动点问题题型方法归纳
七年级数学动点题型归纳

七年级数学动点题型归纳一、直线运动1.速度与时间的关系2.当物体做直线运动时,速度是一个重要的概念。
通常用v表示速度,t表示时间。
在匀速直线运动中,速度是一个常数,不随时间改变。
但在变速运动中,速度会随时间变化。
速度与时间的关系可以用以下方程表示:v = v0 + at,其中v0是初速度,a是加速度。
3.距离与时间的关系4.在直线运动中,距离是另一个重要的概念。
通常用s表示距离,t表示时间。
距离是速度和时间的乘积。
在匀速直线运动中,距离与时间的关系可以用以下方程表示:s = v0t + 1/2at^2。
5.追及问题6.追及问题是直线运动中的一类常见问题。
两个物体在同一时间出发,沿同一直线运动,一个在前,一个在后。
后一个物体要追上前一个物体,求所需时间。
这类问题通常用速度和距离的关系来解决。
二、圆周运动1.速度与角度的关系2.在圆周运动中,速度与角度的关系是一个重要的概念。
通常用v表示速度,θ表示角度。
在匀速圆周运动中,速度是一个常数,不随角度改变。
但在变速圆周运动中,速度会随角度变化。
速度与角度的关系可以用以下方程表示:v = rω = r2π/T,其中r是半径,ω是角速度,T是周期。
3.半径与角度的关系4.在圆周运动中,半径与角度的关系也是一个重要的概念。
通常用r表示半径,θ表示角度。
在匀速圆周运动中,半径和角度的关系可以用以下方程表示:θ = ωt = 2πt/T,其中ω是角速度,t是时间,T是周期。
5.圆内运动问题在圆内做圆周运动的物体需要满足向心力的条件才能保持做圆周运动。
向心力是由半径和速度的平方之间的比例关系决定的:F=mv2/r,其中F是向心力,m是物体的质量,v是速度,r是半径。
如果物体的速度过大或者半径过小,向心力不足,物体就会做离心运动;如果物体的速度过小或者半径过大,向心力过大,物体就会做向心运动。
在求解这类问题时需要注意对应物体的质量、速度和半径之间关系的考虑。
三、坐标几何1.点坐标的确定2.在坐标几何中,点坐标是一个基本概念。
中考动点问题的解题技巧

在中考数学中,动点问题是一个比较常见的题型。
这类问题通常需要学生结合图形的运动和变化,利用函数、方程等知识解决。
以下是一些解题技巧:
1.建立模型:首先需要明确题目中的已知条件和未知条件,并建立相应的数学模型。
对于动点问题,可以通过建立坐标系来描述点的位置和运动轨迹。
2.转化问题:动点问题往往涉及到数量关系和位置关系的变化,因此需要将问题转化为数学问题。
比如,可以建立方程或不等式来描述点的位置和运动轨迹。
3.寻找规律:动点问题中往往有一些规律性的东西,比如点的运动轨迹是按照一定规律变化的。
因此,需要认真观察、分析,找到这些规律,以便更好地解决问题。
4.分类讨论:在解决动点问题时,有时需要考虑到不同的情况,比如点的位置、运动速度、运动方向等。
因此,需要进行分类讨论,逐一解决不同情况下的数学问题。
5.综合分析:动点问题往往涉及到多个知识点,比如函数、方程、不等式等。
因此,在解决问题时,需要综合分析各个知识点之间的关系,以便更好地解决问题。
6.熟练掌握相关知识点:解决动点问题需要熟练掌握相关知识点,比如函数的性质、方程的解法、不等式的解法等。
因此,在平时的学习中,需要加强这些知识点的学习和训练。
7.注意细节:在解决动点问题时,需要注意细节,比如点的坐标、单位等。
如果这些细节处理不当,可能会导致解题错误。
总之,解决动点问题需要学生熟练掌握相关知识点,建立正确的数学模型,通过转化问题、寻找规律、分类讨论、综合分析等方法来解决。
同时,也需要注意细节处理。
八年级数学动点题型归纳

八年级数学动点题型归纳一、动点与三角形相关题型1. 动点在三角形边上运动求线段长度或周长题目:在等腰三角形公式中,公式,公式,点公式从点公式出发沿公式向点公式运动,速度为每秒公式个单位长度,设运动时间为公式秒。
当公式时,求公式的长度。
解析:过点公式作公式于点公式。
因为公式,等腰三角形三线合一,所以公式。
在公式中,根据勾股定理公式。
当公式时,公式,则公式。
在公式中,根据勾股定理公式。
2. 动点运动过程中三角形面积的变化题目:在公式中,公式,公式,公式,点公式从点公式出发,沿公式向点公式以每秒公式个单位长度的速度运动,同时点公式从点公式出发,沿公式向点公式以每秒公式个单位长度的速度运动,设运动时间为公式秒公式,求公式的面积公式与公式的函数关系式。
