《整式的加减》全章复习与巩固(提高)知识讲解

合集下载

整式的加减全章知识点总结

整式的加减全章知识点总结

整式的加减全章知识点总结第二章整式的加减知识点1:单项式的概念单项式是由数或字母的积组成的式子,其中只包含乘法运算,不能有加、减、除等运算符号。

单项式分为三种类型:数字与字母相乘组成的式子,如2ab;字母与字母组成的式子,如xy;单独的一个数或字母,如2,-a,m。

知识点2:单项式的系数单项式中的数字因数称为这个单项式的系数。

系数可以是整数、分数或小数,并且有正有负。

确定一个单项式的系数要注意包含在它前面的符号。

对于只含有字母因素的单项式,其系数是1或-1.表示圆周率的π在单项式中应作为系数的一部分。

知识点3:单项式的次数一个单项式中,所有字母的指数和称为这个单项式的次数。

计算单项式的次数时,应注意是所有字母的指数和,不要漏掉字母指数是1的情况。

单项式是一个单独字母时,它的指数是1.单项式的指数只和字母的指数有关,与系数的指数无关。

单项式通常根据指数进行命名。

知识点4:多项式的有关概念多项式是几个单项式的和,其中每个单项式称为多项式的项。

不含字母的项叫做常数项。

多项式里次数最高项的次数称为多项式的次数。

单项式与多项式统称整式。

B。

多项式是由单项式组成的,每一项都包含符号。

例如,多项式-2xy+6a-9由三个单项式-2xy、6a、-9组成,因此它是一个三项式。

多项式的次数是由组成它的单项式中次数最高的那个单项式的次数决定的。

例如,多项式-2xy+6a-9的次数是4,因为其中最高次项是-2xy,它的次数是4.这是一个四次三项式。

C。

在书写含乘法运算的式子时,需要注意以下几点:省略乘号时要小心,数字与字母相乘时数字必须写在字母前面,带分数要化成假分数。

在书写含除法运算的式子时,一般用分数线代替÷符号。

当书写含单位名称的式子时,遇到和差时要加括号,是积商时直接放。

D。

同类项指的是含有相同字母和相同指数的项。

同类项的系数和字母排列顺序不影响它们的同类性。

所有的常数项都是同类项,但单独的一项不能称为同类项,同类项至少要有两项。

《整式的加减》 讲义

《整式的加减》 讲义

《整式的加减》讲义一、整式的相关概念1、单项式由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式。

例如,5,a,3x²等都是单项式。

单项式中的数字因数叫做这个单项式的系数,一个单项式中,所有字母的指数的和叫做这个单项式的次数。

例如,单项式 3x²的系数是 3,次数是 2。

2、多项式几个单项式的和叫做多项式。

在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。

多项式里,次数最高项的次数,就是这个多项式的次数。

例如,多项式 2x²+ 3x 1 有三项,分别是 2x²,3x 和-1,其中-1 是常数项,次数最高项是 2x²,次数为 2,所以这个多项式的次数是 2。

3、整式单项式和多项式统称为整式。

二、同类项1、定义所含字母相同,并且相同字母的指数也相同的项叫做同类项。

几个常数项也是同类项。

例如,5x²y 和-3x²y 是同类项,4 和-7 是同类项。

2、合并同类项把多项式中的同类项合并成一项,叫做合并同类项。

合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变。

例如:3x²+ 2x²=(3 + 2)x²= 5x²三、整式的加减1、去括号法则(1)括号前是“+”号,把括号和它前面的“+”号去掉后,原括号里各项的符号都不改变;例如:a +(b + c) = a + b + c(2)括号前是“”号,把括号和它前面的“”号去掉后,原括号里各项的符号都要改变。

例如:a (b c) = a b + c2、整式的加减运算步骤(1)如果有括号,先去括号;(2)然后合并同类项。

例如:(3x² 5x + 2) (2x²+ x 3)= 3x² 5x + 2 2x² x + 3=(3x² 2x²) +(-5x x) +(2 + 3)= x² 6x + 5四、整式加减的应用1、实际问题中的列式在解决实际问题时,经常需要根据题意列出整式,然后进行整式的加减运算来求解。

