组态王 储水箱液位控制
基于组态王的水箱液位控制系统

理 器 ,具有 四则运算 、逻辑 判断、命 态 王 图形 界 面 开 发 功 能使 用 方 便 ,对
/ O 设 备 广 泛 支 持 ,是 国 内 研 发 的 最 2 工艺简述 令识别等运算功 能 ,有 的还能够进行 l
湖北师 范 学院机 电 与控制 工程 学院 叶 梦君 胡长 晖 张 先鹤 万里 光 詹 习生
Y e Me n g j u n Hu Ch a n g h u i Z h a n g X i a n h e Wa n L i g u a n g Z h a n X i s h e n g
对 于相关 的工 程应 用具 有一 定 的价值 。 关键 词 :组态 王 智 能仪 表 P I D
Ab st r a c t :Th i s ar t i c l e d e s c r i b e s t h a t Ki n g Vi e w s o f t wa r e d e s i gn Mo n i t o r i n g i n t er f a c e wh i c h o f s i n g l e c ap a c i t y wa t e r t a n k l e ve l PI D c o n t r o l s y s t e m an d Ki n g Vi e w c o mm u n i c a t i on wi t h
基于组态王的水箱液位控 制系统
De s i g n an d I mp l eme n t a t i o n o f Si n g l e Cap a c i t y Wa t e r L e v el PI D Con t r ol Sy s t e m B a s e d o n Ki n g v i e w
组态王6.5开发单回路液位控制系统指导书

组态王6.5开发单回路液位控制系统指导书本指导书,覆盖了“组态王”软件大部分基本功能。
学完本教程,将能够建立一个功能齐全、可实际使用的上位机监控系统,结合实验室过程控制装置方便的开发出单回路液位控制系统。
本课程包括如下功能:* 使用工程浏览器* 建立新项目* 绘制画面* 使用图库和控件* 构造数据库* 和下位机通讯* 产生动画效果* 查看趋势曲线* 设计自定义报表* 系统安全防范按以上步骤对一个单回路控制系统的模型进行组态,建立一个液位高度监控中心。
完成后的组态将具有操作按钮、趋势曲线和数据报表。
下图是供参考的组态画面:图1 单回路控制系统第一章基础知识了解组态王软件使用:·了解组态王软件的整体结构·了解组态王的工件方式·了解建立应用程序的一般过程组态王软件的结构“组态王”是运行于Win2000/WinNT4.0(补丁6)/Win XP中文平台的全中文界面的组态软件,采用了多线程、COM组件等新技术,实现了实时多任务,软件运行稳定可靠。
组态王具有一个集成开发环境“组态王工程浏览器”,在其中您可以查看工程的各个组成部分,也可以完成构造数据库、定义外部设备等工作。
画面的开发和运行由工程浏览器调用画面制作系统MAKE和画面运行系统VIEW来完成的。
MAKE是应用程序的开发环境。
您需要在这个环境中完成设计画面、动画连接等工作。
MAKE具有先进完善的图形生成功能;数据库中有多种数据类型,能合理地抽象控制对象的特性;对变量报警、趋势曲线、过程记录、安全防范等重要功能都有简单的操作办法。
VIEW是“组态王”软件的实时运行环境,在MAKE中建立的图形画面只有在VIEW中才能运行。
VIEW从工业控制对象中采集数据,并记录在实时数据库中。
它还负责把数据的变化用动画的方式形象地表示出来,同时完成变量报警、操作记录、趋势曲线等监视功能,并生成历史数据文件。
