《概率统计》期末考试题(有答案)

合集下载

(完整word版)概率论与数理统计期末试卷及答案

(完整word版)概率论与数理统计期末试卷及答案

一、选 择 题 (本大题分5小题, 每小题4分, 共20分) (1)设A 、B 互不相容,且P(A)>0,P(B)>0,则必有( )(A)0)(>A B P (B))()(A P B A P = (C)0)(=B A P (D))()()(B P A P AB P = (2)将3粒黄豆随机地放入4个杯子,则杯子中盛黄豆最多为一粒的概率为( )3311()()()()328168A B C D(3)),4,(~2μN X ),5,(~2μN Y }5{},4{21+≥=-≤=μμY P p X P p ,则( ) (A)对任意实数21,p p =μ (B )对任意实数21,p p <μ (C)只对μ的个别值,才有21p p = (D )对任意实数μ,都有21p p >(4)设随机变量X 的密度函数为)(x f ,且),()(x f x f =-)(x F 是X 的分布函数,则对任意 实数a 成立的是( ) (A )⎰-=-adx x f a F 0)(1)( (B )⎰-=-adx x f a F 0)(21)( (C ))()(a F a F =- (D )1)(2)(-=-a F a F(5)已知1250,,,X X X L 为来自总体()2,4X N :的样本,记5011,50i i X X ==∑ 则 50211()4i i X X =-∑服从分布为( ) (A )4(2,)50N (B) 2(,4)50N (C )()250χ (D) ()249χ 二、填 空 题 (本大题5小题, 每小题4分, 共20分)(1) 4.0)(=A P ,3.0)(=B P ,4.0)(=⋃B A P ,则___________)(=B A P(2) 设随机变量X 有密度⎩⎨⎧<<=其它010,4)(3x x x f , 则使)()(a X P a X P <=>的常数a =(3) 设随机变量),2(~2σN X ,若3.0}40{=<<X P ,则=<}0{X P (4)设()221xx f x -+-=, 则EX = , DX =(5)设总体~(,9)X N μ,已知样本容量为25,样本均值x m =;记0.1u a =,0.05u b =;()0.124t c =,()0.125t d =;()0.0524t l =,()0.0525t k =,则μ的置信度为0.9的置信区间为三、解答题 (共60分)1、(10分)某工厂由甲、乙、丙三个车间生产同一种产品,每个车间的产量分别占全厂的25%,35%,40%,各车间产品的次品率分别为5%,4%,2%, 求:(1)全厂产品的次品率(2) 若任取一件产品发现是次品,此次品是甲车间生产的概率是多少?2、(10分)设X 与Y 两个相互独立的随机变量,其概率密度分别为⎩⎨⎧≤≤=.,0;10,1)(其它x x f X ⎩⎨⎧≤>=-.0,0;0,)(y y e y f y Y求:随机变量Y X Z +=的概率密度函数.3、(10分)设随机变量X 服从参数2λ=的指数分布,证明:21XY e-=-服从()0,1上的均匀分布。

概率论与数理统计期末考试试题(答案)

概率论与数理统计期末考试试题(答案)

概率论与数理统计开/闭卷闭卷A/B 卷 A课程编号 2219002801—2219002811课程名称 概率论与数理统计学分 3基本题6小题,每小题5分,满分30分。

在每小题给出的四个选项中,只有一把所选项前的字母填在题后的括号内)(每道选择题选对满分,选错分)。

事件表达式A B 的意思是 ( ) ) 事件A 与事件B 同时发生 (B ) 事件A 发生但事件B 不发生) 事件B 发生但事件A 不发生 (D) 事件A 与事件B 至少有一件发生D ,根据A B 的定义可知。

假设事件A 与事件B 互为对立,则事件A B ( )) 是不可能事件 (B ) 是可能事件 C) 发生的概率为1 (D) 是必然事件 :选A,这是因为对立事件的积事件是不可能事件。

