1)可知二次函数为y =x 2-4x +1 ∵y =x 2-4x +1=(x -2)2-3∴抛物线y =x 2-4x +1开口向上,对称轴为直线x =2,顶点为(2,-3) ∵当m -2≤x ≤2时,二次函数的最大值是6 ∴当x =m -2时,二次函数的最大值是6 ∴(m -2-2)2-3=6解得m =1或m =7(舍去),故m 的值为1. (3)∵已知点A (-2,7),B (3,2)∴设直线AB 的解析式为y =kx +b (k ≠0) 将A (-2,7),B (3,2)代入得:{-2k +b =73k +b =2解得:{k =-1b =5,经过E (5,0)时,a =135∴43≤a ≤135.。
初三复习专题《二次函数的图象和性质》(中考真题卷)

二次函数的图象和性质选择题答案请填入下表:1. 2. 3.4. 5. 6.7.8.1.(2021·常州)已知二次函数()21x a y -=,当0>x 时,y 随x 增大而增大,则实数a 的取值范围是()A .0>a B .1>a C .1≠a D .1<a 2.(2021·仙桃)若抛物线y =x 2+bx +c 与x 轴两个交点间的距离为4.对称轴为直线x =2,P 为这条抛物线的顶点,则点P 关于x 轴的对称点的坐标是()A .(2,4)B .(﹣2,4)C .(﹣2,﹣4)D .(2,﹣4)3.(2021·包头10题)已知二次函数y =ax 2-bx +c (a ≠0)的图象经过第一象限的点(1,-b ),则一次函数y =bx -ac的图象不经过()A .第一象限B .第二象限C .第三象限D .第四象限4.(2021·贺州)如图,已知抛物线y =ax 2+c 与直线y =kx +m 交于A (-3,y 1),B (1,y 2)两点,则关于x 的不等式ax 2+c ≥-kx +m 的解集是()yxOA BA .x ≤-3或x ≥1B .x ≤-1或x ≥3C .-3≤x ≤1D .-1≤x ≤35.(2021·聊城)已知二次函数y =ax 2+bx +c的图象如图所示,则一次函数y =bx +c 的图象和反比例函数a b c y x ++=的图象在同一坐标系中大致为()A .B .C .D .6.(2021·赤峰)已知抛物线y =ax 2+bx +c 上的部分点的横坐标x 与纵坐标y 的对应值如表:x…﹣10123…y …30﹣1m 3…以下结论正确的是()A .抛物线y =ax 2+bx +c 的开口向下B .当x <3时,y 随x 增大而增大C .方程ax 2+bx +c =0的根为0和2D .当y >0时,x 的取值范围是0<x <27.(2021·张家界)若二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,则一次函数y =ax +b 与反比例函数y =-cx 在同一个坐标系内的大致图象为()8.(2021•烟台)如图,二次函数y =ax 2+bx +c 的图象经过点A (﹣1,0),B (3,0),与y 轴交于点C .下列结论:①ac >0;②当x >0时,y 随x 的增大而增大;③3a +c =0;④a +b ≥am 2+bm .其中正确的个数有()A .1个B .2个C .3个D .4个9.(2021•宁波)如图,二次函数y =(x ﹣1)(x ﹣a )(a 为常数)的图象的对称轴为直线x =2.(1)求a 的值.(2)向下平移该二次函数的图象,使其经过原点,求平移后图象所对应的二次函数的表达式.10.(2021•嘉兴)已知二次函数y =﹣x 2+6x ﹣5.(1)求二次函数图象的顶点坐标;(2)当1≤x ≤4时,函数的最大值和最小值分别为多少?(3)当t ≤x ≤t +3时,函数的最大值为m ,最小值为n ,若m ﹣n =3,求t 的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限y=ax+1 与二次函数y=x +a 的图象可能是(
y>0,则x 的取值范围是(
9、已知函数y=x -2x-2 的图象如图所示,根据其中提供的信息,可求得使y≥1 成立的x 的取值范围是()
类型二:二次函数的性质
1、(2010?兰州)二次函数y=-3x -6x+5 的图象的顶点坐标是(
A.(-1,8)B.(1,8)C.(-1,2)D.(1,-4)
y=-2(x-3)+5,则此抛物线(
B.顶点坐标为(-3,5)
D.当x>3 时y 随x 的增大而减小
4、(2012?德阳)设二次函数y=x +bx+c,当x≤1 时,总有y≥0,当1≤x≤3 时,总有y≤0,那么 c 的取
标为(2,-3).④点(- ,-9)在抛物线上.⑤抛物线与
6、(2012?河北)如图,抛物线y1= a(x+2)-3 与y2= (+1 交于点A(1,3),过点 A 作x 轴的平行
B,C.则以下结论:
abc,b -4ac,2a+b,a+b+c 这四个式子中,请分别判断其值①c<1;②2a+b=0;③b <4ac;④若方程ax +bx+c=0
y=ax +bx+c 的图象中,刘星同学观察得出了下面四条信息:
C.4 个D.1 个。