整式的加减全章知识点总结

整式的加减全章知识点总结

整式的加减全章知识点总结整式是数学中的一个概念,它是由常数和变量经过加法和减法运算组成的代数式。

在学习整式的加减运算时,我们需要掌握一些基本的知识点。

本文将对整式的加减运算进行全面总结,以帮助读者更好地理解和掌握这一知识。

1. 整式的定义整式是由常数项和各个变量项的系数乘积相加减而成的代数式。

常数项是没有变量的项,变量项是由变量的幂次方和系数相乘的项,系数是指变量项中的常数因子。

2. 整式的加法整式的加法是指将两个或多个整式相加得到一个新的整式。

在进行整式的加法运算时,需要按照变量的幂次从高到低的顺序进行相加,同类项的系数相加保持不变,如果没有同类项则直接相加。

3. 整式的减法整式的减法是指将一个整式减去另一个整式得到一个新的整式。

在进行整式的减法运算时,需要按照变量的幂次从高到低的顺序进行相减,同类项的系数相减保持不变,如果没有同类项则直接相减。

4. 同类项的合并在整式的加减运算中,如果存在相同的变量项,我们称它们为同类项。

在进行合并同类项时,需要将它们的系数相加保持不变,变量的幂次保持不变。

5. 单项式和多项式单项式是只有一个变量项的整式,例如3x、-5xy²等。

多项式是由多个单项式相加减而成的整式,例如2x²+3xy+1、-4x²y²+5xy。

6. 整式的加减乘法运算整式的加减运算已经在前面进行了详细介绍。

整式的乘法是指将两个整式相乘得到一个新的整式。

在进行整式的乘法运算时,要将每个变量项按照幂次进行相乘,同时将系数相乘。

7. 完全平方公式完全平方公式是整式中的一个重要概念。

对于一个二次整式a²+2ab+b²,它可以写成(a+b)²的形式,称为完全平方公式。

8. 整式的应用整式的加减运算是代数学中非常重要的一部分,它在各个学科的应用中都起到了重要的作用。

在物理、经济学等领域,整式的加减运算被广泛应用于问题的建模和解决。

通过对整式的加减运算的全面总结,我们对整式的概念、加减法的运算规则以及应用进行了详细的了解。

《整式的加减》 讲义

《整式的加减》 讲义

《整式的加减》讲义一、整式的基本概念在数学的世界里,整式是一个非常重要的概念。

那么,什么是整式呢?整式是单项式和多项式的统称。

单项式,它就像是一个孤独的战士,由数与字母的积组成的代数式叫做单项式。

单独的一个数或一个字母也叫做单项式。

比如,3、x 、-5xy 等都是单项式。

其中,单项式中的数字因数叫做这个单项式的系数,一个单项式中,所有字母的指数的和叫做这个单项式的次数。

多项式呢,则是由几个单项式相加组成的。

在多项式中,每个单项式叫做多项式的项,不含字母的项叫做常数项。

多项式里,次数最高项的次数,就是这个多项式的次数。

例如,多项式 2x²+ 3x 1 ,它有三项,分别是 2x²、 3x 、-1 ,其中-1 是常数项,这个多项式的次数是 2 ,因为 2x²的次数最高。

二、同类项了解了整式的基本概念后,我们来认识一下同类项。

同类项,就像是一群志同道合的伙伴。

所含字母相同,并且相同字母的指数也相同的项叫做同类项。

几个常数项也是同类项。

比如 5x²y 和-3x²y 就是同类项, 8 和-2 也是同类项。

判断同类项有两个关键条件:一是所含字母相同,二是相同字母的指数也相同。

这两个条件缺一不可。

同类项在整式的加减运算中起着至关重要的作用,因为只有同类项才能进行合并。

三、整式的加减运算接下来,咱们重点讲讲整式的加减运算。

整式的加减,其实就是合并同类项。

合并同类项的法则是:把同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。

例如,计算 3x²+ 2x²,因为它们是同类项,所以将系数相加,得到 5x²。

在进行整式的加减运算时,首先要找出式子中的同类项,然后再进行合并。

如果遇到有括号的式子,要先去括号。

去括号时,要遵循“去正不变,去负全变”的原则。

比如,式子 a +(b c) ,去括号后就是 a + b c ;式子 a (b c) ,去括号后就是 a b + c 。

七年级数学整式的加减人教版知识精讲

七年级数学整式的加减人教版知识精讲

七年级数学整式的加减人教版四. 知识要点1. 整式加减的实质几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接。