已知随机变量X ,Y 相互独立,且都服从标准正态分布,则X 2+Y 2服从 ( ) A) 自由度为1的χ2分布 (B ) 自由度为2的χ2分布 ) 自由度为1的F 分布 (D) 自由度为2的F 分布选B ,因为n 个相互独立的服从标准正态分布的随机变量的平方和服从自由度为n 的2分布.已知随机变量X ,Y 相互独立,X ~N (2,4),Y ~N (-2,1), 则( ) X +Y ~P (4) (B ) X +Y ~U (2,4) (C) X +Y ~N (0,5) (D ) +Y ~N (0,3)C ,因为相互独立的正态变量相加仍然服从正态分布,而E (X +Y )=E (X )+E (Y )D (X +Y )=D (X )+D (Y )=4+1=5, 所以有X +Y ~N (0,5)。

样本(X 1,X 2,X 3)取自总体X ,E (X )=μ, D (X )=σ2, 则有( ) A) X 1+X 2+X 3是μ的无偏估计(B )1233X X X ++是μ的无偏估计) 22X 是σ2的无偏估计(D ) 21233X X X ++⎛⎫ ⎪⎝⎭是σ2的无偏估计:选B ,因为样本均值是总体期望的无偏估计,其它三项都不成立。

(完整word版)《概率论与数理统计》期末考试试题及答案

(完整word版)《概率论与数理统计》期末考试试题及答案

)B =________________.3个,恰好抽到),(8ak ==(24)P X -<= 乙企业生产的50件产品中有四、(本题12分)设二维随机向量(,)X Y 的联合分布律为\01210.10.20.120.10.2Y X a 试求: (1) a 的值; (2)X 与Y 的边缘分布律; (3)X 与Y 是否独立?为什么?五、(本题12分) 设随机变量X 的概率密度为(),01,2,12,0,.x x f x x x ≤<⎧⎪=-≤≤⎨⎪⎩其他 求()(),E X D X一、填空题(每小题3分,共30分) 1、ABC 或AB C 2、0.6 3、2156311C C C 或411或0.3636 4、1 5、136、2014131555kX p 7、1 8、(2,1)N -二、解 设12,A A 分别表示取出的产品为甲企业和乙企业生产,B 表示取出的零件为次品,则由已知有 1212606505121101(),(),(|),(|)1101111011605505P A P A P B A P B A ======== .................. 2分 (1)由全概率公式得112261511()()(|)()(|)1151155P B P A P B A P A P B A =+=⨯+⨯= ............................................ 7分 (2)由贝叶斯公式得22251()()5115()1()115P A P B A P A B P B ⨯=== ................................................................................. 12分三、(本题12分)解 (1)由概率密度的性质知 340391()21224x f x dx kxdx dx k +∞-∞⎛⎫=+-=+= ⎪⎝⎭⎰⎰⎰故16k =. ..................................................................................................................................................... 3分 (2)当0x ≤时,()()0xF x f t dt -∞==⎰;当03x <<时, 2011()()612xxF x f t dt tdt x -∞===⎰⎰; 当34x ≤<时, 320311()()223624x x t F x f t dt tdt dt x x -∞⎛⎫==+-=-+- ⎪⎝⎭⎰⎰⎰;当4x ≥时, 34031()()2162x t F x f t dt tdt dt -∞⎛⎫==+-= ⎪⎝⎭⎰⎰⎰;故X 的分布函数为220,01,0312()123,3441,4x x x F x x x x x ≤⎧⎪⎪<<⎪=⎨⎪-+-≤<⎪⎪≥⎩.......................................................................................... 9分(3) 77151411(1)22161248P X F F ⎧⎫⎛⎫<≤=-=-=⎨⎬ ⎪⎩⎭⎝⎭....................................................................... 12分四、解 (1)由分布律的性质知 01.0.20.10.10.a +++++= 故0.3a = .................................................................................................................................................... 4分(2)(,)X Y 分别关于X 和Y 的边缘分布律为0120.40.30.3X p ........................................................................................................................ 6分120.40.6Y p .................................................................................................................................. 8分(3)由于{}0,10.1P X Y ===,{}{}010.40.40.16P X P Y ===⨯=,故 {}{}{}0,101P X Y P X P Y ==≠== 所以X 与Y 不相互独立. ............................................................................................................................ 12分 五、(本题12分) 设随机变量X 的概率密度为(),01,2,12,0,.x x f x x x ≤<⎧⎪=-≤≤⎨⎪⎩其他求()(),E X D X .解 2131223201011()()d d (2)d 1.33x E X xf x x x x x x x x x +∞-∞⎡⎤⎡⎤==+-=+-=⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰ ................................ 6分122232017()()d d (2)d 6E X x f x x x x x x x +∞-∞==+-=⎰⎰⎰................................................................... 9分 221()()[()].6D XE X E X =-= ........................................................................................................ 12分一、填空题(每空3分,共45分)1、已知P(A) = 0.92, P(B) = 0.93, P(B|A ) = 0.85, 则P(A|B ) = P( A ∪B) =2、设事件A 与B 独立,A 与B 都不发生的概率为19,A 发生且B 不发生的概率与B 发生且A 不发生的概率相等,则A 发生的概率为: ;3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: 没有任何人的生日在同一个月份的概率4、已知随机变量X 的密度函数为:,0()1/4,020,2x Ae x x x x ϕ⎧<⎪=≤<⎨⎪≥⎩, 则常数A= ,分布函数F (x )= , 概率{0.51}P X -<<= ;5、设随机变量X~ B(2,p)、Y~ B(1,p),若{1}5/9P X ≥=,则p = ,若X 与Y 独立,则Z=max(X,Y)的分布律: ;6、设~(200,0.01),~(4),X B Y P 且X 与Y 相互独立,则D(2X-3Y)= , 1、 (12分)设连续型随机变量X 的密度函数为:1,02()20,x x x ϕ⎧≤≤⎪=⎨⎪⎩其它求:1){|21|2}P X -<;2)2Y X =的密度函数()Y y ϕ;3)(21)E X -;2、(12分)设随机变量(X,Y)的密度函数为1)1/4,||,02,(,)0,y x x x y ϕ<<<⎧=⎨⎩其他求边缘密度函数(),()X Y x y ϕϕ;2) 问X 与Y 是否独立?是否相关?计算Z = X + Y 的密度函数()Z z ϕ1、(10分)设某人从外地赶来参加紧急会议,他乘火车、轮船、汽车或飞机来的概率分别是3/10,1/5,1/10和2/5。

