平方根(提高)知识讲解

合集下载

平方根(提高)知识讲解

平方根(提高)知识讲解

平方根(提高)【学习目标】1.了解平方根、算术平方根的概念,会用根号表示数的平方根.2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.【要点梳理】【平方根,知识要点】要点一、平方根和算术平方根的概念1.算术平方根的定义如果一个正数x 的平方等于a ,即2x a =,那么这个正数x 叫做a 的算术平方根(规定0的算术平方根还是0);aa 的算术平方根”,a 叫做被开方数.要点诠释:a0,a ≥0.2.平方根的定义如果2x a =,那么x 叫做a 的平方根.求一个数a 的平方根的运算,叫做开平方.平方与开平方互为逆运算. a (a ≥0)的平方根的符号表达为0)a ≥,a 的算术平方根.要点二、平方根和算术平方根的区别与联系1.区别:(1)定义不同;(2)结果不同:2.联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3)0的平方根和算术平方根均为0.要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根.(2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根.因此,我们可以利用算术平方根来研究平方根.要点三、平方根的性质(0)||0(0)(0)a a a a a a >⎧⎪===⎨⎪-<⎩()20a a =≥要点四、平方根小数点位数移动规律被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位.250=25=2.5=0.25=.【典型例题】类型一、平方根和算术平方根的概念1、(2015秋•张家港市校级期中)已知2a ﹣1的平方根是±3,3a+b ﹣9的立方根是2,c 是的整数部分,求a+b+c 的平方根.【思路点拨】首先根据平方根与立方根的概念可得2a ﹣1与3a+b ﹣9的值,进而可得a 、b 的值;接着估计的大小,可得c 的值;进而可得a+b+c ,根据平方根的求法可得答案.【答案与解析】解:根据题意,可得2a ﹣1=9,3a+b ﹣9=8;故a=5,b=2; 又∵2<<3,∴c=2,∴a+b+c=5+2+2=9,∴9的平方根为±3.【总结升华】此题主要考查了平方根、立方根、算术平方根的定义及无理数的估算能力,还要掌握实数的基本运算技能,灵活应用.举一反三:【变式】已知2a -1与-a +2是m 的两个不同的平方根,求m 的值.【答案】2a -1与-a +2是m 的平方根,所以2a -1与-a +2互为相反数. 解:当2a -1+(-a +2)=0时,a =-1,所以m =()()22221[2(1)1]39a -=⨯--=-=2、x 为何值时,下列各式有意义?; 【答案与解析】解:(1)因为20x ≥,所以当x(2)由题意可知:40x -≥,所以4x ≥(3)由题意可知:1010x x +≥⎧⎨-≥⎩解得:11x -≤≤.所以11x -≤≤有意义.(4)由题意可知:1030x x -≥⎧⎨-≠⎩,解得1x ≥且3x ≠.所以当1x ≥且3x ≠ 【总结升华】(1)当被开方数不是数字,而是一个含字母的代数式时,一定要讨论,只有当被开方数是非负数时,式子才有意义.(2)当分母中含有字母时,只有当分母不为0时,式子才有意义.举一反三:【变式】已知2b =,求11a b+的算术平方根. 【答案】 解:根据题意,得320,230.a a -≥⎧⎨-≥⎩则23a =,所以b =2,∴1131222a b +=+=,∴11a b += 类型二、平方根的运算3、求下列各式的值.2234+; 【思路点拨】(1)首先要弄清楚每个符号表示的意义.