解析:已知公式,则公式,公式。
根据三角形面积公式公式,对于公式,底为公式,高为公式。
所以公式。
二、动点与四边形相关题型1. 动点在四边形边上运动判断四边形形状题目:在矩形公式中,公式,公式,点公式从点公式出发沿公式向点公式运动,速度为每秒公式个单位长度,点公式从点公式出发沿公式向点公式运动,速度为每秒公式个单位长度,设运动时间为公式秒。
当公式时,四边形公式是什么四边形?解析:当公式时,公式,公式。
因为四边形公式是矩形,所以公式,公式。
则公式,公式。
在四边形公式中,公式(因为公式),公式,公式(此时公式运动到公式点),公式。
因为公式且公式,所以四边形公式是梯形。
2. 动点运动过程中四边形面积的变化题目:在平行四边形公式中,公式,公式,公式,点公式从点公式出发沿公式向点公式运动,速度为每秒公式个单位长度,点公式从点公式出发沿公式向点公式运动,速度为每秒公式个单位长度,设运动时间为公式秒。
求四边形公式的面积公式与公式的函数关系式。
解析:四边形公式的面积公式。
过点公式作公式于点公式,在公式中,公式,公式,则公式,公式。
所以公式。
因为公式,则公式。
公式。
所以公式。
三、动点与函数图象相关题型1. 根据动点运动情况确定函数图象题目:如图,在边长为公式的正方形公式中,点公式以每秒公式个单位长度的速度从点公式出发,沿公式的路径运动,到点公式停止。
动点问题的方法归纳

动点问题的方法归纳
动点问题是指在一段时间内,某个物体或者某个点的位置或者速度的变化问题。
解决动点问题的方法可以归纳为以下几类:
1. 利用公式计算:对于简单的动点问题,可以根据已知条件,利用物理公式或者数学公式计算出所求的位置或者速度。
比如,如果已知物体的初始位置和速度,可以使用匀加速度公式来计算物体在任意时刻的位置。
2. 利用图像分析:对于复杂的动点问题,可以将物体的运动过程绘制成图像,然后通过分析图像中的几何关系,来推导出所求的位置或者速度。
比如,可以绘制出物体在不同时刻的位置,然后通过观察图像的形状和变化趋势,来推导物体的速度。
3. 利用微积分方法:对于连续的动点问题,可以使用微积分的方法来解决。
通过求导或者积分,可以得到物体的速度和加速度与时间的函数关系,然后再根据已知条件,求出所求的位置或者速度。
4. 利用矢量方法:对于多维空间中的动点问题,可以使用矢量的方法进行求解。
通过将问题转化为矢量的形式,可以简化计算过程,并且可以更直观地描述物体的运动过程。
比如,可以将物体在不同时刻的位置表示为矢量函数,然后通过对矢量函数进行求导或者积分,来求得所求的位置或者速度。
以上是解决动点问题的一些常见方法,根据具体问题的情况选择合适的方法进行求解。
初中动点问题的方法归纳

初中动点问题的方法归纳初中物理学动点问题是指分析物体在空间中沿特定轨迹运动的问题。
动点问题通常涉及位置、速度、加速度等物理量的变化及其关系,通常可以通过数学方法进行分析和解决。
在初中物理教学中,动点问题是一个重要的知识点,对学生的数学思维能力和物理理解能力具有一定的要求。
下面将对初中动点问题的解决方法进行归纳总结。
1.位置、速度和加速度的关系在解决动点问题时,首先需要了解位置、速度和加速度三者之间的关系。
位置是描述物体在空间中的具体位置,速度是描述物体在单位时间内所走的距离和方向的改变,加速度是描述速度随时间的变化率。
在物理学中,位置、速度和加速度之间有着具体的数学关系,通过这些关系可以解决动点问题。
初中生需要掌握位置、速度和加速度的数学表达式,以及它们之间的相互转化关系,才能解决动点问题。
2.匀速直线运动的解决方法在解决动点问题时,最简单的情况是匀速直线运动。
匀速直线运动的特点是物体在单位时间内所走的距离相等,速度不变。
针对匀速直线运动,可以通过速度和时间的关系,求出物体的位移。
在初中物理教学中,学生通常会接触到匀速直线运动的解决方法,可以通过公式计算物体的位移、速度和时间等物理量。
3.变速直线运动的解决方法相对于匀速直线运动,变速直线运动在初中物理学中更具有挑战性。
在变速直线运动中,物体的速度随时间的变化,加速度不为0。
在解决变速直线运动问题时,需要利用速度和加速度的关系,求出物体在不同时间内的速度和位移。
针对变速直线运动的问题,通常需要运用微积分等高等数学知识进行分析和解决。