《概率论与数理统计》期末考试题(附答案)

《概率论与数理统计》期末考试题(附答案)

《概率论与数理统计》期末考试题一. 填空题(每小题2分,共计60分)1、A 、B 是两个随机事件,已知0.1p(AB)0.3,)B (p ,5.0)A (p ===,则=)B -A (p 0.4 、=)B A (p 0.7 、=)B A (p 1/3 ,)(B A P ⋅= 0.3 。

2、一个袋子中有大小相同的红球4只黑球2只,(1)从中不放回地任取2只,则第一、二次取到球颜色不同的概率为: 8/15 。

(2)若有放回地任取2只,则第一、二次取到球颜色不同的概率为: 4/9 。

(3)若第一次取一只球后再追加一只与其颜色相同的球一并放入袋中再取第二只球,则第一、二次取到球颜色不同的概率为: 13/21 .3、设随机变量X 服从参数为6的泊松分布,则{}=≥1X p 1- 6-e4、设随机变量X 服从B (2,0. 6)的二项分布,则{}==2X p 0.36 , Y 服从B (8,0. 6)的二项分布, 且X 与Y 相互独立,则Y X +服从 B (10,0. 6) 分布,=+)(Y X E 6 。

5、设二维随机向量),(Y X 的分布律是有则=a _0.3_,X 的数学期=)(X E ___0.5_______,Y X 与的相关系数=xy ρ___0.1_______。