(2)注意运算顺序. 【答案与解析】解:2234+257535=⨯=;110.63035=⨯-⨯90.26 1.72=--=-. 【总结升华】(1)混合运算的运算顺序是先算平方开方,再乘除,后加减,同一级运算按先后顺序进行.(2)初学可以根据平方根、算术平方根的意义和表示方法来解,熟练后直接根(0)a a =>来解.类型三、利用平方根解方程4、求下列各式中的x .(1)23610;x -= (2)()21289x +=; (3)()2932640x +-=【答案与解析】解:(1)∵23610x -=∴2361x =∴19x ==±(2)∵()21289x +=∴1x += ∴x +1=±17x =16或x =-18.(3)∵()2932640x +-= ∴()264329x += ∴8323x +=± ∴21499x x ==-或 【总结升华】本题的实质是一元二次方程,开平方法是解一元二次方程的最基本方法.(2)(3)小题中运用了整体思想分散了难度.举一反三:【变式】求下列等式中的x :(1)若2 1.21x =,则x =______; (2)2169x =,则x =______; (3)若29,4x =则x =______; (4)若()222x =-,则x =______. 【答案】(1)±1.1;(2)±13;(3)32±;(4)±2. 类型四、平方根的综合应用【高清课堂:389316 平方根:例5】5、已知a 、b 是实数,|0b =,解关于x 的方程2(2)1a x b a ++=-.【答案与解析】解:∵a 、b |0b =0≥,|0b ≥,∴260a +=,0b =.∴a =-3,b =把a =-3,b =2(2)1a x b a ++=-,得-x +2=-4,∴x =6.【总结升华】本题是非负数的性质与方程的知识相结合的一道题,应先求出a 、b 的值,再解方程.此类题主要是考查完全平方式、算术平方根、绝对值三者的非负性,只需令每项分别等于零即可.举一反三:【高清课堂:389316 平方根:例5练习】0=,求20112012x y +的值.【答案】0=,得210x -=,10y +=,即1x =±,1y =-.①当x =1,y =-1时,20112012201120121(1)2x y +=+-=.②当x =-1,y =-1时,2011201220112012(1)(1)0x y +=-+-=.【高清课堂:389316 平方根:例6】6、小丽想用一块面积为4002cm 的正方形纸片,沿着边的方向裁出一块面积为3002cm的长方形纸片,使它长宽之比为2:3,请你说明小丽能否用这块纸片裁出符合要求的长方形纸片.【答案与解析】解:设长方形纸片的长为3x (x >0) cm ,则宽为2x cm ,依题意得32300x x ⋅=.26300x =.250x =.∵ x >0,∴ x =∴ 长方形纸片的长为cm .∵ 50>49,7>.∴ 21>, 即长方形纸片的长大于20cm .由正方形纸片的面积为400 2cm , 可知其边长为20cm ,∴ 长方形的纸片长大于正方形纸片的边长.答: 小丽不能用这块纸片裁出符合要求的长方形纸片.【总结升华】本题需根据平方根的定义计算出长方形的长和宽,再判断能否用边长为20cm 的正方形纸片裁出长方形纸片.举一反三:【变式】(2015春•台安县月考)某小区为了促进全民健身活动的开展,决定在一块面积约为1000m 2的正方形空地上建一个篮球场,已知篮球场的面积为420m 2,其中长是宽的倍,篮球场的四周必须留出1m 宽的空地,请你通过计算说明能否按规定在这块空地上建一个篮球场?【答案】解:设篮球场的宽为xm,那么长为2815x m,由题意知,所以x2=225,因为x为正数,所以x==15,又因为=900<1000,所以按规定在这块空地上建一个篮球场.。

