命题与条件

合集下载

1.2命题、充分、必要条件

1.2命题、充分、必要条件

2.教材改编
链接教材
练一练
(1)(选修2-1P21复习题一B组T2改编)命题“若a,b都是无理数,则a+b 是无理数”的逆否命题是 ,其命题的真假情况是 .
【解析】“a,b都是无理数”的否定是“a,b不都是无理数”,“a+b 是无理数”的否定是“a+b不是无理数”,故逆否命题为:若“a+b不是 无理数,则a,b不都是无理数”,是假命题. 答案:若a+b不是无理数,则a,b不都是无理数 假命题
【解题提示】验证充分性与必要性. 【解析】选D.“a>b”推不出“a2>b2”, 例如,2>-3,但4<9; “a2>b2”也推不出“a>b”, 例如,9>4,但-3<2.
(2)(2014·浙江高考)设四边形ABCD的两条对角线为AC,BD,则“四边 形ABCD为菱形”是“AC⊥BD”的 A.充分不必要条件 C.充分必要条件 ( )
所以命题p不是q的充分条件;
因为若x0是极值点,则f′(x0)=0, 所以命题p是q的必要条件.
2.(2013·湖南高考)“1<x<2”是“x<2”成立的
(
)
A.充分不必要条件
B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 【解析】选A.因为集合(1,2)是集合(-≦,2)的真子集,所以“1<x<2” 是“x<2”成立的充分不必要条件,故选A.
命题角度3:等价转化法判断充分条件、必要条件
【典例4】(2013·山东高考)给定两个命题p,q.若﹁p是q的必要而不
充分条件,则p是﹁q的 A.充分而不必要条件 C.充要条件 ( ) B.必要而不充分条件 D.既不充分也不必要条件

命题和条件

命题和条件

的逆命题是(
)
A.若a≠-b,则|a|≠|b| B.若a=-b,则|a|≠|b|
C.若|a|≠|b|,则a≠-b
D.若|a|=|b|,则a=-b 【解析】 交换条件与结论,逆命题是:若|a|=|b|,则a=-b.
【答案】 D
2.(2011·浙江高考)设a,b为实数,则“0<ab<1”是“b<”的 ( )
A.充分而不必要条件 C.充要条件
【解析】 若a=2,则(a-1)(a-2)=0,
但(a-1)(a-2)=0,有a=1或a=2 ∴“a=2”是“(a-1)(a-2)=0”的充分不必要条件.
【答案】 A
π 3 4.在△ABC 中,“A= ”是“sin A= ”的________ 3 2 条件.
π 3 【解析】 当 A= 时,sin A= ; 3 2 3 π 2 但 sin A= 时,A= 或 A= π. 2 3 3 π 3 ∴“A= ”是“sin A= ”的充分不必要条件. 3 2
) 得 0 x≤0 或 x≥4 由 x( 4 x ≤ ∵命题 Q 假,∴ B={x|x≤0 或 x≥4}. 则{x|x≥3 或 x≤-1}∩{x|x≤0 或 x≥4} ={x|x≤-1 或 x≥4}; ∴A∩B=(-∞,-1]∪[4,+∞)
2
2
提高练习 : x (4 x ) ≤ 0 已知命题 P: lg(x 2 2 x 2) ≥ 0 的解集是 A; 命题 Q: 的解集是 B.若 P 是真命题,Q 是假命题,求 A∩ B.
解:由 lg(x -2x-2)≥0,得 x -2x-2≥1 ∴x≥3 或 x≤-1,∴ A , 1 3,
解:(l)若一个数是负数,则这个数的立方是负数; 真 结论 条件 (2)若一个四边形是正方形,则它的四条边相等. 真 结论 条件