第 1页共 4 页6、三个可靠性为p>0的电子元件独立工作,(1)若把它们串联成一个系统,则系统的可靠性为:3p ;(2)若把它们并联成一个系统,则系统的可靠性为:3)1(1p --;7、(1)若随机变量X )3,1(~U ,则{}=20〈〈X p 0.5;=)(2X E _13/3, =+)12(X D 3/4 .(2)若随机变量X ~)4 ,1(N 且8413.0)1(=Φ则=<<-}31{X P 0.6826 ,(~,12N Y X Y 则+= 3 , 16 )。

8、随机变量X 、Y 的数学期望E(X)=1,E(Y)=2, 方差D(X)=1,D(Y)=2, 且X 、Y 相互独立,则:=+)2(Y X E 5 ,=+)2(Y X D 17 。

概率论与数理统计期末考试试题库及答案

概率论与数理统计期末考试试题库及答案

概率论与数理统计期末考试试题库及答案概率论与数理统计概率论试题一、填空题1.设 A、B、C是三个随机事件。

试用 A、B、C分别表示事件1)A、B、C 至少有一个发生 2)A、B、C 中恰有一个发生3)A、B、C不多于一个发生2.设 A、B为随机事件, ,,。

则=3.若事件A和事件B相互独立, ,则4. 将C,C,E,E,I,N,S等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为6.设离散型随机变量分布律为则A______________7. 已知随机变量X的密度为,且,则________________8. 设~,且,则 _________9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为,则该射手的命中率为_________10.若随机变量在(1,6)上服从均匀分布,则方程x2+x+10有实根的概率是11.设,,则12.用()的联合分布函数F(x,y)表示13.用()的联合分布函数F(x,y)表示14.设平面区域D由y x , y 0 和 x 2 所围成,二维随机变量x,y在区域D上服从均匀分布,则(x,y)关于X的边缘概率密度在x 1 处的值为。

15.已知,则=16.设,且与相互独立,则17.设的概率密度为,则=18.设随机变量X1,X2,X3相互独立,其中X1在[0,6]上服从均匀分布,X2服从正态分布N(0,22),X3服从参数为3的泊松分布,记YX1-2X2+3X3,则D(Y)19.设,则20.设是独立同分布的随机变量序列,且均值为,方差为,那么当充分大时,近似有~ 或 ~ 。

特别是,当同为正态分布时,对于任意的,都精确有~ 或~.21.设是独立同分布的随机变量序列,且,那么依概率收敛于22.设是来自正态总体的样本,令则当时~。

23.设容量n 10 的样本的观察值为(8,7,6,9,8,7,5,9,6),则样本均值,样本方差24.设X1,X2,…Xn为来自正态总体的一个简单随机样本,则样本均值服从二、选择题1. 设A,B为两随机事件,且,则下列式子正确的是(A)P A+B P A; (B)(C) (D)2. 以A表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件为 (A)“甲种产品滞销,乙种产品畅销”; (B)“甲、乙两种产品均畅销”(C)“甲种产品滞销”;(D)“甲种产品滞销或乙种产品畅销”。