整式的加减实质上就是合并同类项。

2. 整式加减的一般步骤(1)根据题意列出代数式。

(2)如果遇有括号,按去括号法则先去括号。

(3)合并同类项。

【典型例题】[例1] 列式计算:(1)求整式y x 26-加32372y xy x +-的和与3232527y xy x y x -++-的差。

(2)求比多项式22325b ab a a +--少ab a -25的多项式。

[例2] 计算:⎭⎬⎫⎩⎨⎧+----y x xy y x y x xy xy 22231)](31[2121[例3] 化简求值:)(3)2(2b a b a a -++-,其中3-=a ,2=b[例4] 已知222c b a A -+=,222324c b a B ++-=,并且0=++C B A ,问C 是什么样的多项式。

[例5] 三角形的周长为48,第一边长为b a 23+,第二边的2倍比第一边少22+-b a ,求第三边长是多少?[例6] 已知05)2(2=++++b a a ,求ab a b a ab b a b a -----]4)2(2[32222的值。

【模拟试题】一. 填空1. 单项式xy 5-与xy 9-的差是 。

2. 多项式224523-+-x x x 与多项式872323+-+-x x x 的和 。

3. 多项式22322-+-y xy x 加上 等于22375y xy x --。

4. 减去25x -等于7622+-x x 的代数式是 。

5. 已知65=-b a ,则=--)(3a b 。

二. 选择1. 下列说法正确的是( )A. 单项式与单项式的和仍是单项式B. 多项式与单项式的和仍是多项式C. 多项式与多项式的和仍是多项式D. 整式与整式的和仍是整式2. 化简)](2[y x x y x -----的结果是( )A. x 2B. x 2-C. y x 23-D. y x 22-3. 若m 是一个六次多项式,n 也是一个六次多项式,则n m -一定是( )A. 十二次多项式B. 六次多项式C. 次数不高于六次的整式D. 次数不低于六次的整式4. 已知k 为正整数,多项式7362-+k k 减去632--k k 的2倍的差一定是( )A. 奇数B. 偶数C. 5的倍数D. 以上都不对5. 已知0>x ,0<xy ,则64---+-x y y x 的值是( )A. 2-B. 2C. 10-+-y xD. 不能确定三. 解答题1. 已知多项式A 减去42323--x x 得x x x 57823+-,求多项式A 。

第三章《整式》全章复习知识讲解

第三章《整式》全章复习知识讲解

第三章《整式的加减》全章复习、知识讲解【全章重点知识】1、用字母表示数的书写原则是什么?2、什么是代数式?3、求代数式的值的步骤是什么?4、什么是单项式?单项式的次数?单项式的系数?5、什么是多项式?多项式的次数?多项式的项?6、如何将多项式进行升、降幂排列?排列时要注意什么?7、什么是同类项?同类项与什么有关?与什么无关?8、合并同类项的法则?9、去括号、添括号的法则?10、整式的加法、减法的法则?做整式的加法、减法的一般步骤是什么?【全章重点知识概述】一、单项式1、都是数字与字母的乘积的代数式叫做单项式。