命题及其关系、充分条件与必要条件

命题及其关系、充分条件与必要条件

命题及其关系、充分条件与必要条件1.命题2.四种命题及其相互关系 (1)四种命题间的相互关系:(2)四种命题中真假性的等价关系:原命题等价于逆否命题,原命题的否命题等价于逆命题.在四种形式的命题中真命题的个数只能是0,2,4.3.充要条件p ⇒q 且q ppq 且q ⇒p p ⇔qpq 且qp1.下列命题是真命题的为( ) A .若1x =1y ,则x =y B .若x 2=1,则x =1 C .若x =y ,则x =yD .若x <y ,则x 2<y 2解析:选A 由1x =1y 易得x =y ;由x 2=1,得x =±1;若x =y <0,则x 与y 均无意义; 若x =-2,y =1,虽然x <y ,但x 2>y 2. 所以真命题为A.2.已知集合A ={1,m 2+1},B ={2,4},则“m =3”是“A ∩B ={4}”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A A ∩B ={4}⇒m 2+1=4⇒m =±3,故“m =3”是“A ∩B ={4}”的充分不必要条件.3.已知命题:若m >0,则方程x 2+x -m =0有实数根.则其逆否命题为________________________________________________________________________.答案:若方程x 2+x -m =0无实根,则m ≤01.易混淆否命题与命题的否定:否命题是既否定条件,又否定结论,而命题的否定是只否定命题的结论.2.易忽视A 是B 的充分不必要条件(A ⇒B 且B ⇒/A )与A 的充分不必要条件是B (B ⇒A 且A ⇒/B )两者的不同.[小题纠偏]1.设x ∈R ,则“x >1”是“x 3>1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选C ∵x >1,∴x 3>1,又x 3-1>0,即(x -1)(x 2+x +1)>0,解得x >1,∴“x >1”是“x 3>1”的充要条件.2.“在△ABC 中,若∠C =90°,则∠A ,∠B 都是锐角”的否命题为:________________.解析:原命题的条件:在△ABC 中,∠C =90°, 结论:∠A ,∠B 都是锐角.否命题是否定条件和结论. 即“在△ABC 中,若∠C ≠90°,则∠A ,∠B 不都是锐角”. 答案:在△ABC 中,若∠C ≠90°,则∠A ,∠B 不都是锐角考点一 命题及其相互关系(基础送分型考点——自主练透)[题组练透]1.命题“若a2>b2,则a>b”的否命题是()A.若a2>b2,则a≤b B.若a2≤b2,则a≤bC.若a≤b,则a2>b2D.若a≤b,则a2≤b2解析:选B根据命题的四种形式可知,命题“若p,则q”的否命题是“若綈p,则綈q”.该题中,p为a2>b2,q为a>b,故綈p为a2≤b2,綈q为a≤b.所以原命题的否命题为:若a2≤b2,则a≤b.2.命题“若x2+3x-4=0,则x=-4”的逆否命题及其真假性为()A.“若x=4,则x2+3x-4=0”为真命题B.“若x≠4,则x2+3x-4≠0”为真命题C.“若x≠4,则x2+3x-4≠0”为假命题D.“若x=4,则x2+3x-4=0”为假命题解析:选C根据逆否命题的定义可以排除A,D,因为x2+3x-4=0,所以x=4或-1,故原命题为假命题,即逆否命题为假命题.3.(易错题)给出以下四个命题:①“若x+y=0,则x,y互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若q≤-1,则x2+x+q=0有实根”的逆否命题;④若ab是正整数,则a,b都是正整数.其中真命题是________.(写出所有真命题的序号)解析:①命题“若x+y=0,则x,y互为相反数”的逆命题为“若x,y互为相反数,则x+y=0”,显然①为真命题;②不全等的三角形的面积也可能相等,故②为假命题;③原命题正确,所以它的逆否命题也正确,故③为真命题;④若ab是正整数,但a,b不一定都是正整数,例如a=-1,b=-3,故④为假命题.答案:①③[谨记通法]1.写一个命题的其他三种命题时的2个注意点(1)对于不是“若p,则q”形式的命题,需先改写;(2)若命题有大前提,写其他三种命题时需保留大前提.如“题组练透”第3题②易忽视.2.命题真假的2种判断方法(1)联系已有的数学公式、定理、结论进行正面直接判断.(2)利用原命题与逆否命题,逆命题与否命题的等价关系进行判断.考点二充分必要条件的判定(重点保分型考点——师生共研)[典例引领]1.设a,b是非零向量,“a·b=|a||b|”是“a∥b”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析:选A a·b=|a||b|cos〈a,b〉.而当a∥b时,〈a,b〉还可能是π,此时a·b=-|a||b|,故“a·b=|a||b|”是“a∥b”的充分而不必要条件.2.设x∈R,则“|x-2|<1”是“x2+x-2>0”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解析:选A|x-2|<1⇔1<x<3,x2+x-2>0⇔x>1或x<-2.由于{x|1<x<3}是{x|x>1或x<-2}的真子集,所以“|x-2|<1”是“x2+x-2>0”的充分而不必要条件.3.已知条件p:x+y≠-2,条件q:x,y不都是-1,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A因为p:x+y≠-2,q:x≠-1,或y≠-1,所以綈p:x+y=-2,綈q:x=-1,且y=-1,因为綈q⇒綈p但綈p⇒/綈q,所以綈q是綈p的充分不必要条件,即p是q的充分不必要条件.[由题悟法]充要条件的3种判断方法(1)定义法:根据p⇒q,q⇒p进行判断;(2)集合法:根据p,q成立的对象的集合之间的包含关系进行判断;(3)等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题,如“xy≠1”是“x≠1或y≠1”的某种条件,即可转化为判断“x=1且y=1”是“xy=1”的某种条件.