概率论与数理统计期末考试题及答案

概率论与数理统计期末考试题及答案

模拟试题填空题(每空3分,共45 分)1、已知P(A) = 0.92, P(B) = 0.93, P(B| A) = 0.85,则P(A| B)=P( A U B)=12、设事件A与B独立,A与B都不发生的概率为—,A发生且B不发生的概率与 B9发生且A不发生的概率相等,则A发生的概率为:_______________________ ;3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率:;没有任何人的生日在同一个月份的概率I Ae x, X c 04、已知随机变量X的密度函数为:W(x) = {1/ 4, 0 < X V 2,则常数A=0, x>2分布函数F(x)= ,概率P{—0.5<X <1}=5、设随机变量X~ B(2,p)、Y~ B(1,p),若P{X>1} =5/ 9,贝U p =若X与丫独立,则Z=max(X,Y)的分布律:6、设X ~ B(200,0.01), Y - P(4),且X 与丫相互独立,则D(2X-3Y)=COV(2X-3Y , X)=7、设X1,X2,III,X5是总体X ~ N(0,1)的简单随机样本,则当k = 时,丫"⑶;8、设总体X~U(0,巧日:>0为未知参数,X i,X2,lil,X n为其样本, -1nX =—S X i为n i 二样本均值,则日的矩估计量为:9、设样本X i,X2,川,X9来自正态总体N(a,1.44),计算得样本观察值X = 10,求参数a的置信度为95%的置信区间:计算题(35分)1、(12分)设连续型随机变量X的密度函数为:「1求:1) P{|2X —1|<2} ; 2) Y =X 2的密度函数 S(y) ; 3) E(2X-1);2、(12分)设随机变量(X,Y )的密度函数为3、( 11分)设总体X 的概率密度函数为:X 1,X 2,…,X n 是取自总体X 的简单随机样本。

最新《概率论与数理统计》期末考试试题及答案教案资料

最新《概率论与数理统计》期末考试试题及答案教案资料

四、(本题12分)设二维随机向量(,)X Y 的联合分布律为\01210.10.20.120.10.2Y X a 试求: (1) a 的值; (2)X 与Y 的边缘分布律; (3)X 与Y 是否独立?为什么?五、(本题12分) 设随机变量X 的概率密度为(),01,2,12,0,.x x f x x x ≤<⎧⎪=-≤≤⎨⎪⎩其他 求()(),E X D X一、填空题(每小题3分,共30分)1、ABC 或A B C U U2、0.63、2156311C C C 或411或0.3636 4、1 5、13 6、2014131555kX p 7、1 8、(2,1)N -二、解 设12,A A 分别表示取出的产品为甲企业和乙企业生产,B 表示取出的零件为次品,则由已知有 1212606505121101(),(),(|),(|)1101111011605505P A P A P B A P B A ======== .................. 2分 (1)由全概率公式得112261511()()(|)()(|)1151155P B P A P B A P A P B A =+=⨯+⨯= ............................................ 7分 (2)由贝叶斯公式得22251()()5115()1()115P A P B A P A B P B ⨯=== ................................................................................. 12分三、(本题12分)解 (1)由概率密度的性质知 340391()21224x f x dx kxdx dx k +∞-∞⎛⎫=+-=+= ⎪⎝⎭⎰⎰⎰故16k =. ..................................................................................................................................................... 3分 (2)当0x ≤时,()()0xF x f t dt -∞==⎰;当03x <<时, 2011()()612xxF x f t dt tdt x -∞===⎰⎰; 当34x ≤<时, 320311()()223624x x t F x f t dt tdt dt x x -∞⎛⎫==+-=-+- ⎪⎝⎭⎰⎰⎰;当4x ≥时, 34031()()2162x t F x f t dt tdt dt -∞⎛⎫==+-= ⎪⎝⎭⎰⎰⎰;故X 的分布函数为220,01,0312()123,3441,4x x x F x x x x x ≤⎧⎪⎪<<⎪=⎨⎪-+-≤<⎪⎪≥⎩.......................................................................................... 9分(3) 77151411(1)22161248P X F F ⎧⎫⎛⎫<≤=-=-=⎨⎬ ⎪⎩⎭⎝⎭....................................................................... 12分四、解 (1)由分布律的性质知01.0.20.10.10.21a +++++=故0.3a = .................................................................................................................................................... 4分(2)(,)X Y 分别关于X 和Y 的边缘分布律为0120.40.30.3X p ........................................................................................................................ 6分120.40.6Y p .................................................................................................................................. 8分(3)由于{}0,10.1P X Y ===,{}{}010.40.40.16P X P Y ===⨯=,故 {}{}{}0,101P X Y P X P Y ==≠==所以X 与Y 不相互独立. ............................................................................................................................ 12分 五、(本题12分) 设随机变量X 的概率密度为(),01,2,12,0,.x x f x x x ≤<⎧⎪=-≤≤⎨⎪⎩其他求()(),E X D X .解 2131223201011()()d d (2)d 1.33x E X xf x x x x x x x x x +∞-∞⎡⎤⎡⎤==+-=+-=⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰ ................................ 6分122232017()()d d (2)d 6E X x f x x x x x x x +∞-∞==+-=⎰⎰⎰................................................................... 9分 221()()[()].6D XE X E X =-= ........................................................................................................ 12分一、填空题(每空3分,共45分)1、已知P(A) = 0.92, P(B) = 0.93, P(B|A ) = 0.85, 则P(A|B ) = P( A ∪B) =2、设事件A 与B 独立,A 与B 都不发生的概率为19,A 发生且B 不发生的概率与B 发生且A 不发生的概率相等,则A 发生的概率为: ;3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: 没有任何人的生日在同一个月份的概率4、已知随机变量X 的密度函数为:,0()1/4,020,2x Ae x x x x ϕ⎧<⎪=≤<⎨⎪≥⎩, 则常数A= ,分布函数F (x )= , 概率{0.51}P X -<<= ;5、设随机变量X~ B(2,p)、Y~ B(1,p),若{1}5/9P X ≥=,则p = ,若X 与Y 独立,则Z=max(X,Y)的分布律: ;6、设~(200,0.01),~(4),X B Y P 且X 与Y 相互独立,则D(2X-3Y)= , 1、 (12分)设连续型随机变量X 的密度函数为:1,02()20,x x x ϕ⎧≤≤⎪=⎨⎪⎩其它求:1){|21|2}P X -<;2)2Y X =的密度函数()Y y ϕ;3)(21)E X -;2、(12分)设随机变量(X,Y)的密度函数为1)1/4,||,02,(,)0,y x x x y ϕ<<<⎧=⎨⎩其他求边缘密度函数(),()X Y x y ϕϕ;2) 问X 与Y 是否独立?是否相关?计算Z = X + Y 的密度函数()Z z ϕ1、(10分)设某人从外地赶来参加紧急会议,他乘火车、轮船、汽车或飞机来的概率分别是3/10,1/5,1/10和2/5。