七年级上册平方根的知识点

七年级上册平方根的知识点

七年级上册平方根的知识点介绍
平方根是数学中经常使用的一种运算方法,对于我们学习数学也有重要的意义。

本文将为大家详细介绍七年级上册平方根的知识点。

一、平方根的定义
平方根是指一个数的平方等于另一个数,那么这个数就是这个数的平方根。

比如,3的平方根是√3,因为3的平方是9,√3也就是3的一个正平方根。

二、平方根的性质
1. 正数的平方根是一个正数,而负数则没有平方根。

2. 一个正数的平方根可以有两个解,即正根和负根。

例如,4的平方根可以是正的2或负的-2。

3. 如果是一个实数的平方根,则必须要求这个实数大于或等于0。

三、平方根的运算
1. 运用乘方的方法来计算平方根。

比如,在计算4的平方根时,可以表示为4^(1/2),结果为2。

2. 可以运用除法法来计算平方根。

例如,√2可以化成2/√2,结果为√2。

3. 可以间接求解平方根,通过乘积进行计算。

比如,求解12
的平方根,在1-12中找到两个数相乘可以得到12的最小数,可以得到2×6或3×4,因此12的平方根为2√3或2×2。

四、应用实例
1. 用平方根来计算三角形的面积,就可以先求出三角形周长,
然后运用海伦公式来求得三角形面积。

2. 平方根也常常被用来计算人口增长率、股票的涨跌幅度等。

结语
以上便是七年级上册平方根的知识点介绍,本文尽可能详尽地介绍了平方根的定义、性质、运算以及应用实例等方面。

希望这篇文章能够帮助各位同学更好地掌握平方根的概念和使用方法。

平方根知识详解

平方根知识详解

平方根【知识扫描】知识点一 算术平方根的定义及表示方法1. 算术平方根的定义如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 叫做a 的算术平方根;a 的算术平方根记作a ,读作“根号a ”或“二次根号a ”,a 叫做被开方数。

规定0的算术平方根还是0,即0=0。

当式子a 有意义时,一定表示一个非负数,即a ≥0,a ≥0。

而当a <0时,a 没有意义。

2. 平方根的定义如果一个数x 的平方等于a ,即a x =2,那么这个数x 叫做a 的平方根。

正数a 的平方根有两根,分别是它的算术平方根“a ”和算术平方根的相反数“-a ”,记作“a ±”,读作“正、负根号a ”。

0的平方根为0。

任何一个数的平方都不会是负数,所以负数没有平方根。

归纳:平方根的性质①一个正数有两个平方根,它们互为相反数;②0的平方根是0;③负数没有平方根知识点二 平方根与算术平方根的区别和联系1. 区别(1)定义不同:如果a x =2,那么x 叫做a 的平方根;如果a x =2(x ≥0),那么x 叫做a 的算术平方根;(2)表示方法不同:正数a 的平方根表示为a ±,正数a 的算术平方根表示为a(3)平方根等于它本身的数是0,算术平方根等于它本身的数是0和1。

2. 联系:平方根包含算术平方根,算术平方根是平方根中的非负的那一个。

知识点三 平方根的性质(0)||0(0)(0)a a a a a a >⎧⎪===⎨⎪-<⎩()20a a =≥【典型例题】 考点一 算术平方根和平方根的定义和性质【例1】求下列各数的算术平方根(1)81的算术平方根是________;(2)425的算术平方根是________; (3)0.0016的算术平方根是________【变式】下列说法正确的是( ) A. 3是9的算术平方根 B. -2是4的算术平方根C. (-2)2的算术平方根是-2D. -9的算术平方根是3【例2】求下列各数的算术平方根(1)49的平方根是________;(2)8164的平方根是________; (3)0.36的平方根是______。