[即时应用]1.若p:|x|=x,q:x2+x≥0.则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A设p:{x||x|=x}={x|x≥0}=A,q:{x|x2+x≥0}={x|x≥0或x≤-1}=B,∵A B,∴p是q的充分不必要条件.2.设四边形ABCD的两条对角线为AC,BD,则“四边形ABCD为菱形”是“AC⊥BD”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:选A当四边形ABCD为菱形时,必有对角线互相垂直,即AC⊥BD;当四边形ABCD中AC⊥BD时,四边形ABCD不一定是菱形,还需要AC与BD互相平分.综上知,“四边形ABCD为菱形”是“AC⊥BD”的充分不必要条件.考点三充分必要条件的应用………………………(题点多变型考点——纵引横联) [典型母题]已知P={x|x2-8x-20≤0},非空集合S={x|1-m≤x≤1+m}.若x∈P是x∈S 的必要条件,求m的取值范围.[解]由x2-8x-20≤0,得-2≤x≤10,∴P={x|-2≤x≤10},由x∈P是x∈S的必要条件,知S⊆P.则{1-m≤1+m,1-m≥-2,1+m≤10,∴0≤m≤3.所以当0≤m≤3时,x∈P是x∈S的必要条件,即所求m的取值范围是[0,3].[类题通法]根据充要条件求参数的值或取值范围的关键:先合理转化条件,常通过有关性质、定理、图象将恒成立问题和有解问题转化为最值问题等,得到关于参数的方程或不等式(组),再通过解方程或不等式(组)求出参数的值或取值范围.[越变越明][变式1] 母题条件不变,问是否存在实数m ,使x ∈P 是x ∈S 的充要条件. 解:若x ∈P 是x ∈S 的充要条件,则P =S ,∴⎩⎪⎨⎪⎧ 1-m =-2,1+m =10,∴⎩⎪⎨⎪⎧m =3,m =9,即不存在实数m ,使x ∈P 是x ∈S 的充要条件.[变式2] 母题条件不变,若綈P 是綈S 的必要不充分条件,求实数m 的取值范围. 解:由母题知P ={x |-2≤x ≤10}, ∵綈P 是綈S 的必要不充分条件, ∴P ⇒S 且S ⇒/P .∴[-2,10][1-m,1+m ].∴⎩⎪⎨⎪⎧ 1-m ≤-2,1+m >10或⎩⎪⎨⎪⎧1-m <-2,1+m ≥10.∴m ≥9,即m 的取值范围是[9,+∞).本题运用等价法求解,也可先求綈P ,綈S ,再利用集合法列出不等式,求出m 的范围.的必要不充分条件,求m 的取值范围.解:记P ={x |(x -m )2>3(x -m )}={x |(x -m )(x -m -3)>0}={x |x <m 或x >m +3},S ={x |x 2+3x -4<0}={x |(x +4)(x -1)<0}={x |-4<x <1},p 是s 成立的必要不充分条件,即等价于SP .所以m +3≤-4或m ≥1,解得m ≤-7或m ≥1. 即m 的取值范围为(-∞,-7]∪[1,+∞).一抓基础,多练小题做到眼疾手快 1.“(2x -1)x =0”是“x =0”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件[破译玄机]解析:选B 若(2x -1)x =0,则x =12或x =0,即不一定是x =0;若x =0,则一定能推出(2x -1)x =0.故“(2x -1)x =0”是“x =0”的必要不充分条件.2.命题“若α=π4,则tan α=1”的逆否命题是( )A .若α≠π4,则tan α≠1B .若α=π4,则tan α≠1C .若tan α≠1,则α≠π4D .若tan α≠1,则α=π4解析:选C 命题“若α=π4,则tan α=1”的逆否命题是“若tan α≠1,则α≠π4”.3.原命题p :“设a ,b ,c ∈R ,若a >b ,则ac 2>bc 2”以及它的逆命题、否命题、逆否命题中,真命题的个数为( )A .0B .1C .2D .4解析:选C 当c =0时,ac 2=bc 2,所以原命题是错误的;由于原命题与逆否命题的真假一致,所以逆否命题也是错误的;逆命题为“设a ,b ,c ∈R ,若ac 2>bc 2,则a >b ”,它是正确的;由于否命题与逆命题的真假一致,所以逆命题与否命题都为真命题.综上所述,真命题有2个.4.已知p :|x |<2;q :x 2-x -2<0,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B 由x 2-x -2<0,得(x -2)(x +1)<0,解得-1<x <2;由|x |<2得-2<x <2.注意到由-2<x <2不能得知-1<x <2,即由p 不能得知q ;反过来,由-1<x <2可知-2<x <2,即由q 可得知p .因此,p 是q 的必要不充分条件.5.已知集合A ,B ,全集U ,给出下列四个命题: ①若A ⊆B ,则A ∪B =B ; ②若A ∪B =B ,则A ∩B =B ; ③若a ∈(A ∩∁U B ),则a ∈A ; ④若a ∈∁U (A ∩B ),则a ∈(A ∪B ) 其中真命题的个数为( ) A .1B .2C.3D.4解析:选B①正确;②不正确,由A∪B=B可得A⊆B,所以A∩B=A;③正确;④不正确.二保高考,全练题型做到高考达标1.已知复数z=a+3ii(a∈R,i为虚数单位),则“a>0”是“z在复平面内对应的点位于第四象限”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选C z=a+3ii=-(a+3i)i=3-a i,若z位于第四象限,则a>0,反之也成立,所以“a>0”是“z在复平面内对应的点位于第四象限”的充要条件.2.命题“a,b∈R,若a2+b2=0,则a=b=0”的逆否命题是()A.a,b∈R,若a≠b≠0,则a2+b2=0B.a,b∈R,若a=b≠0,则a2+b2≠0C.a,b∈R,若a≠0且b≠0,则a2+b2≠0D.a,b∈R,若a≠0或b≠0,则a2+b2≠0解析:选D a=b=0的否定为a≠0或b≠0;a2+b2=0的否定为a2+b2≠0.3.