概率论与数理统计期末试卷与答案(最新5)

概率论与数理统计期末试卷与答案(最新5)

概率论与数理统计期末试卷及答案一、填空题:1、一袋中有50个球,其中20个红球,30个白球,现两人从袋中各取一球,取后不放回,则第二个人取到白球的概率为 3/5 。

2、设P(A)=1/2, P(B|A)=1/3, P(A|B)=1/2,那么()P AB = 2/3 。

3、若随机变量X 的概率密度为2(),11,f x Ax x =-<<那么A= 3/2 。

4、若二维随机变量(X,Y )在以原点为圆心的单位圆内的概率密度函数是1/π,其它区域都是0,那么221()2P X Y +<= 1/2 。

5、掷n 枚骰子,记所得点数之和为X ,则EX = 3.5n 。

6、若X ,Y ,Z 两两不相关,且DX=DY=DZ=2,则D(X+Y+Z) = 6 。

7、若随机变量12,,,n X X X 相互独立且同分布于标准正态分布N(0,1),那么它们的平方和22212n X X X +++服从的分布是2()n χ。

8、设A n 是n 次相互独立的试验中事件A 发生的次数,p 是事件A 在每次试验中发生的概率,则对任意的0>ε,lim {||}An n p n→+∞-≥ε= 0 。