数学中的平方根知识点解析及解题技巧

数学中的平方根知识点解析及解题技巧

数学中的平方根知识点解析及解题技巧数学中的平方根是我们在初等数学中学习的重要知识点之一。

平方根是指某个数的算术平方根,即找到一个数,使其平方等于给定的数。

在解题过程中,了解平方根的概念、性质以及一些解题技巧是非常重要的。

本文将对数学中的平方根进行解析,并提供一些解题技巧。

一、平方根的定义与性质平方根的定义:设a和b都是实数,则b是a的平方根,当且仅当b的平方等于a。

符号表达为√a = b 或 a的平方根等于b。

1. 平方根的性质:a) 非负实数的平方根是实数;b) 负数没有实数平方根,在复数域中有两个互为相反数的平方根;c) 非零数的正平方根和负平方根互为相反数。

二、平方根的求解方法在解题过程中,常见的平方根求解方法有以下几种:1. 倍增法:倍增法是一种通过逐步逼近来求解平方根的方法。

例如,对于一个非负实数a,可以从一个合适的起始值b开始,通过逐步增加b的值,使得b的平方逼近a,直到满足要求。

2. 二分法:二分法是一种通过取平均值来逐步逼近平方根的方法。

对于一个非负实数a,可以确定一个上下界b和c,使得b的平方小于a,c的平方大于a。

然后通过取b和c的平均值来逐步逼近平方根的解。

3. 牛顿迭代法:牛顿迭代法是一种通过逐步逼近来求解平方根的方法。

该方法基于泰勒级数展开,通过不断逼近函数与x轴的交点来求解平方根。

三、平方根的解题技巧1. 化简被开方数:在进行平方根运算时,如果被开方数可以进行化简,可以大大简化计算过程。

例如,对于√4,可以将其化简为2,避免了对浮点数的计算。

2. 判断平方数:在求解平方根时,我们可以先判断被开方数是否为平方数。

如果是平方数,那么其平方根一定是整数。

因此,可以通过判断被开方数是否为平方数,来确定是否可以通过直接求平方根来得到答案。

3. 利用平方根的性质:在解题过程中,我们可以利用平方根的性质来简化运算。

例如,利用√ab = √a * √b,可以化简被开方数的因式分解,从而减少计算量。

11平方根(提高)知识讲解

11平方根(提高)知识讲解

平方根(提高)【学习目标】1.了解平方根、算术平方根的概念,会用根号表示数的平方根.2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.【要点梳理】要点一、平方根和算术平方根的概念1.算术平方根的定义如果一个正数x 的平方等于a ,即2x a =,那么这个正数x 叫做a 的算术平方根(规定0的算术平方根还是0);aa 的算术平方根”,a 叫做被开方数.要点诠释:a0,a ≥0.2.平方根的定义如果2x a =,那么x 叫做a 的平方根.求一个数a 的平方根的运算,叫做开平方.平方与开平方互为逆运算. a (a ≥0)的平方根的符号表达为0)a ≥,是a 的算术平方根.要点二、平方根和算术平方根的区别与联系1.区别:(1)定义不同;(2)结果不同:2.联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3)0的平方根和算术平方根均为0.要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根.(2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根.因此,我们可以利用算术平方根来研究平方根.要点三、平方根的性质(0)||0(0)(0)a a a a a a >⎧⎪===⎨⎪-<⎩()20a a =≥要点四、平方根小数点位数移动规律被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位.250=25=2.5=0.25=.【典型例题】类型一、平方根和算术平方根的概念1、(2015秋•张家港市校级期中)已知2a ﹣1的平方根是±3,3a+b ﹣9的立方根是2,c 是的整数部分,求a+b+c 的平方根.【思路点拨】首先根据平方根与立方根的概念可得2a ﹣1与3a+b ﹣9的值,进而可得a 、b 的值;接着估计的大小,可得c 的值;进而可得a+b+c ,根据平方根的求法可得答案.【答案与解析】解:根据题意,可得2a ﹣1=9,3a+b ﹣9=8;故a=5,b=2;又∵2<<3,∴c=2,∴a+b+c=5+2+2=9,∴9的平方根为±3.【总结升华】此题主要考查了平方根、立方根、算术平方根的定义及无理数的估算能力,还要掌握实数的基本运算技能,灵活应用.举一反三:【变式】已知2a -1与-a +2是m 的两个不同的平方根,求m 的值.【答案】2a -1与-a +2是m 的平方根,所以2a -1与-a +2互为相反数. 解:当2a -1+(-a +2)=0时,a =-1,所以m =()()22221[2(1)1]39a -=⨯--=-= 2、x 为何值时,下列各式有意义?2x 4x -11x x +- (4)13x x --. 