如果x,y是实数,那么“x≠y”是“cos x≠cos y”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件解析:选C设集合A={(x,y)|x≠y},B={(x,y)|cos x≠cos y},则A的补集C={(x,y)|x=y},B的补集D={(x,y)|cos x=cos y},显然C D,所以B A.于是“x≠y”是“cos x≠cos y”的必要不充分条件.4.下列说法正确的是()A.命题“若x2=1,则x=1”的否命题是“若x2=1,则x≠1”B.“x=-1”是“x2-x-2=0”的必要不充分条件C.命题“若x=y,则sin x=sin y”的逆否命题是真命题D.“tan x=1”是“x=π4”的充分不必要条件解析:选C由原命题与否命题的关系知,原命题的否命题是“若x2≠1,则x≠1”,即A不正确;因为x2-x-2=0,所以x=-1或x=2,所以由“x=-1”能推出“x2-x-2=0”,反之,由“x 2-x -2=0”推不出“x =-1”,所以“x =-1”是“x 2-x -2=0”的充分不必要条件,即B 不正确;因为由x =y 能推得sin x =sin y ,即原命题是真命题,所以它的逆否命题是真命题,故C 正确;由x =π4能推得tan x =1,但由tan x =1推不出x=π4,所以“tan x =1”是“x =π4”的必要不充分条件,即D 不正确. 5.若条件p :|x |≤2,条件q :x ≤a ,且p 是q 的充分不必要条件,则a 的取值范围是( )A .a ≥2B .a ≤2C .a ≥-2D .a ≤-2解析:选A 因为|x |≤2,则p :-2≤x ≤2,q :x ≤a ,由于p 是q 的充分不必要条件,则p 对应的集合是q 对应的集合的真子集,所以a ≥2.6.在命题“若m >-n ,则m 2>n 2”的逆命题、否命题、逆否命题中,假命题的个数是________.解析:若m =2,n =3,则2>-3,但22<32,所以原命题为假命题,则逆否命题也为假命题,若m =-3,n =-2,则(-3)2>(-2)2,但-3<2,所以逆命题是假命题,则否命题也是假命题.故假命题的个数为3.答案:37.设等比数列{a n }的公比为q ,前n 项和为S n ,则“|q |=1”是“S 4=2S 2”的________条件.解析:∵等比数列{a n }的前n 项和为S n ,又S 4=2S 2, ∴a 1+a 2+a 3+a 4=2(a 1+a 2),∴a 3+a 4=a 1+a 2,∴q 2=1⇔|q |=1,∴“|q |=1”是“S 4=2S 2”的充要条件. 答案:充要8.已知p (x ):x 2+2x -m >0,若p (1)是假命题,p (2)是真命题,则实数m 的取值范围为________.解析:因为p (1)是假命题,所以1+2-m ≤0,解得m ≥3;又p (2)是真命题,所以4+4-m >0,解得m <8.故实数m 的取值范围是[3,8).答案:[3,8)9.已知α:x ≥a ,β:|x -1|<1.若α是β的必要不充分条件,则实数a 的取值范围为________. 解析:α:x ≥a ,可看作集合A ={x |x ≥a }, ∵β:|x -1|<1,∴0<x <2, ∴β可看作集合B ={x |0<x <2}. 又∵α是β的必要不充分条件, ∴B A ,∴a ≤0. 答案:(-∞,0]10.已知集合A =⎩⎨⎧⎭⎬⎫y ⎪⎪y =x 2-32x +1,x ∈⎣⎡⎦⎤34,2,B ={x |x +m 2≥1}.若“x ∈A ”是“x ∈B ”的充分条件,求实数m 的取值范围.解:y =x 2-32x +1=⎝⎛⎭⎫x -342+716, ∵x ∈⎣⎡⎦⎤34,2,∴716≤y ≤2, ∴A =⎩⎨⎧⎭⎬⎫y ⎪⎪716≤y ≤2. 由x +m 2≥1,得x ≥1-m 2, ∴B ={x |x ≥1-m 2}.∵“x ∈A ”是“x ∈B ”的充分条件, ∴A ⊆B ,∴1-m 2≤716, 解得m ≥34或m ≤-34,故实数m 的取值范围是⎝⎛⎦⎤-∞,-34∪⎣⎡⎭⎫34,+∞. 三上台阶,自主选做志在冲刺名校 1.下列结论错误的是( )A .命题“若x 2-3x -4=0,则x =4”的逆否命题为“若x ≠4,则x 2-3x -4≠0”B .“x =4”是“x 2-3x -4=0”的充分条件C .命题“若m >0,则方程x 2+x -m =0有实根”的逆命题为真命题D .命题“若m 2+n 2=0,则m =0且n =0”的否命题是“若m 2+n 2≠0,则m ≠0或n ≠0”解析:选C C 项命题的逆命题为“若方程x 2+x -m =0有实根,则m >0”. 若方程有实根,则Δ=1+4m ≥0,即m ≥-14,不能推出m >0,所以不是真命题.2.函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,-2x+a ,x ≤0有且只有一个零点的充分不必要条件是( ) A .a <0 B .0<a <12C.12<a <1 D .a ≤0或a >1解析:选A 因为函数f (x )过点(1,0),所以函数f (x )有且只有一个零点⇔函数y =-2x+a (x ≤0)没有零点⇔函数y =2x (x ≤0)与直线y =a 无交点.数形结合可得,a ≤0或a >1,即函数f (x )有且只有一个零点的充要条件是a ≤0或a >1,应排除D ;当0<a <12时,函数y =-2x +a (x ≤0)有一个零点,即函数f (x )有两个零点,应排除B ;同理,排除C.3.已知集合A ={x |x 2-4mx +2m +6=0},B ={x |x <0},若命题“A ∩B =∅”是假命题,求实数m 的取值范围.解:因为“A ∩B =∅”是假命题,所以A ∩B ≠∅.设全集U ={m |Δ=(-4m )2-4(2m +6)≥0},则U =⎩⎨⎧⎭⎬⎫m | m ≤-1或m ≥32. 假设方程x 2-4mx +2m +6=0的两根x 1,x 2均非负,则有⎩⎪⎨⎪⎧ m ∈U ,x 1+x 2≥0,x 1x 2≥0即⎩⎪⎨⎪⎧ m ∈U ,4m ≥0,2m +6≥0解得m ≥32.又集合⎩⎨⎧⎭⎬⎫m | m ≥32关于全集U 的补集是{m |m ≤-1},所以实数m 的取值范围是(-∞,-1].。