4.抛体运动的解决方法抛体运动是一个常见的动点问题,描述的是物体在被施加初速度的情况下,同时沿水平方向和竖直方向运动的情况。
在初中物理学中,学生通常需要掌握抛体运动的解决方法,包括通过初速度、加速度等参数计算物体的运动轨迹、最大高度、飞行时间等物理量。
对于抛体运动,学生需要了解抛体的水平运动和竖直运动之间的关系,以及如何通过物理公式和数学方法进行求解。
动点题常用方法

常用方法(一)求轨迹方程的一般方法:1. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。
2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。
3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ), y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。
4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。
5:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。
一:用定义法求轨迹方程例1:已知ABC ∆的顶点A ,B 的坐标分别为(-4,0),(4,0),C 为动点,且满足,sin 45sin sin C A B =+求点C 的轨迹。
【变式】:已知圆的圆心为M 1,圆的圆心为M 2,一动圆与这两个圆外切,求动圆圆心P 的轨迹方程。
二:用直译法求轨迹方程此类问题重在寻找数量关系。
例2:一条线段两个端点A 和B 分别在x 轴和y 轴上滑动,且BM=a ,AM=b ,求AB 中点M 的轨迹方程?【变式】: 动点P (x,y )到两定点A (-3,0)和B (3,0)的距离的比等于2(即2||||=PB PA ),求动点P 的轨迹方程?三:用参数法求轨迹方程此类方法主要在于设置合适的参数,求出参数方程,最后消参,化为普通方程。
数轴动点问题6题型

数轴动点问题6题型数轴动点问题是高中数学中常见的一类问题,主要涉及到点在数轴上运动的情况。
在解决这类问题时,可以利用数轴上的点的坐标与距离的关系,来求解点的位置、速度等信息。
本文将介绍数轴动点问题的6个典型题型,并通过解题步骤和例题来帮助读者更好地理解和掌握这类问题的解题方法。
题型一:根据速度求坐标如果一个点在数轴上以一定的速度运动,我们可以通过根据速度求坐标的方法来求解点的位置。
这个问题通常会给出点的初始位置和速度,要求我们求解点在某个给定的时间后的位置。
解决这类问题时,我们可以使用速度乘以时间的公式,即坐标 = 初始位置 + 速度 * 时间。
举例来说,假设一个点在数轴上初始位置为3,速度为2,我们需要求解它在10秒后的位置。
根据公式,我们可以得到坐标 = 3 + 2 * 10 = 23。
因此,在经过10秒后,点的位置为23。
题型二:根据坐标求速度与题型一相反,如果我们已知一个点在数轴上的初始位置和结束位置,并且需要求解点的速度,我们可以使用根据坐标求速度的方法。
解决这类问题时,我们可以使用坐标之差除以时间的公式,即速度 = (结束位置 - 初始位置) / 时间。
举例来说,假设一个点在数轴上初始位置为5,结束位置为25,并且经过10秒后到达结束位置。
我们可以使用公式速度 = (25 - 5) / 10 = 2来求解点的速度。
因此,这个点的速度为2。
题型三:两点相遇问题在数轴上,如果有两个点A和B,它们同时从不同的位置出发,以不同的速度运动,我们常常会遇到两点相遇的问题。
解决这类问题时,我们可以使用等速度的思想,通过设置一个相对速度来求解两点相遇的时间和位置。
举例来说,假设点A从位置1出发,速度为3,点B从位置9出发,速度为1,我们需要知道它们第一次相遇的时间和位置。
我们可以设置点A和点B的相对速度为3 - 1 = 2,根据题目描述,相对速度不变。
因此,这个问题可以转化为一个点以相对速度2运动的问题,我们可以使用速度乘以时间的公式,即坐标 = 初始位置 + 速度 * 时间,来求解它们的相遇时间和位置。
动点问题所有题型解题技巧

动点问题所有题型解题技巧摘要:1.动点问题概述2.动点问题分类与解题思路a.直线动点问题b.圆动点问题c.曲线动点问题3.解题技巧总结4.动点问题应用实例解析5.动点问题练习与解答正文:动点问题是指在数学中,涉及点到点之间运动的问题。