9、设总体2(,)XN μσ,其中2σ已知,样本为12,,,n X X X ,设00:H =μμ,10:H <μμ,则拒绝域为z α<-。

10、设总体X 服从区间[1,a ]上的均匀分布,其中a 是未知参数。

若有一个来自这个总体的样本2, 1.8, 2.7, 1.9, 2.2, 那么参数a 的极大似然估计值a = 12max{,,,} 2.7n x x x =。

二、选择题1、设10张奖券只有一张中奖,现有10个人排队依次抽奖,则下列结论正确的是( A ) (A )每个人中奖的概率相同; (B )第一个人比第十个人中奖的概率大;(C )第一个人没有中奖,而第二个人中奖的概率是1/9; (D )每个人是否中奖是相互独立的 2、设随机变量X 与Y 相互独立,且21(,)X N μσ,22(,)Y N μσ,则X Y -服从的分布是( B )(A )212(,)N -μμσ;(B )212(,2)N -μμσ;(C )212(,)N +μμσ;(D )212(,2)N +μμσ3、设事件A 、B 互斥,且()0P A >,()0P B >,则下列式子成立的是( D )(A )(|)()P A B P A =; (B )(|)0P B A >; (C )(|)()P A B P B =; (D )(|)0P B A =;4、设随机变量X 与Y 独立同分布,P(X= -1) = P(Y= -1) =1/2,P(X= 1) = P(Y= 1) =1/2,则下列成立的是( A )(A )()1/2P X Y ==; (B )()1P X Y ==; (C )(0)1/4P X Y +==; (D )(1)1/4P XY ==;5、有10张奖券,其中8张2元,2张5元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.设 相互独立同服从区间(1,6)上的均匀分布, ( ).
7.设二维随机变量(X,Y)的联合分布律为
XY12
0
1