高中数学—命题和充要条件—学生版

高中数学—命题和充要条件—学生版

命题和充要条件知识梳理 一、命题的概念1、一般地,我们把可以判断真假的语句叫做命题。

2、命题通常用陈述句表示,正确的命题叫做真命题,错误的命题叫做假命题。

3、一般地,如果命题α成立可以推出命题β也成立,那么就说由可以推出,记作βα⇒。

相反的,如果成立不能推出成立,那么就说由不可以推出,记作αβ。

4、如果,并且αβ⇒,那么就说与等价,记作βα⇔。

二、四种命题形式1、一个数学命题用条件,结论表示就是“如果α,那么”,把结论与条件交换,就得到一个新命题“如果 ,那么”,我们把这个命题叫做原命题的逆命题。

2、如果一个命题的条件与结论分别是另一个命题的条件与结论的否定,我们把这两个命题叫做互否命题。

如果其中一个叫做原命题,那么另外一个叫做原命题的否命题。

3、命题、的否定分别记作α、β。

4、如果把原命题“如果,那么”结论的否定作条件,把条件的否定作结论,那么就可以得到一个新命题,我们将它叫做原命题的逆否命题。

5、四种命题形式及其相互关系:6、常见结论的否定形式:(拓展内容)三、充要条件1、充分条件与必要条件:一般地,用α、β分别表示两个命题,如果成立,可以推出也成立,即,那么叫做的充分条件。

叫做的必要条件。

2、充要条件:如果既有,又有,即有βα⇔,那么既是的充分条件又是的必要条件,这时我们就说是的充要条件。

例题解析一、有关命题的概念【例1】判断下列语句是否是命题:⑴张三是四川人;⑵1010是个很大的数;⑶220x x +=;⑷260x +>;⑸112+>;【例2】判断下列语句是不是命题,若是,判断出其真假,若不是,说明理由. (1)矩形难道不是平行四边形吗?(2)垂直于同一条直线的两条直线必平行吗?(3)求证:R x ∈,方程012=++x x 无实根.(4)5>x(5)人类在2020年登上火星.【例3】下面有四个命题:①若a -不属于N ,则a 属于N ;②若a b ∈∈N N ,,则a b +的最小值为2;③212x x +=的解可表示为{}11,.其中真命题的个数为( )A .0个B .1个C .2个D .3个【例4】下列判断中正确的是 ( ).A. “12是偶数且是18的约数”是真命题B. “方程210x x ++=没有实数根”是假命题C. “存在实数x ,使得23x +≤且216x >”是真命题D. “三角形的三个内角的和大于或等于120︒”是假命题【例5】对于直角坐标平面内的任意两点11(),A x y 、22(),B x y ,定义它们之间的一种“距离”: 1212AB x x y y =-+-.给出下列三个命题:①若点C 在线段AB 上,则AC CB AB +=; ②在ABC ∆中,若90C ∠=︒,则222AC CB AB +=; ③在ABC ∆中,AC CB AB +>.其中真命题的个数为( )A .1个B .2个C .3个D .4个【巩固训练】1、判断命题真假:如果2a <,那么2a < ( )2、若[]2,5x ∈和{}|14x x x x ∈<>或都是假命题,则x 的范围是__________3、已知,A B 是两个集合,下列四个命题:①B ,A x A x B ⇔∈∉不包含于对任意有②B A A B ⇔⋂=∅不包含于③B A A ⇔不包含于不包含B ④B ,A x A x B ⇔∈∉不包含于存在,其中真命题的序号是4、下面有四个命题:①集合N 中最小的数是1;②若a -不属于N ,则a 属于N ;③若,,N b N a ∈∈则b a +的最小值为2;④x x 212=+的解可表示为{}1,1.其中真命题的个数为( )A .0个B .1个C .2个D .3个二、命题的四种形式及其关系【例6】命题“若x y =,则||||x y =”,写出它的逆命题、否命题、逆否命题,并判断它们的真假【例7】有4个命题:(1)没有男生爱踢足球;(2)所有男生都不爱踢足球;(3)至少有一个男生不爱踢足球;(4)所有女生都爱踢足球;其中是命题“所有男生都爱踢足球”的否定是_______【例8】写出命题“若b a ,都是偶数,则b a +是偶数”的逆命题,否命题,逆否命题,并判断它们的真假.【例9】写出下列命题的逆命题,否命题,逆否命题,并判断它们的真假. ⑴“负数的平方是正数”;⑵“若a 和b 都是偶数,则a b +是偶数”; ⑶“当0c >时,若a b >,则ac bc >”; ⑷“若5x y +=,则3x =且2y =”;【例10】已知命题p :方程210x mx ++=有两个不相等的实负根,命题q :方程24(2)10x m x +-+=无实根;若p 与q 中有且仅有一个为真命题,求实数m 的取值范围.【巩固训练】1、有下列四个命题:①“若0x y +=,则,x y 互为相反数”的逆命题; ②“全等三角形的面积相等”的否命题;③“若1q ≤,则220x x q ++=有实根”的逆否命题; ④“等边三角形的三个内角相等”逆命题; 其中真命题的个数为( ) A .1 B .2 C .3 D .42、原命题:“设a b c ∈R ,,,若a b >,则22ac bc >”以及它的逆命题、否命题、逆否命题中,真命题共有( )个. A .0 B .1 C .2 D .43、命题:“若21x <,则11x -<<”的逆否命题是( )A .若21x ≥,则1x ≥或1x -≤B .若11x -<<,则21x <C .若1x >或1x <-,则21x >D .若1x ≥或1x -≤,则21x ≥4、有下列四个命题:①命题“若1xy =,则x ,y 互为倒数”的逆命题;②命题“面积相等的三角形全等”的否命题;③命题“若1≤m ,则220x x m -+=有实根”的逆否命题;④命题“若A B B =I ,则A B ⊆”的逆否命题. 其中是真命题的是 (填上你认为正确的命题的序号).5.原命题的否命题是“三条边相等的三角形是等边三角形”,原命题的逆命题是三、有关等价命题【例12】与命题“,,不全是负数”等价的命题是( ) A 、,,中至少有一个是正数 B 、,,全不是负数C 、,,中只有一个是负数D 、,,中至少有一个是非负数 【例13】与“一元二次方程有一正根、一负根”等价的命题是( D )A 、B 、C 、D 、【例14】命题:已知a ,b 为实数,若20x ax b ++≤有非空解集,则240a b -≥。