组态王怎样和下位机通讯“组态王”把第一台下位机看作是外部设备,在开发过程中您可以根据“设备配置向导”的提示一步步完成连接过程。
基于组态王的水箱液位控制系统设计与开发

数据 的方 式进 行性 阐述 。这表 明需要进行数据 库 的设计 。而且 工控 对 象中 的所有 属 性都 是通 过 该数 据 库 中的变 量 进行 描述
的 。 最 后 就 是 所 谓 的连 接 。 如 何 将 数 据 以及 图 形 界 面 里 面 的 相 关 图 素 进 行 连 接 ,指 的 是 通 过 采 取 特 定 的一 种 动 画对 现 场 中 的 设 备 进 行 模拟 。 而 且 还 需 要 涉 及 到 控 制 设 备 的 输 入 指 令 如 何 进
变 量 如就是所谓 的可编程 序控制器 ,P L C在
基 于 组 态 王 的 水 箱 液 位 控 制 系 统 中 充 当着 重 要 的 核 心 作 用 , 其 中 系 统 中 的 组 成 主 要 是 包 括 了 储 水 箱 、 以及 水 箱 和 电动 调 节 阀 等 器 件 。 液位 控 制 系 统 工 艺 流程 图 如 图 1 所示 。
现 的,在这个过程 中需要对水箱 中的 V I O l液位进行设置 ,同时
还 能 够 将 水 流 中 的 回路 情 况 动 态 显 示 出来 ,从 而 可 以更 加 直 观 地 查 看 到 所 有 参 数 如 何 发 生 改 变 的 , 根 据 采 集 到 的数 据 并 且 对 数 据 进 行 处 理 ,最 终 可 以达 到 人 机 对 话 的 目的 , 监 控 水 箱 液 位 的情 况 。 建 立 这 个 液 位 监 控 的过 程 如 下 。先 是将 系 统 中 的 组 态 王 环 境 打 开 ,并 且 名 字 命 名 为 水 箱 液 位 监 控 系 统 , 同 时将 存 盘 的相 应 路 径 给 出 。 主 界 面 的 设 计 实现 是 通 过 画 图工 具 以及 组 态 王 中 的 图库 辅 助 工 具 实 现 的 ,在 软 件 的 界 面 中选 择 画 面 , 点 击 新 建 图标 ,此 时会 出现 对 话 框 ,输 入 名 字 为 “ 液位控制系统”。 接 着 , 根 据 画 面 中 的编 辑 命 令 ,从 而 , 采 用 工 具 栏 中 的 很 多 工
基于组态王的液位控制系统论文

摘要:介绍了基于组态王的仪表液位控制系统组成。
叙述了组态王监控界面设计和组态王与实际现场的模拟。
双容水箱液位的控制作为过程控制的一种,其基本思想是采用多层递阶结构,直觉推理和多动态控制策略等行为和功能。
该系统可实现数据输入、动态数据显示和现场设备的实时监控、调试和运行。
应用表明,该系统工艺流程显示直观,人机界面友好,易于操作。
系统运行稳定,维护成本低,对于相关的工程应用具有一定的价值。
问题描述:附图(a,b)是本液位控制系统的界面图示和运行示意图。
根据设计要求和结合实际情况,适当的加以修改,使设计更优化,更便于人为控制。
用组态王软件合理地设计出属于自己思路的液位控制系统。
1.要求实现的基本功能:(1)完成图示界面设计(或取其中一部分或自行设计界面);(2)运行系统时出现水流效果和仪表动态显示;(3)液位的升降、阀门的开关和水泵的启停要配合一致;(4)右面的仪表和显示要与实际水箱水位变化一致;(5)菜单实现可操作;(6)生成相应的实时曲线(即曲线与液位实时数据相关联)和界面。
2.发挥部分:(1)打印输出:系统能定时或实时打印信息、水箱液位、流量等信息;(2)保存数据:系统具有自动保存数据功能;(3)在线帮助:系统提供在线帮助信息,操作员遇到问题能及时得到帮助和指导;(3)其他发挥部分。
设计过程:系统的监控软件采用了北京亚控公司的Kingview6.5组态王软件,利用它来设计液位控制系统主要步骤有:设备配置,构造数据库变量,图形界面的设计,建立动态连接,运行调试等。