2、单项式的数字因数叫做单项式的系数。

3、单项式中所有字母的指数和叫做单项式的次数。

4、单独一个数或一个字母也是单项式。

5、只含有字母因式的单项式的系数是1或―1。

6、单独的一个数字是单项式,它的系数是它本身。

7、单独的一个非零常数的次数是0。

8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。

9、单项式的系数包括它前面的符号。

10、单项式的系数是带分数时,应化成假分数。

11、单项式的系数是1或―1时,通常省略数字“1”。

12、单项式的次数仅与字母有关,与单项式的系数无关。

二、多项式1、几个单项式的和叫做多项式。

2、多项式中的每一个单项式叫做多项式的项。

3、多项式中不含字母的项叫做常数项。

4、一个多项式有几项,就叫做几项式。

5、多项式的每一项都包括项前面的符号。

6、多项式没有系数的概念,但有次数的概念。

7、多项式中次数最高的项的次数,叫做这个多项式的次数。

三、整式1、单项式和多项式统称为整式。

2、单项式或多项式都是整式。

3、整式不一定是单项式。

4、整式不一定是多项式。

5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。

四、整式的加减1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配律。

2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。

3、几个整式相加减的一般步骤:(1)列出代数式:用括号把每个整式括起来,再用加减号连接。

《整式的加减》 讲义

《整式的加减》 讲义

《整式的加减》讲义一、整式的基本概念在数学的世界里,整式是一个非常重要的概念。

那什么是整式呢?整式是有理式的一部分,在有理式中可以包含加、减、乘、除、乘方五种运算,但在整式中除数不能含有字母。

整式可以分为单项式和多项式。

单项式,就是由数与字母的积组成的代数式,单独的一个数或一个字母也叫做单项式。

比如,3x、-5 、a 等都是单项式。

其中,单项式中的数字因数叫做这个单项式的系数,一个单项式中,所有字母的指数的和叫做这个单项式的次数。

例如,在单项式 3x 中,系数是 3,次数是 1;在单项式-5 中,系数是-5,次数是 0。

多项式则是几个单项式的和。

比如,2x + 3y 、a² 3a + 1 等都是多项式。

在多项式中,每个单项式叫做多项式的项,不含字母的项叫做常数项。

多项式里,次数最高项的次数,就是这个多项式的次数。

例如,在多项式 2x + 3y 中,有两项,分别是 2x 和 3y,这两项都是一次项,所以这个多项式的次数是 1。

二、同类项了解了整式的基本概念后,我们来学习一个重要的概念——同类项。

同类项,简单来说,就是所含字母相同,并且相同字母的指数也相同的项。

比如,5x²y 和-3x²y 就是同类项,因为它们都含有字母 x 和y,并且 x 的指数都是 2,y 的指数都是 1。

需要注意的是,几个常数项也是同类项。

例如,2 和-5 就是同类项。

同类项在整式的加减运算中起着至关重要的作用,因为只有同类项才能进行合并。

三、整式的加减运算整式的加减运算,其实就是合并同类项。

合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。

例如,计算 3x + 2x,因为 3x 和 2x 是同类项,所以将它们的系数3 和 2 相加,得到 5,所以 3x + 2x = 5x。

再比如,计算 5xy² 3xy²,因为 5xy²和-3xy²是同类项,将系数 5 和-3 相加,得到 2,所以 5xy² 3xy²= 2xy²。

整式的加减单元复习

整式的加减单元复习
答案:-1
提示:先设被减数为A,可由已知求出多项式A,再计算A-(3x2-5x+1)

第2章 |复习
多项式:几个单项式的____叫做多项式. 多项式的次数:多项式里次数最高项的次数,叫做这个多项式的次数. 整式:______________________统称整式. 2.同类项、合并同类项 同类项:所含字母________,并且相同字母的指数也______的项叫做同类项.几个常数项也是同类项. 合并同类项:把多项式中的同类项合并成一项,叫做合并同类项,即把它们的系数相加作为新的系数,而字母部分不变.
根据加法的交换律和结合律,可以把一个多项式的各项重新排列,移动多项式的项时,需连同项的符号一起移动,这样的移动并没有改变项的符号和多项式的值。
01
把一个多项式按某个字母的指数从大到小的顺序排列起来叫做把该多项式按这个字母的降幂排列;
02
把一个多项式按某个字母的指数从小到大的顺序排列起来叫做把该多项式按这个字母的升幂排列。
不是