第一章第三节充分条件、必要条件与命题的四种形式

第一章第三节充分条件、必要条件与命题的四种形式
返回
5.(教材习题改编)设集合M={1,2},N={a2},则 “a=1”是“N⊆M”的________条件.
解析:若N⊆M,则需满足a2=1或a2=2,解得a=±1或 a=± 2.故“a=1”是“N⊆M”的充分不必要条件.
答案:充分不必要
返回
返回
1.充分条件与必要条件的两个特征. (1)对称性:若p是q的充分条件,则q是p的必要条件,即
D.既不充分又不必要条件
解析:|x|>1⇔x>1或x<-1,故x>1⇒|x|>1,但|x|>1x>1, ∴|x|>1是x>1的必要不充分条件.
答案:B
返回
2.(2019·福建高考)若向量a=(x,3)(x∈R),则“x=4”是
“|a|=5”的
()
A.充分而不必要条件 B.必要而不充分条件
C.充要条件
返回
怎么考 1. 本部分主要考查四种命题的概念及其相互关系,考查
充分条件、必要条件、充要条件的概念及应用. 2. 题型主要以选择题、填空题的形式出现,常与集合、
不等式、几何等知识相结合命题.
返回
返回
一、充分条件、必要条件与充要条件 1.“若p,则q”形式的命题为真时,记作p⇒q,称p是q
的充分条件,q是p的 必要 条件. 2.如果既有p⇒q,又有q⇒p,记作p⇔q,则p是q的 充
返回
返回
[精析考题]
[例1] (2019·山东高考)已知a,b,c∈R,命题“若a+b+c=
3,则a2+b2+c2≥3”的否命题是
()
A.若a+b+c≠3,则a2+b2+c2<3
B.若a+b+c=3,则a2+b2+c2<3
C.若a+b+c≠3,则a2+b2+c2≥3

命题及其关系、充分条件与必要条件

命题及其关系、充分条件与必要条件
06
【例2】 若ab≠0,试证a3+b3+ab-a2-b2=0成立的充要条件是a+b=1. 证明:先证必要性:∵a3+b3+ab-a2-b2=0, ∴(a+b)·(a2-ab+b2)-(a2-ab+b2)=0,即(a+b-1)(a2-ab+b2)=0, 又ab≠0, ∴a2-ab+b2= ≠0,因此a+b-1=0,即a+b=1. 再证充分性:∵a+b=1,即a+b-1=0,∴(a+b-1)(a2-ab+b2)=0. 即a3+b3+ab-a2-b2=0.
变式3. 设{an}是公比为q的等比数列,Sn是它的前n项和. 求证:数列{Sn}不是等比数列; 数列{Sn}是等差数列吗?为什么? 解答:(1)证明:证法一:(反证法)若{Sn}是等比数列, 则 =S1S3,即 ∵a1≠0,∴(1+q)2=1+q+q2,即q=0与q≠0矛盾,故{Sn}不是等比数列
01
(了解逻辑联结词“或”“且”“非”的含义/理解全称量词与存在量词的意义/能正确地对含有一个量词的命题进行否定 )
02
逻辑联结词全称量词与存在量词
命题中的“且”、“或”、“非”叫做逻辑联结词. 用来判断复合命题的真假的真值表 真 假 假 假
至少 ∀ 全称 存在
01
02
5.命题的否定 (1)全称命题的否定是 命题;特称命题的否定是 命题. (2)p或q的否定为:非p且非q;p且q的否定为:非p或非q.
否则S1,S2,S3成等差数列,即2S2=S1+S3.∴2a1(1+q)=a1+a1(1+q+q2).
∵a1≠0,∴2(1+q)=2+q+q2,q=q2,∵q≠1,∴q=0与q≠0矛盾.
【方法规律】
1.对命题正误的判断,正确的命题要加以论证;不一定正确的命题要举出反例,这是最基本的数学思维方式.在判断命题正误的过程中,要注意简单 命题与复合命题之间的真假关系;要注意命题四种形式之间的真假关系. 2.在充分条件、必要条件和充要条件的判断过程中,可利用图示这种数形结合的思想方法;在证明充要条件时,首先要弄清充分性和必要性. 3.特殊情况下如果命题以p:x∈A,q:x∈B的形式出现,则有:(1)若A⊆B,则p 是q的充分条件;(2)若B⊆A,则p是q的必要条件;(3)若A=B,则p是q的充要条件.