8.设二维随机变量(X,Y)的联合密度函数为 ,则
( )
9.若随机变量X与Y满足关系 ,则X与Y的相关系数 ( ).
10.设二维随机变量 ,则 ( ).
二.选择题(每小题 2分,共10 分)
五.证明题(6分)
设两两独立的三事件 满足条件 , ,且已知 ,试证明 .
参考答案
一.填空题:(共 10小题,每小题 2分,共20 分)
1. ( 0.3 );
2. ;
3. 0.0099 ;
4. 1,
5. 162
6. ;
7. ;
8.
9. .
10.2.
二.选择题(每小题 2分,共10 分)
1.(c) 2. 3.(c)4.(d) 5 .(b).
1.设当事件 同时发生时事件 也发生,则有( ).
2.假设事件 满足 ,则( ).
(a) B是必然事件 (b)
(c) (d)
3.下列函数不是随机变量密度函数的是().
(a) (ห้องสมุดไป่ตู้)
(c) (d)
4.设随机变量X服从参数为 的泊松分布,则概率 ( ).
5.若二维随机变量(X,Y)在区域 服从均匀分布,则 =( ).
3.设随机变量 的密度函数为 .(1)求参数 ;(2)求 的分布函数 ;(2)求 .
4.设随机变量 的密度函数为 ,求 的密度 .
5.设二维随机变量(X,Y)在区域 服从均匀分布,求(X,Y)的联合密度函数 与两个边缘密度函数 ,并判断 是否独立。
6.设随机变量 的数学期望均为0,方差均为1,且任意两个变量的协方差均为 .令 ,求 的相关系数..
2.解(1) ;
(2)
3.解(1) ;
(2)
(3)
4.解
5.解(1)因 ,故(X,Y)的联合密度函数为
(2) ,
因为 ,所以 不独立。
6.解
7.解
8.解设Y表示售出的汽车数,由中心极限定理,可得
西南财经大学2008 - 2009 学年第 二 学期
保险学等专业 本科 0 7 级
一.填空题:(共 10小题,每小题 2分,共20 分)
1.设 是两个随机事件, 则 ( ).
( ).
2.设A,B是两个随机事件,
3.设一批产品的次品率为0.1,若每次抽两个检查,直到抽到两个都为次品为止,则抽样次数恰为3的概率是( ).
4.设随机变量 的分布函数为 ,则 ( ), ( ).
5.若随机变量X的概率密度为 ,则 ( )
6.设随机变量 的密度函数为 ,若 ,则
( ).
7.设X表示10次独立重复射击中命中目标的次数,若每次射中目标的概率为0.6,则 的数学期望为( ).
8.若已知随机变量 相互独立且概率分布分别为 与 ,则随机变量 的概率分布为( )
9.设 为来自于正态总体 的简单随机样本,则 所服从的分布是( ).(分布要写出参数).
10.设总体 服从参数为 的泊松分布, 为来自于总体 的样本,则当 时, 依概率收敛于( ).
三.解答题(每题9分,共54分)
1.某工厂有甲、乙、丙三车间,它们生产同一种产品,其产量之比为5:3:2, 已知三车间的正品率分别为0.95, 0.96, 0.98. 现从全厂三个车间生产的产品中任取一件,求取到一件次品的概率。
2.设10件产品中有3件次品,从中不放回逐一取件,取到合格品为止.(1)求所需取件次数 的概率分布;(2)求 的分布函数 .
二.选择题(每小题 2分,共10 分)
1.下列选项不正确的是( ).
2.设随机事件 相互独立且满足 ,则 ( ) .
3.下列函数不是随机变量密度函数的是().
(a) (b)
(c) (d)
4.设 是不为0的数,随机变量 的相关系数为 ,若令 ,则 的相关系数 ( ).
5.设总体 服从参数为 的指数分布, 是抽自于总体 的样本,则样本均值 的方差为( ).
3.设某种电子产品的使用寿命为服从指数分布的随机变量 ,且知该产品的平均使用寿命为2000小时。(1)求一件这种产品使用1000小时就坏了的概率;(2)求 .
4.设3次重复独立试验中事件 发生的概率均为 ,以 表示在3次试验中 出现的次数,以 表示前两次试验中 出现的次数。求 的联合分布律。
5.设二维随机变量 的联合密度函数是
《概率论》期末 A 卷考试题
一 填空题(每小题2分,共20 分)
1.甲、乙两人同时向一目标射击,已知甲命中的概率为0.7,乙命中的概率为0.8,则目标被击中的概率为( ).
2.设 ,则 ( ).
3.设随机变量 的分布函数为 ,则 ( ), ( ).
4.设随机变量 服从参数为 的泊松分布,则 ().
5.若随机变量X的概率密度为 ,则 ( )
7.设X与Y相互独立且同服从参数为 的指数分布,求 的密度函数 .
8某汽车销售点每天出售的汽车数服从参数为 的泊松分布。若一年365天都经营汽车销售,且每天出售的汽车数是相互独立的。求一年中售出700辆以上汽车的概率。
(附: )
《概率统计》期末A卷考试题
参考答案
一 填空题(每小题 2分,共20 分)
(1)求条件密度函数 ;
(2)求概率 .
6.设随机变量 的数学期望均为0,方差均为1,且任意两个变量的相关系数均为 .令 ,求 的相关系数..
四.应用题(10分)
一所学校有100名住校生,设每人以80%的概率去图书馆自习,且每个同学是否去图书馆自习相互独立。如果要保证上自习的同学都有座位的概率达到99%,问该校图书馆至少应设多少座位?( ).
1.0.94 ;2. 0.3;3. ;
4. ;5.则 ;
6. ;7. ;8. ;
9. ;10.
二.选择题(每小题 2分,共10 分)
1. 2. 3.(c)4. 5.
三、解答题(1-6小题每题9分,7-8小题每题8分,共70分)
1.解设 分别表示取到的产品由甲、乙、丙生产,且设B表示取到一件次品,则由全概率公式
三、解答题(1-6小题每题9分,7-8小题每题8分,共70分)
1.某工厂有甲、乙、丙三车间,它们生产同一种产品,其产量之比为5:3:2, 已知三车间的正品率分别为0.95, 0.96, 0.98. 现从全厂三个车间生产的产品中任取一件,求取到一件次品的概率。
2.设10件产品中有3件次品,从中不放回逐一取件,取到合格品为止.(1)求所需取件次数 的概率分布;(2)求 的分布函数 .
相关文档
最新文档