【答案与解析】解:(1)因为20x ≥,所以当x 2x (2)由题意可知:40x -≥,所以4x ≥4x -(3)由题意可知:1010x x +≥⎧⎨-≥⎩解得:11x -≤≤.所以11x -≤≤11x x +-义.(4)由题意可知:1030x x -≥⎧⎨-≠⎩,解得1x ≥且3x ≠.所以当1x ≥且3x ≠时,13x x --有意义. 【总结升华】(1)当被开方数不是数字,而是一个含字母的代数式时,一定要讨论,只有当被开方数是非负数时,式子才有意义.(2)当分母中含有字母时,只有当分母不为0时,式子才有意义. 举一反三: 【变式】已知4322232b a a =-+-+,求11a b+的算术平方根. 【答案】 解:根据题意,得320,230.a a -≥⎧⎨-≥⎩则23a =,所以b =2,∴1131222a b +=+=, ∴11a b+的算术平方根为112a b +=. 类型二、平方根的运算3、求下列各式的值.(1)2222252434-+g ;(2)111200.36900435--. 【思路点拨】(1)首先要弄清楚每个符号表示的意义.(2)注意运算顺序.【答案与解析】解:(1)2222252434-+g 49257535==⨯=g ; (2)1118111200.369000.630435435--=-⨯-⨯90.26 1.72=--=-. 【总结升华】(1)混合运算的运算顺序是先算平方开方,再乘除,后加减,同一级运算按先后顺序进行.(2)初学可以根据平方根、算术平方根的意义和表示方法来解,熟练后直接根据2(0)a a a =>来解.类型三、利用平方根解方程4、求下列各式中的x .(1)23610;x -= (2)()21289x +=; (3)()2932640x +-=【答案与解析】解:(1)∵23610x -=∴2361x =∴36119x ==±(2)∵()21289x +=∴1289x +=±∴x +1=±17x =16或x =-18.(3)∵()2932640x +-= ∴()264329x += ∴8323x +=± ∴21499x x ==-或 【总结升华】本题的实质是一元二次方程,开平方法是解一元二次方程的最基本方法.(2)(3)小题中运用了整体思想分散了难度.举一反三: 【变式】求下列等式中的x :(1)若2 1.21x =,则x =______; (2)2169x =,则x =______; (3)若29,4x =则x =______; (4)若()222x =-,则x =______. 【答案】(1)±1.1;(2)±13;(3)32±;(4)±2. 类型四、平方根的综合应用5、已知a 、b 是实数,26|20a b ++-=,解关于x 的方程2(2)1a x b a ++=-. 【答案与解析】解:∵a 、b 26|20a b +=260a +≥,|20b -≥, ∴260a +=,20b =.∴a =-3,2b =把a =-3,2b =2(2)1a x b a ++=-,得-x +2=-4,∴x =6.【总结升华】本题是非负数的性质与方程的知识相结合的一道题,应先求出a 、b 的值,再解方程.此类题主要是考查完全平方式、算术平方根、绝对值三者的非负性,只需令每项分别等于零即可.举一反三:2110x y -+=,求20112012x y +的值.【答案】解:由2110x y -++=,得210x -=,10y +=,即1x =±,1y =-.①当x =1,y =-1时,20112012201120121(1)2x y +=+-=.②当x =-1,y =-1时,2011201220112012(1)(1)0x y +=-+-=.6、小丽想用一块面积为4002cm 的正方形纸片,沿着边的方向裁出一块面积为3002cm的长方形纸片,使它长宽之比为2:3,请你说明小丽能否用这块纸片裁出符合要求的长方形纸片.【答案与解析】解:设长方形纸片的长为3x (x >0) cm ,则宽为2x cm ,依题意得32300x x ⋅=.26300x =.250x =.∵ x >0,∴ 50x =.∴ 长方形纸片的长为350cm .∵ 50>49,∴507>.∴ 35021>, 即长方形纸片的长大于20cm .由正方形纸片的面积为400 2cm , 可知其边长为20cm ,∴ 长方形的纸片长大于正方形纸片的边长.答: 小丽不能用这块纸片裁出符合要求的长方形纸片.【总结升华】本题需根据平方根的定义计算出长方形的长和宽,再判断能否用边长为20cm 的正方形纸片裁出长方形纸片.举一反三:【变式】(2015春•台安县月考)某小区为了促进全民健身活动的开展,决定在一块面积约为1000m 2的正方形空地上建一个篮球场,已知篮球场的面积为420m 2,其中长是宽的倍,篮球场的四周必须留出1m 宽的空地,请你通过计算说明能否按规定在这块空地上建一个篮球场?【答案】解:设篮球场的宽为xm ,那么长为2815x m , 由题意知,所以x2=225,因为x为正数,所以x==15,又因为=900<1000,所以按规定在这块空地上建一个篮球场.。