组态王是运行于Microsoft Windows98/2000/NT中文平台的中文界面的人机界面软件,采用了多线程、COM组件等新技术,实现了实时多任务,软件运行可靠。
Touch View是“组态王6.5”软件的实时运行环境,它从设备中采集数据,并存于实时数据库中,还负责把数据的变化以动画的形式形象地表示出来,同时可以完成变量报警、操作记录、趋势曲线等监视功能,并按实际需求记录在历史数据库中。
组态王-水箱水位控制

- --目录水箱水位控制0第一章绪论0第二章系统需求分析1第三章系统控制方案1第四章系统监控界面设计1第五章数据字典设计2第六章应用程序命令语言2反响中心监控车间的设计4第一章系统监控界面设计4第二章应用程序命令语言4心得体会5水箱水位控制第一章绪论在日常生活中,我们最常见的就是对储水罐液位的控制,系统是根据用户使用水的情况自动向储水罐中注水,确保储水罐也为保持在一定围。
在这里我们运用组态王对单容水箱液位控制系统进展自动控制。
在双容水箱中,我们需要实时检测和调节水箱水位,为为了最大程度上减轻了人们工作负担,需要设计一个组态王液位控制系统对水箱的水位进展实时检测。
双位水箱串级控制系统是被测对象由两个不同容积的水箱串联组成,故称其为双容水箱,控制原理是通过水泵将储水箱中的水送上水箱,通过阀门对其控制,使其可以合理的进展储水,当然,如果进水量大于出水量,则自动通过溢水口排入储水箱。
第二章系统需求分析为了保证系统所需用水的供给,供水系统必须能够及时的对各种用水对象进展供水。
这就要求水塔和储水箱的水位不能低于一定的下限以免断水对人们的正常生活所带来的影响,同时水塔和储水箱的水位又不能高于一定的上限,从而使得水资源可以合理的分配利用。
如果使用组态王来实现软硬结合的控制,将会给系统的各性能带来良好的提升。
第三章系统控制方案整个供水系统可以抽象为主水箱和储水箱两个容器的液位控制。
主水箱的水来自地下,储水箱的液位由水泵和储水箱的出水阀门综合决定。
各种工业用水和生活用水可以用其对应的储水箱的出水管道代替。
这样系统就组态好了。
单容水箱液位控制系统主要有以下几个根本环节组成:被控对象〔水箱〕、液位测量变送器、控制器〔计算机〕、执行机构〔电动调节阀〕、水泵、储水箱。
本文的设计原理:当主水箱进水阀翻开时,水箱液位以较小的速度增长,增到90,水位到达高水位线,发出警报,水箱液位到达98时,主水箱进水阀自动关闭;此时,储水箱水泵翻开,开场抽水,输送到储水箱中;当储水箱液位到达高水位时〔90〕报警,到达液位98时关闭水泵;储水箱出水阀翻开;当储水箱出水阀翻开,并且储水箱液位低于20时,报警,并关闭储水箱出水阀,同时翻开水泵;当主水箱液位低于20时,关闭水泵,同时翻开主水箱进水阀。
组态王-水箱水位控制

自动化应用软件实训组态王Kingview就是一种通用得工业监控软件,它融过程控制设计、现场操作及工厂资源管理于一体,将一个企业内部得各种生产系统与应用以及信息交流汇集在一起,实现了最优化管理。
适用于从单一设备得生产运营管理与故障诊断,到网络结构分布式大型集中监控管理系统得开发。
在日常生活中,我们最常见得就就是对储水罐液位得控制,系统就是根据用户使用水得情况自动向储水罐中注水,确保储水罐也为保持在一定范围内。
在这里我们运用组态王对单容水箱液位控制系统进行自动控制。
2系统需求分析为了保证系统所需用水得供给,供水系统必须能够及时得对各种用水对象进行供水。
这就要求水塔与储水箱得水位不能低于一定得下限以免断水对人们得正常生活所带来得影响,同时水塔与储水箱得水位又不能高于一定得上限,从而使得水资源可以合理得分配利用、如果使用组态王来实现软硬结合得控制,将会给系统得各性能带来良好得提升、3系统方案论证整个供水系统可以抽象为原水箱与储水箱两个容器得液位控制。