它具有一定的复杂性和挑战性,需要掌握一定的解题技巧。
本文将为大家介绍动点问题的解题技巧,以及如何应对不同类型的动点问题。
一、动点问题概述动点问题涉及几何、函数、方程等多个方面的知识。
一般来说,动点问题有以下几个特点:1.题目中存在一个或多个点在运动。
2.运动过程中,点与直线、曲线之间存在一定的关系。
3.求解问题时,需要运用数学知识进行分析。
二、动点问题分类与解题思路1.直线动点问题直线动点问题主要涉及点到直线的距离、角度等关系。
解题思路如下:(1)找出关键信息,如直线的方程、点的坐标等。
(2)根据题目条件,建立点到直线的距离或角度的方程。
(3)求解方程,得到点的坐标或位置。
2.圆动点问题圆动点问题主要涉及点到圆心、圆上的点等关系。
解题思路如下:(1)找出关键信息,如圆的方程、点的坐标等。
(2)根据题目条件,建立点到圆心距离、圆上的角度等方程。
(3)求解方程,得到点的坐标或位置。
3.曲线动点问题曲线动点问题涉及点到曲线的关系。
解题思路如下:(1)找出关键信息,如曲线的方程、点的坐标等。
(2)根据题目条件,建立点到曲线的关系方程。
(3)求解方程,得到点的坐标或位置。
三、解题技巧总结1.熟练掌握几何知识,如直线、圆的方程,以及点到直线、圆的距离公式。
2.灵活运用函数、方程的知识,建立动点问题的关系方程。
3.利用数学方法求解方程,如代数法、几何法等。
四、动点问题应用实例解析以下为一个动点问题的实例:已知直线l的方程为2x+3y-1=0,点P在直线l上,且满足PA=PB,其中A、B为圆O的两点,圆O的方程为x^2+y^2=4。
求点P的坐标。
解:根据题意,先求出点A、B的坐标,然后根据PA=PB建立方程,最后求解得到点P的坐标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动点问题知识点:动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
一、三角形边上动点1、(2009年齐齐哈尔市)直线364y x=-+与坐标轴分别交于A B、两点,动点P Q、同时从O点出发,同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O→B→A运动.(1)直接写出A B、两点的坐标;(2)设点Q的运动时间为t秒,OPQ△的面积为S,求出S与t之间的函数关系式;(3)当485S=时,求出点P的坐标,并直接写出以点O P Q、、为顶点的平行四边形的第四个顶点M的坐标.提示:第(2)问按点P到拐点B所有时间分段分类;第(3)问是分类讨论:已知三定点O、P、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP为边、OQ为边,②OP为边、OQ为对角线,③OP为对角线、OQ 为边。
然后画出各类的图形,根据图形性质求顶点坐标。
2、(2009年衡阳市)如图,AB是⊙O的直径,弦BC=2cm,∠ABC=60º.(1)求⊙O的直径;(2)若D是AB延长线上一点,连结CD,当BD长为多少时,CD与⊙O相切;(3)若动点E以2cm/s的速度从A点出发沿着AB方向运动,同时动点F以1cm/s的速度从B点出发沿BC方向运动,设运动时间为)2)((<<tst,连结EF,当t为何值时,△BEF为直角三角形.注意:第(3)问按直角位置分类讨论简单题。
3、(2009重庆綦江)如图,已知抛物线(1)233(0)y a x a=-+≠经过点(2)A-,0,抛物线的顶点为D,过O作射线OM AD∥.过顶点D平行于x轴的直线交射线OM于点C,B在x轴正半轴上,连结BC.(1)求该抛物线的解析式;(2)若动点P从点O出发,以每秒1个长度单位的速度沿射线OM运动,设点P运动的时间为()t s.问当t为何值时,四边形DAOP分别为平行四边形直角梯形等腰梯形(3)若OC OB=,动点P和动点Q分别从点O和点B同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC和BO运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t()s,连接PQ,当t为何值时,四边形BCPQ的面积最小并求出最小值及此时PQ的长.注意:发现并充分运用特殊角∠DAB=60°当△OPQ 面积最大时,四边形BCPQ 的面积最小。