不是

多项式中的项:
4x2 ,- 8x , + 5 ,- 3x2 , - 6x , - 2
同类项:
4x2与- 3x2
- 8x与- 6x
+ 5与- 2
3.化简:(1)-xy2– xy2 (2) – 3x2y - 3xy2 + 2x2y - 2xy2
02
[例1]
关于去括号
1、去括号是本章的难点之一;去括号都是多项式的恒等变形;去括号时一定对照法则把去掉括号与括号的符号看成统一体,不能拆开。 法则:如果括号外的因数是正数,去括号后原括号内的各项的符号与原来的符号( ); 如果括号外的因数是负数,去括号后原括号内的各项的符号与原来的符号( )。 遇到括号前面是“-”时,容易发生漏掉括号内一部分项的变号,所以,要注意“各项”都要变号。不是只变第一项的符号。 去括号的顺口溜:去括号,看符号; 是正号,不变号; 是负号,全变号。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《整式的加减》全章复习与巩固(提高)知识讲解责编:杜少波【学习目标】1.理解并掌握单项式与多项式的相关概念;2.理解整式加减的基础是去括号和合并同类项,并会用整式的加减运算法则,熟练进行整式的加减运算、求值;3.深刻体会本章体现的主要的数学思想----整体思想.【知识网络】【要点梳理】要点一、整式的相关概念1.单项式:由数或字母的积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式.要点诠释:(1)单项式的系数是指单项式中的数字因数.(2)单项式的次数是指单项式中所有字母的指数和.2.多项式:几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.要点诠释:(1)在多项式中,不含字母的项叫做常数项.(2)多项式中次数最高的项的次数,就是这个多项式的次数.(3)多项式的次数是n次,有m个单项式,我们就把这个多项式称为n次m项式.3. 多项式的降幂与升幂排列:把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把这个多项式按这个字母降幂排列.另外,把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把这个多项式按这个字母升幂排列.要点诠释:(1)利用加法交换律重新排列时,各项应连同它的符号一起移动位置;(2)含有多个字母时,只按给定的字母进行降幂或升幂排列.4.整式:单项式和多项式统称为整式.要点二、整式的加减1.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项.所有的常数项都是同类项.要点诠释:辨别同类项要把准“两相同,两无关”:(1)“两相同”是指:①所含字母相同;②相同字母的指数相同;(2)“两无关”是指:①与系数无关;②与字母的排列顺序无关.2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项.要点诠释:合并同类项时,只是系数相加减,所得结果作为系数,字母及字母的指数保持不变.3.去括号法则:括号前面是“+”,把括号和它前面的“+”去掉后,原括号里各项的符号都不改变;括号前面是“-”,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变.4.添括号法则:添括号后,括号前面是“+”,括号内各项的符号都不改变;添括号后,括号前面是“-”,括号内各项的符号都要改变.5.整式的加减运算法则:几个整式相加减,通常用括号把每一个整式括起来,再用加、减号连接,然后去括号,合并同类项.【典型例题】类型一、整式的相关概念1.(2016春•新泰市期中)下列说法正确的是( )A .1﹣xy 是单项式B .ab 没有系数C .﹣5是一次一项式D .﹣a 2b+ab ﹣abc 2是四次三项式【思路点拨】根据多项式是几个单项式的和,数字因数是单项式的系数,字母指数和是单项式的次数,多项式中次数最高的单项式的次数是多项式的次数,每个单项式是多项式的项,可得答案.【答案】D .【解析】解:A 、1﹣xy 是多项式,故A 错误;B 、ab 的系数是1,故B 错误;C 、﹣5是单项式,故C 错误;D 、﹣a 2b+ab ﹣abc 2是四次三项式,故D 正确;故选:D .【总结升华】本题考查了单项式,单项式的系数,多项式,多项式的次数等基本概念,关键是对这些基本概念一定要熟悉.举一反三:【变式1】(2014•佛山)多项式2a 2b ﹣ab 2﹣ab 的项数及次数分别是( )A .3,3B .3,2C .2,3D .2,2【答案】A2a 2b ﹣ab 2﹣ab 是三次三项式,故次数是3,项数是3.【变式2】若多项式31(4)5(2)n m x x x n m -++---+是关于x 的二次三项式,则________m =,________n =,这个二次三项式为 .【答案】4,3,-259x x -- 类型二、同类项及合并同类项2.若315212135m n m n x y x y --+-与是同类项,求出m, n 的值,并把这两个单项式相加. 【答案与解析】 解:因为312121535m n m n x y x y --+-与是同类项,所以315,21 1.m n -=⎧⎨-=⎩ 解得2,1.m n =⎧⎨=⎩当2m =且1n =时,55553152121424214()()35353515m n m n x y x y x y x y x y x y --++-=-=-=. 【总结升华】同类项的定义中强调,除所含字母相同外,相同字母....的指数也要相同.其中,常数项也是同类项.合并同类项时,若不是同类项,则不需合并.举一反三:【变式】合并同类项.(1)2222344522x xy y x xy y -+-+-; (2)3232399111552424xy x y xy x y xy x y --+---. 