原水箱得水来自地下,储水箱得液位由水塔得水泵与储水箱得出水阀门综合决定。
各种工业用水与生活用水可以用其对应得储水箱得出水管道代替。
这样系统就组态好了。
单容水箱液位控制系统主要有以下几个基本环节组成:被控对象(水箱)、液位测量变送器、控制器(计算机)、执行机构(电动调节阀)、水泵、储水箱。
本文得设计原理:当注水阀与用户阀同时打开时,水箱液位以较小得速度增长,增到(60,80)范围内,水位达到动态平衡;当用户阀关闭时,水箱液位以较快速度增长,增到(80,90)范围内,注水阀自动关闭;当注水阀关闭,用户阀打开时,水位下降到30以下,注水阀自动打开。
水位高于80与低于30时,报警指示灯开始闪烁,提醒工作人员系统就是否正常工作。
这样便实现了单容水箱液位得自动控制、4系统监控界面设计设计得界面有:水箱水位监控界面,实时曲线界面,实时报表界面,报警记录界面、历史曲线界面。
基于组态王与PLC的单容水箱液位控制系统

过程控制系统课程设计题目: 基于组态王与PLC的单容水箱液位控制系统院系名称:电气工程学院专业班级:学生姓名:学号:指导教师:设计地点:设计时间:设计成绩:指导教师:摘要本次设计是基于组态王与PLC的单容水箱液位控制系统,该系统以实现水箱液位的自动控制。
通过计算机控制水箱,从计算机上给定PID参数从而进行水箱液位控制,本次设计主要以单容水箱作为研究对象,运用组态王中亚控仿真PLC 进行单容水箱对象特性的测试,并利用MATLAB软件进行了控制系统的仿真及分析,并确定出一组合适的PID参数对其进行控制。
其次,采用组态王进行系统监控,通过对调节器PID参数的整定,实现了水箱液位的闭环控制,使水箱液位稳定在设定值,满足设计要求。
该设计以基于计算机与PLC控制的单回路液位控制系统,通过安装在水箱底部的压力变送器测量液位,PLC接收来自压力变送器的测量信号,以电动调节阀为执行器,来改变阀门的开度,同时采用组态王进行系统监控,通过对调节器PID参数的整定,实现了水箱液位的闭环控制,使水箱液位稳定在设定值。
关键词:水箱液位控制组态王与PLC PID算法目录1 绪论 (3)1.1 背景意义 (3)1.2 国内外研究现状 (3)1.3 本课题研究意义 (3)2 设计方案与仪表选型 (4)2.1 系统组成 (4)2.2 水箱液位控制系统构成 (4)2.3 水箱液位控制系统工作原理 (4)2.4 仪表选型 (5)2.4.1 变送器的选择 (5)2.4.2 执行器的选择 (5)2.4.3 水泵的选择 (6)3 PID算法设计 (6)3.1 PID控制器介绍 (6)3.2 PID算法实现 (7)3.2.1 PID算法程序设计 (7)3.2.2 史密斯预估补偿方案 (9)3.3 PLC控制程序流程 (10)4 被控对象特性分析及MATLAB仿真 (11)4.1 被控对象动态特性概述 (11)4.2 被控对象数学模型的建立 (11)4.2.1 阶跃响应曲线法建立单容水箱的数学模型 (11)4.2.2 PID控制器校正单容水箱系统 (12)5 系统组态设计 (14)5.1 组态王软件简介 (14)5.2 组态界面的设计 (14)5.2.1项目的建立 (14)5.2.2 图形画面的制作 (15)5.2.3 PLC设备的定义 (16)5.2.4 上位机与PLC的通讯设置 (16)5.2.5 定义变量 (17)5.2.6 动态连接 (17)设计心得 (23)参考文献 (24)附录:PID程序算法程序 (25)1 绪论1.1 背景意义过程控制是自动技术的重要应用领域,它是指对液位、温度、流量等过程变量进行控制,在冶金、机械、化工、电力等方面得到了广泛应用。
基于组态王的液位过程控制系统设计

《控制系统分析与综合》任务书题目:液位控制系统设计一、工程训练任务本实训综合运用自动化原理、PLC技术以及组态软件等相关课程,通过本实训的锻炼,使学生掌握自动化系统的基础理论、技术与方法,巩固和加深对理论知识的理解。