二.特殊四边形边上动点4、(2009年吉林省)如图所示,菱形ABCD 的边长为6厘米,60B ∠=°.从初始时刻开始,点P 、Q 同时从A 点出发,点P 以1厘米/秒的速度沿A C B →→的方向运动,点Q 以2厘米/秒的速度沿A B C D →→→的方向运动,当点Q 运动到D 点时,P 、Q 两点同时停止运动,设P 、Q 运动的时间为x 秒时,APQ △与ABC △重叠部分的面积为y 平方厘米(这里规定:点和线段是面积为O 的三角形),解答下列问题:(1)点P 、Q 从出发到相遇所用时间是 秒;(2)点P 、Q 从开始运动到停止的过程中,当APQ △是等边三角形时x 的值是 秒;(3)求y 与x 之间的函数关系式.提示:第(3)问按点Q 到拐点时间B 、C 所有时间分段分类 ; 提醒----- 高相等的两个三角形面积比等于底边的比 。
5、(2009年哈尔滨)如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(3-,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.(1)求直线AC的解析式;(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向S≠),点P的运动时间为t秒,求S与t之间的终点C匀速运动,设△PMB的面积为S(0函数关系式(要求写出自变量t的取值范围);(3)在(2)的条件下,当 t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.注意:第(2)问按点P到拐点B所用时间分段分类;第(3)问发现∠MBC=90°,∠BCO与∠ABM互余,画出点P运动过程中,∠MPB=∠ABM的两种情况,求出t值。
利用OB⊥AC,再求OP与AC夹角正切值.6、(2009年温州)如图,在平面直角坐标系中,点A(3,0),B(33,2),C(0,2).动点D以每秒1个单位的速度从点0出发沿OC向终点C运动,同时动点E以每秒2个单位的速度从点A出发沿AB向终点B运动.过点E作EF上AB,交BC于点F,连结DA、DF.设运动时间为t秒.(1)求∠ABC的度数;(2)当t为何值时,AB∥DF;(3)设四边形AEFD的面积为S.①求S关于t的函数关系式;②若一抛物线y=x2+mx经过动点E,当S<23时,求m的取值范围(写出答案即可).注意:发现特殊性,DE∥OA7、(07黄冈)已知:如图,在平面直角坐标系中,四边形ABCO是菱形,且∠AOC=60°,点B的坐标是(0,83),点P从点C开始以每秒1个单位长度的速度在线段CB上向点B移动,同时,点Q从点O开始以每秒a(1≤a≤3)个单位长度的速度沿射线OA方向移动,设(08)t t<≤秒后,直线PQ交OB于点D.(1)求∠AOB的度数及线段OA的长;(2)求经过A,B,C三点的抛物线的解析式;(3)当43,33a OD==时,求t的值及此时直线PQ的解析式;(4)当a为何值时,以O,P,Q,D为顶点的三角形与OAB∆相似当a 为何值时,以O ,P ,Q ,D 为顶点的三角形与OAB 不相似请给出你的结论,并加以证明.8、(08黄冈)已知:如图,在直角梯形COAB 中,OC AB ∥,以O 为原点建立平面直角坐标系,AB C ,,三点的坐标分别为(80)(810)(04)A B C ,,,,,,点D 为线段BC 的中点,动点P 从点O 出发,以每秒1个单位的速度,沿折线OABD 的路线移动,移动的时间为t 秒.(1)求直线BC 的解析式;(2)若动点P 在线段OA 上移动,当t 为何值时,四边形OPDC 的面积是梯形COAB 面积的27(3)动点P 从点O 出发,沿折线OABD 的路线移动过程中,设OPD △的面积为S ,请直接写出S 与t 的函数关系式,并指出自变量t 的取值范围;(4)当动点P 在线段AB 上移动时,能否在线段OA 上找到一点Q ,使四边形CQPD 为矩形请求出此时动点P 的坐标;若不能,请说明理由.9、(09年黄冈市)如图,在平面直角坐标系xoy中,抛物线21410189y x x=--与x轴的交点为点A,与y轴的交点为点B. 