命题与条件

命题与条件
2012年5月18日星期五 年 月 日星期五
知识要点
● ●
命题的概念 四种命题及其关系
原命题 若 P则 Q
互 互 否 否 互逆
逆命题 若 Q则 P
否命题 若¬P则¬Q Q
互逆
逆否命题 若¬Q则¬P P
● 充分条件与必要条件
若P ⇒ Q,则P是Q的充分条件 ;Q是P的 必要条件
由上述定义中, 由上述定义中,“p⇒q”即如果具备了条件 ,就足 ⇒ ”即如果具备了条件p, (1)若P Q,且Q P,则P是Q的 充分不必要条件 , 以保证q成立 所以p是 的充分条件 这点容易理解, 成立, 的充分条件, 以保证 成立,所以 是q的充分条件,这点容易理解, . 但同时说q是 的必要条件 Q是P的 必要不充分条件 的必要条件,这是为什么呢?特别是q是 但同时说 是p的必要条件 这是为什么呢?特别是 是 结论,怎么又变为条件呢? 结论,怎么又变为条件呢? (2)若Q P,且P Q,则P是Q的 必要不充分条件 , 应注意条件和结论是相对而言的. 应注意条件和结论是相对而言的.由“p⇒q”等价 ⇒ ” 命题“ ⇒ ” 即若q不成立 充分不必要条件 不成立, 就不成立, 命题“┐q⇒┐p”,即若 不成立,则p就不成立,故 就不成立 Q是P的 . q就是 成立的必要条件了 就是p成立的必要条件了 就是 成立的必要条件了. (3)若P Q,则P与Q互为 充要条件 .
1 n n −1 两式相减得 = − an an +1 a1an +1 a1an
于是有a1 = (n + 1)an +1 − nan + 2 ................ ( 2 )
所以a1 = nan − (n − 1)an +1................... (1)

必要条件与命题的四种形式

必要条件与命题的四种形式
3)若 AB ,且 BA ,则甲是乙的 既不充分也不必要条件
4)若A=B ,则甲是乙的充要条件。
7
典型例题
例 1、指出下列命题中,p 是 q 的什么条件.
⑴p: x 1 0 ,q: x 1 x 2 0 ; 充分不必要
⑵p:两直线平行,q:内错角相等; 充要 ⑶p: a b ,q: a2 b2 ; 既不充分也不必要 ⑷p:四边形的四条边相等,q:四边形是正方形.
原命题与逆否命题互为逆否关系 逆命题与否命题互为逆否关系
15
典型例题
例 3、写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假:
(1)若 x2 y2 0 ,则 x, y 全为 0
(2)正偶数不是质数
(3)若 a 0 ,则 a b 0
(4)相似的三角形是全等三角形
(1) (2) (3) (4) 原命题 真 假 真 假 逆命题 真 假 假 真 否命题 真 假 假 真 逆否命题 真 假 真 假
则它的逆命题为: 若q,则p, 即交换原命题的条件和结论即得其逆命题.
11
二、四种命题
对于两个命题,如果一个命题的条件和结论恰好是 另一个命题的条件的否定和结论的否定,那么我们把这 样的两个命题叫做互否命题.其中一个命题叫做原命题, 另一个叫做原命题的否命题.
即若将原命题表示为:若p,则q. 则它的否命题为:若p,则q,
解: p : 2 x 10, :
p q, q p
q :1 m x 1 m(m 0) m 9
判断方法:定义法、传递法、包含法、等价法
变式:若p是q 的充分而不必要条件,求实数m的取值
范围。
m0
1 m 10 0 m 3
1 m 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三讲 命题与条件
一、课前练习
已知函数2()1,,f x ax a R x R =-∈∈,集合 {}()A x f x x ==,集合[]{}
()B x f f x x ==, 且A B =≠∅,求实数a 的取值范围。

解:
二、知识要点
1、命题与推出关系
(1)命题:表示判断的语句叫做命题.一般由条件和结论构成.
(2)推出关系:如果α这件事成立可以推出β这件事也成立,那么就说由α可以推出β,记作:αβ⇒.
(3)正确的命题叫做真命题.确定一个命题是真命题必须作出证明,即证明满足命题条件能推出命题结
论;错误的命题叫做假命题. 确定一个命题是假命题只需举反例,即举出一个满足命题条件而不满足命题结论的例子.
例1、判断下列语句是否为命题?如果是命题,判断它们是真命题还是假命题?为什么?
(1) 你是高一学生吗?
(2) 过直线AB 外一点作该直线的平行线.
(3) 个位数是5的自然数能被5整除.
(4) 互为余角的两个角不相等.
(5) 竟然得到5>9的结果!
(6) 如果两个三角形的三个角分别对应相等,那么这两个三角形相似.
解:
由例1的(4)可以看到,要确定一个命题是假命题,只要举出一个满足命题的条件,而不满足其结论的例子即可,这在数学中称为“举反例”.
要确定一个命题是真命题,就必须作出证明,证明若满足命题的条件就一定能推出命题的结论. 一般地,如果事件α成立可以推出事件β也成立,那么就说由α可以推出β,并用记号 α⇒β表示,读作“α推出β”.换言之,α⇒β表示以α为条件,β为结论的命题是真命题. 如果事件α成立,而事件β不能成立,那么就说事件α不能推出事件β成立,可记作α
β.换言之,α
β表示以α为条件,β为结论的命题是一个假命题.
如果α⇒β,并且β⇒α,那么记作α⇔β,叫做α与β等价.
显然,推出关系满足传递性:α⇒β,β⇒γ,那么α⇒γ.
2、四种命题形式
如果用α和β分别表示原命题的条件和结论,用α和β分别表示α和β的否定,
那么四种命题形式是:
原命题:如果α,那么β.
逆命题:如果β,那么α.
否命题:如果α,那么β.
逆否命题:如果β,那么α.
其中原命题与逆否命题、逆命题与否命题互为逆否命题,同真或同假。

互为逆否命题的两个命题是等价命题.
3、充分条件与必要条件
如果αβ⇒,那么α是β的充分条件.
如果βα⇒,那么α是β的必要条件.
如果αβ⇒且βα⇒,即αβ⇔,那么α是β的充分而且必要条件,简称充要条件.
4、子集与推出关系
若{}A x x α=具有性质,{}
B x x β=具有性质,则A B ⊆与αβ⇒等价.
例2、判断下列命题的真假,并说明理由:
(1)三点确定一个圆;(2)若φ=B A ,则φφ==B A 或;
(3)设*N c b a ∈、、,若ab 是c 的整数倍,则b a 、中至少有一个是c 的整数倍;
(4)如果)0(02≠=++a c bx ax 中0<ac ,那么这个方程有实数根; (5)若C B B A ⊂≠,φ ,则φ≠C A 。