本课题针对液位控制系统作初步设计和基本研究,该系统能对水箱液位信号进行采集,以PLC为下位机,以工控组态软件组态王设计上位机监控画面, 运用PID控制算法对水箱液位进行控制。
二、工程训练目的通过本次工程训练使学生掌握运用组态王软件及PLC构建工业控制系统的能力,增强学生对PLC控制系统以及组态王软件的应用能力,培养学生解决实际问题的能力,为今后从事工程技术工作、科学研窕打下坚实的基础.三、工程训练内容1)确定PLC的I/O分配表:2)根据PID控制算法理论,运用PLC程序实现PID控制算法:3)编写整个液位控制系统实训项目的PLC控制程序;4)在组态王中定义输入输出设备:5)在组态王中定义变量;6)设计上位机监控画面;7)进行系统调试。
四、工程训练报告要求报告中提供如下内容:1、目录2、任务书3、正文4、收获、体会5、参考文献五、工程训练进度安排周次工作日工作内容1布置课程设计任务,查找相关资料第2完成总体设计方案—3完成PLC程序设计周45完成监控画面设计第1调试2二3准备训练报告周4完成训练报告并于下午两点之前上交5答辩六、工程训练考核办法本工程训练满分为IOO分,从工程训练平时表现、工程训练报告及工程训练答辩三个方面进行评分,其所占比例分别为20%、40%、40%o总体设计方案2o 1关于组态王的概述组态王软件是一种通用的工业监控软件,它融过程控制设计、现场操作以及工厂资源管理于一体,将一个企业内部的各种生产系统和应用以及信息交流汇集在一起,实现最优化管理.它基于Microsoft Windows XP/NT/2000操作系统,用户可以在企业网络的所有层次的各个位置上都可以及时获得系统的实时信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录
1绪论 (1)
2系统需求分析 (1)
3系统方案论证 (1)
4系统监控界面设计 (1)
5数据字典设计 (4)
6动画连接 (5)
7储水箱液位控制程序 (7)
8心得体会 (9)
1绪论
组态王Kingview是一种通用的工业监控软件,它融过程控制设计、现场操作及工厂资源管理于一体,将一个企业内部的各种生产系统和应用以及信息交流汇集在一起,实现了最优化管理。
适用于从单一设备的生产运营管理和故障诊断,到网络结构分布式大型集中监控管理系统的开发。
在日常生活中,我们最常见的就是对储水罐液位的控制,系统是根据用户使用水的情况自动向储水罐中注水,确保储水罐也为保持在一定范围内。
在这里我们运用组态王对单容水箱液位控制系统进行自动控制。
2系统需求分析
为了保证系统所需用水的供给,供水系统必须能够及时的对各种用水对象进行供水。
这就要求水塔和储水箱的水位不能低于一定的下限以免断水对人们的正常生活所带来的影响,同时水塔和储水箱的水位又不能高于一定的上限,从而使得水资源可以合理的分配利用。
如果使用组态王来实现软硬结合的控制,将会给系统的各性能带来良好的提升。
3系统方案论证
整个供水系统可以抽象为原水箱和储水箱两个容器的液位控制。
原水箱的水来自地下,储水箱的液位由水塔的水泵和储水箱的出水阀门综合决定。
各种工业用水和生活用水可以用其对应的储水箱的出水管道代替。
这样系统就组态好了。
单容水箱液位控制系统主要有以下几个基本环节组成:被控对象(水箱)、液位测量变送器、控制器(计算机)、执行机构(电动调节阀)、水泵、储水箱。
本文的设计原理:当注水阀和用户阀同时打开时,水箱液位以较小的速度增长,增到(60,80)范围内,水位达到动态平衡;当用户阀关闭时,水箱液位以较快速度增长,增到(80,90)范围内,注水阀自动关闭;当注水阀关闭,用户阀打开时,水位下降到30以下,注水阀自动打开。