过点B作x轴的平行线BC,交抛物线于点C,连结AC.现有两动点P,Q分别从O,C两点同时出发,点P以每秒4个单位的速度沿OA向终点A移动,点Q以每秒1个单位的速度沿CB向点B移动,点P停止运动时,点Q也同时停止运动,线段OC,PQ 相交于点D,过点D作DE∥OA,交CA于点E,射线QE交x轴于点F.设动点P,Q移动的时间为t(单位:秒)(1)求A,B,C三点的坐标和抛物线的顶点的坐标;(2)当t为何值时,四边形PQCA为平行四边形请写出计算过程;(3)当0<t<92时,△PQF的面积是否总为定值若是,求出此定值, 若不是,请说明理由;(4)当t为何值时,△PQF为等腰三角形请写出解答过程.提示:第(3)问用相似比的代换,得PF=OA(定值)。
第(4)问按哪两边相等分类讨论①PQ=PF,②PQ=FQ,③QF=PF.三.直线上动点8、(2009年湖南长沙)如图,二次函数2y ax bx c=++(0a≠)的图象与x轴交于A B、两点,与y轴相交于点C.连结AC BC A C、,、两点的坐标分别为(30)A-,、(03)C,,且当4x=-和2x=时二次函数的函数值y相等.(1)求实数a b c,,的值;(2)若点M N、同时从B点出发,均以每秒1个单位长度的速度分别沿BA BC、边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t秒时,连结MN,将BMN△沿MN翻折,B点恰好落在AC边上的P处,求t的值及点P的坐标;(3)在(2)的条件下,二次函数图象的对称轴上是否存在点Q,使得以B N Q,,为项点的三角形与ABC△相似如果存在,请求出点Q的坐标;如果不存在,请说明理由.提示:第(2)问发现特殊角∠CAB=30°,∠CBA=60°特殊图形四边形BNPM为菱形;第(3)问注意到△ABC为直角三角形后,按直角位置对应分类;先画出与△ABC相似的△BNQ ,再判断是否在对称轴上。
9、(2009眉山)如图,已知直线112y x=+与y轴交于点A,与x轴交于点D,抛物线212y x bx c=++与直线交于A、E两点,与x轴交于B、C两点,且B点坐标为 (1,0)。
⑴求该抛物线的解析式;⑵动点P在x轴上移动,当△PAE是直角三角形时,求点P的坐标P。
⑶在抛物线的对称轴上找一点M,使||AM MC-的值最大,求出点M的坐标。
提示:第(2)问按直角位置分类讨论后画出图形----①P为直角顶点AE为斜边时,以AE为直径画圆与x轴交点即为所求点P,②A为直角顶点时,过点A作AE垂线交x轴于点P,③E为直角顶点时,作法同②;第(3)问,三角形两边之差小于第三边,那么等于第三边时差值最大。
10、(2009年兰州)如图①,正方形 ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在第一象限.动点P在正方形 ABCD的边上,从点A出发沿A→B→C→D匀速运动,同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动,设运动的时间为t秒.(1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;(2)求正方形边长及顶点C的坐标;(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标;(4)如果点P、Q保持原速度不变,当点P沿A→B→C→D匀速运动时,OP与PQ能否相等,若能,写出所有符合条件的t的值;若不能,请说明理由.注意:第(4)问按点P分别在AB、BC、CD边上分类讨论;求t值时,灵活运用等腰三角形“三线合一”。
11、(2009年北京市)如图,在平面直角坐标系xOy中,△ABC三个顶点的坐标分别为()6,0A-,()6,0B,(0,43C,延长AC到点D,使CD=12AC,过点D作DE∥AB交BC的延长线于点E.(1)求D点的坐标;(2)作C点关于直线DE的对称点F,分别连结DF、EF,若过B点的直线y kx b =+将四边形CDFE分成周长相等的两个四边形,确定此直线的解析式;(3)设G为y轴上一点,点P从直线y kx b=+与y轴的交点出发,先沿y轴到达G点,再沿GA 到达A 点,若P 点在y 轴上运动的速度是它在直线GA 上运动速度的2倍,试确定G 点的位置,使P 点按照上述要求到达A 点所用的时间最短。