解:
例3、写出下列命题的否定形式:
(1)b a 、都是零;(2)方程0432=--x x 无实数根;
(3)我班至少有两个学生是三好学生;(4)存在实数x ,使得012=--x x 。

解:
注: “都是”----------“不都是”; “一定是”----------“一定不是”;
“至多一个”----------“至少两个”; “且”----------“或”;
“都不是”----------“至少有一个是”;“所有---都---”----------“至少有一个---不---”。

例4、写出命题“已知,x y R ∈,若0x >且0y >,则0xy >”的逆命题、否命题、逆否命题,并判断四
个命题的真假.
解:
例5、判断下列条件是结论的什么条件:
(1)集合“A B =”是“A C B C = ”的 条件.
(2)12,x x R ∈ ,则“0021>>x x 且”是“002121>⋅>+x x x x 且”的 条件.
(3),x y R ∈ ,则“2x >且2y >”是“4x y +>且4xy >”的 条件.
(4),x y R ∈ ,则“2x y +<”是“1x <且1y <”的 条件.
解:
例6、已知实系数一元二次方程()2
00ax bx c a ++=≠,试写出下列各条件的一个充要条件: (1)方程有一个正根、一个负根; (2)方程有两个正根; (3)方程有两个不同负根;
(4)方程有一个正根、一个根为0;(5)方程有一个根大于1、一个根小于1.
解:
例7、试用集合的包含关系说明α是β的什么条件.
(1) α:x =1,y =2 β:x+y =3
(2) α:正整数n 被5整除, β:正整数n 的个位数为5.
解:
例8、设α:1≤x ≤3,β:a+1≤x ≤2a -1,若α是β的必要条件,求实数a 的取值范围.
解:
例9、命题甲:关于x 的方程()()()2
441310x a x a a R -+++=∈有两个均小于2的不同实根.命题乙:关于x 的不等式()2
110a x ax a +-+-<对一切实数x 都成立.问:甲是乙的什么条件?并说明理由. 解:
例10、集合22{(,)|1},{(,)|42250},A x y y x B x y x x y ==+=+-+={(,)|}C x y y kx b ==+,问是
否存在自然数,k b 使得()A B C ⋃⋂=∅,并证明。

解:
三、巩固与提高
1、命题“对任意的x R ∈,3210x x -+≤”的否定是( )
(A )不存在x R ∈,3210x x -+≤ (B )存在x R ∈,3210x x -+≤
(C )存在x R ∈,3210x x -+> (D )对任意的x R ∈,3210x x -+>
2、设12,x x 是一元二次方程20ax bx c ++=的两实根,则122,2x x >>成立的必要条件是( )
A .121268x x x x +>⎧⎨⋅>⎩;
B .1212
44x x x x +<⎧⎨⋅<⎩; C .12124(2)(2)0x x x x +>⎧⎨-⋅->⎩; D .121244x x x x +>⎧⎨⋅>⎩. 3、若c b a ,,都是实数, 试从A 、0=ab ,B 、0=+b a , C 、022=+b a , D 、0>ab ,E 、0>+b a ,
F 、022>+b a 中分别选出适合下列条件的代号填空.
①使a 、b 都是0的充分条件是__________________;
②使a 、b 都不是0的充分条件是__________________;
③使a 、b 中至少有个是0的充要条件是__________________;
④使a 、b 中至少有一个不是0的充要条件是__________________.
4、若命题p 的逆命题是q ,命题p 的否命题是γ,则命题q 是命题γ的 。

5、设x y R ∈、 ,则“3x y +<”的 条件是“2,1x y <<”.
6、
“a ”的 条件是“1a >”。

7、“22x x =+
”是2
x =的 条件. 8、已知命题“a b c d ≥⇒>” 和“a b e f <⇔≤”都是真命题,则“c d ≤”是“e f ≤”的
条件。

9、已知原命题的否命题是“若3x ≠且2x ≠,则2560x x -+≠”,那么原命题的逆命题
是 .
10、写出命题:“设,,a b c R ∈,如果0a b c ===,那么2220a b c ++=.”的等价命题
________________________________________________。

11、设a b R ∈、,则“0a b +≠”的一个必要不充分条件是 .
12、关于x 的方程|x|-|x-1|=2a+1有解的充要条件是________________。

13、设a b c R ∈、、,若0abc =,则0a =或0b =或0c =.写出该命题的逆命题,否命题,逆否命题,
并判断上述四个命题的真假
解:
14、(1)写出命题“全等三角形两边和其中一边的对角对应相等”的逆命题;
(2)写出命题“若a ≠1或b ≠2,则a 2+b 2-2a -4b+5≠0”的否命题;
(3)写出命题“若a > 1/a ,则|a |>1”的逆否命题;
(4)写出命题“若A ⊆B ,则A B =B ”的逆否命题.
解:
15、设p :012=++mx x 有两个不相等的负实根;q :()244210x m x +-+=无实根;
若“p 或q ”为真,而“ p 且q ”为假,求实数m 的取值范围。

解:
16、已知抛物线2443y x ax a =+-+,()221y x a x a =+-+,2
22y x ax a =+-至少有一条与x 轴相交,求实数a 的取值范围。

解:。

相关文档
最新文档