水位高于80和低于30时,报警指示灯开始闪烁,提醒工作人员系统是否正常工作。
这样便实现了单容水箱液位的自动控制。
4系统监控界面设计
设计的界面有:水箱水位监控界面,实时曲线界面,实时报表界面,报警记
录界面、历史曲线界面。
水箱水位监控界面如图4.1所示,实时曲线界面如图4.2所示,实时报表界面如图4.3所示。
报警记录界面如图4.4所示,历史曲线界面如图4.5所示。
图 4.1水箱水位监控界面
图 4.2水箱水位实时曲线显示界面
图 4.3水箱水位实时报表显示界面图4.4 系统报警数据显示界面
图 4.5 系统历史曲线显示界面5数据字典设计
系统数据字典设计显示界面如图5.1所示。
图 5.1 系统数据字典显示界面
6动画连接
应用程序命令语言窗口如图6.1所示,液位的动画连接如图6.2所示,阀门动画连接如图6.3所示,泵的动画连接如图6.4所示,指示灯动画连接如图6.5所示,游标动画连接如图6.6所示,菜单动画连接如图6.7所示。
图 6.1命令语言窗口界面显示
图 6.2液位动态连接界面显示
图 6.3阀门动态连接界面显示
图 6.4泵动态连接界面显示图 6.5指示灯动态连接界面显示
图 6.6游标动态连接界面显示
图 6.7菜单动态连接界面显示7储水箱液位控制程序
if(\\本站点\按钮==1)
{
\\本站点\泵=1;
}
else
{\\本站点\泵=0;}
if(\\本站点\泵==1)
{
\\本站点\阀1=1;
\\本站点\阀3=1;
\\本站点\阀=1;
}
else
{\\本站点\阀1=0;\\本站点\阀3=0;\\本站点\阀=0;} if(\\本站点\按钮==1)
{
if(\\本站点\阀2==1)
{
if(\\本站点\a<= 40 &&\\本站点\a>20)
{\\本站点\a=\\本站点\a+6;}
if(\\本站点\a<= 60 &&\\本站点\a>40)
{\\本站点\a=\\本站点\a+5;}
if(\\本站点\a<=80&&\\本站点\a>60)
{\\本站点\a=\\本站点\a;}
}
else
{
if(\\本站点\a<= 40 &&\\本站点\a>20)
{\\本站点\a=\\本站点\a+8;}
if(\\本站点\a<= 60 &&\\本站点\a>40)
{\\本站点\a=\\本站点\a+6;}
if(\\本站点\a<80 &&\\本站点\a>60)
{\\本站点\a=\\本站点\a+3;}
if(\\本站点\a>=80)
{\\本站点\按钮=0;}
}
}
else
{
if(\\本站点\阀2==1)
{
if(\\本站点\a<=90 &&\\本站点\a>60)
{\\本站点\a=\\本站点\a-7;}
if(\\本站点\a<= 60 &&\\本站点\a>40)
{\\本站点\a=\\本站点\a-6;}
if(\\本站点\a<= 40 &&\\本站点\a>20)
{\\本站点\a=\\本站点\a-5;}
}
}
if(\\本站点\a<=30)
{\\本站点\按钮=1;}
8心得体会
在这次的组态王软件的实训中,通过自己不断的摸索,感觉到收获很多。
此次课程设计,我们按照设计的要求首先对组态王的指导教材进行了仔细的阅读和研究,力争每个步骤都不出现不应有的错误,然后才进行画图的设计。
因为我们懂得做任何程序都要认真细心,任何一个小小的失误都会造成整个设计的失败,更懂得了没有足够的耐力和信心就很难坚持对课程设计每一步的顺利进行。
当遇到错误时,我们要仔细寻找错误的根源,从根本上明白自己犯错误的原因,从而真正的解决问题,真正明白自己的不足之处。
对编程环节中出现的错误解决的同时,加深了我们对程序的深层理解,清楚程序中每一步的功能,在程序的运行中是十分重要的,一个好的结构在运行中能够充分的发挥程序的功能。
结构设计的合理性决定了这个程序的价值。