【答案】(1)原式=22(35)(42)(42)x xy y -+-++- 22222x xy y =--+(2)原式3232391191554422xy x y x y x y ⎛⎫⎛⎫=--+-+-- ⎪ ⎪⎝⎭⎝⎭32345x y x y =---.类型三、去(添)括号3.化简2211()22x x x x ⎡⎤--+⎢⎥⎣⎦. 【答案与解析】 解:原式=2211()24x x x x -++22111244x x x x =-++25144x x =-. 【总结升华】根据多重括号的去括号法则,可由里向外,也可由外向里逐层推进,在计算过程中要注意符号的变化.若括号前是“-”号,在去括号时,括号里各项都应变号,若括号前有数字因数,应把数字因数乘到括号里,再去括号.举一反三:【变式1】下列去括号正确的是( ).A .2222(2)2a a b b a a b b --+=--+B .2222(2)()2x y x y x y x y -+--+=-++-C .2223(5)235x x x x --=-+D .3232[4(13)]431a a a a a a ---+-=-++-【答案】D【变式2】先化简代数式22211(351)5333a a a a a ⎧⎫⎡⎤---+--⎨⎬⎢⎥⎣⎦⎩⎭,然后选取一个使原式有意义的a 的值代入求值. 【答案】22211(351)5333a a a a a ⎧⎫⎡⎤---+--⎨⎬⎢⎥⎣⎦⎩⎭22211[(3515)]333a a a a a =---+-- 222116[(34)]333a a a a =----222116(34)333a a a a =--++ 22816(4)333a a a =--++228164333a a a =+--2814433a a =--. 当0a =时,原式=0-0-4=-4.【变式3】(1) (x +y )2-10x -10y +25=(x +y )2-10(______)+25;(2) (a -b +c -d )(a +b -c -d )=[(a -d )+(______)][(a -d )-(______)].【答案】(1)x +y ; (2)-b +c ,-b +c 类型四、整式的加减4. (2015春•无锡校级期中)已知x=2015,求代数式(2x+3)(3x+2)﹣6x (x+3)+5x+16的值”时,马小虎把“2015”看成了“2051”,但是他的运算结果却是正确的,这是为什么?请你说明原因.【答案与解析】解:原式=6x 2+4x+9x+6﹣6x 2﹣18x+16=22,结果不含x ,故原式化简后与x 的取值无关,则马小虎把“2015”看成了“2051”,但是他的运算结果却是正确的【总结升华】原式利用多项式乘以多项式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,根据结果不含x ,即可得证.此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.举一反三:【变式】已知A =x 2+2y 2-z 2,B =-4x 2+3y 2+2z 2,且A +B +C =0,则多项式C 为( ).A .5x 2-y 2-z 2B .3x 2-5y 2-z 2C .3x 2-y 2-3z 2D .3x 2-5y 2+z 2【答案】B 类型五、化简求值5.(2016春•盐城校级月考)先化简,再求值:3x 2y ﹣[2x 2﹣(xy 2﹣3x 2y )﹣4xy 2],其中|x|=2,y=,且xy <0.【思路点拨】原式去括号合并得到最简结果,利用绝对值的代数意义求出x 的值,代入原式计算即可得到结果.【答案与解析】解:原式=3x 2y ﹣2x 2+xy 2﹣3x 2y+4xy 2=5xy 2﹣2x 2,∵|x|=2,y=,且xy <0,∴x=﹣2,y=,则原式=﹣﹣8=﹣.【总结升华】化简求值题一般采用“一化二代三计算”,此类题最后结果的书写格式一般为:当x=…时,原式=….举一反三: 【变式】已知26a b a b -=+,求代数式2(2)3()2a b a b a b a b -+++-的值. 【答案】 设2a b p a b-=+,则12a b a b p +=-,原式32p p =+. 又因为p =6,所以原式31261262=⨯+=. 类型六、综合应用6. 对于任意有理数x ,比较多项式2452x x -+与2352x x --的值的大小.【答案与解析】解:22222(452)(352)4523524x x x x x x x x x -+---=-+-++=+∵240x +>∴无论x 为何值,2452x x -+>2352x x --.【总结升华】本题考查整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.举一反三:【高清课堂:整式的加减单元复习388396 经典例题5】【变式】设22232A x xy y x y =-+-+, 224623B x xy y x y =-++-. 若22(3)0x a y -++=且2B A a -=,求a .【答案】∵ 22(3)0x a y -++=,20x a -≥, 2(3)0y +≥ ∴ 20,30.x a y -=⎧⎨+=⎩ 即 2,3.x a y =⎧⎨=-⎩∴ 222(2)3(2)(3)(3)22(3)A a a a =--+--+-228189268163a a a a a =++--=++224(2)6(2)(3)2(3)32(3)B a a a =--+⨯-+-- 2216361863164221a a a a a =++++=++ ∵ 2164221,2216326,B a a A a a ⎧=++⎪⎨⎪-=---⎩ 且2B A a -=, ∴21015B A a -=+∴1015a a +=915a =-, 53a =-.。

相关文档
最新文档