平方根(基础)知识讲解

平方根(基础)知识讲解

平方根(基础)【学习目标】1.了解平方根、算术平方根的概念,会用根号表示数的平方根.2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.【要点梳理】【高清课堂:389316 平方根,知识要点】知识点一、平方根和算术平方根的概念1.算术平方根的定义如果一个正数x的平方等于a,即2x a=,那么这个正数x叫做a的算术平方根(规定0的算术平方根还是0);aa的算术平方根”,a叫做被开方数.要点诠释:a0,a≥0.2.平方根的定义如果2x a=,那么x叫做a的平方根.求一个数a的平方根的运算,叫做开平方.平方与开平方互为逆运算.a (a≥0)的平方根的符号表达为0)a≥a的算术平方根.知识点二、平方根和算术平方根的区别与联系1.区别:(1)定义不同;(2)结果不同:2.联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3)0的平方根和算术平方根均为0.要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根.(2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根.因此,我们可以利用算术平方根来研究平方根.知识点三、平方根的性质||00a aa aa a>⎧⎪===⎨⎪-<⎩()2a a=≥知识点四、平方根小数点位数移动规律被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位.250=25=2.5=0.25=.【典型例题】类型一、平方根和算术平方根的概念1、下列说法错误的是( )A.5是25的算术平方根B.l 是l 的一个平方根C.()24-的平方根是-4D.0的平方根与算术平方根都是0【答案】C ;【解析】利用平方根和算术平方根的定义判定得出正确选项.A.5,所以本说法正确;B.1,所以l 是l 的一个平方根说法正确;C.4,所以本说法错误;D.因为0=0,所以本说法正确;【总结升华】此题主要考查了平方根、算术平方根的定义,关键是明确运用好定义解决问题. 举一反三:【变式】判断下列各题正误,并将错误改正:(1)9-没有平方根.( )(24=±.( )(3)21()10-的平方根是110±.( ) (4)25--是425的算术平方根.( ) 【答案】√ ;×; √; ×,提示:(24=;(4)25是425的算术平方根.2、 填空: (1)4-是 的负平方根.(2表示 的算术平方根,= .(3的算术平方根为 .(43=,则x = ,若3=,则x = .【思路点拨】(3181的算术平方根=19,此题求的是19的算术平方根.【答案与解析】(1)16;(2)11;164(3)13(4) 9;±3【总结升华】要审清楚题意,不要被表面现象迷惑.注意数学语言与数学符号之间的转化. 举一反三:【变式1】下列说法中正确的有():①3是9的平方根.② 9的平方根是3.③4是8的正的平方根.④8-是64的负的平方根.A.1个 B.2个 C.3个 D.4个【答案】B;提示:①④是正确的.【变式2】求下列各式的值:(1)(2(3(4【答案】(1)15;(2)15;(3)-0.3;(4)6 553x的取值范围是______________.【答案】x≥1-;【解析】x+1≥0,解得x≥1-.【总结升华】a0,a≥0. 举一反三:【变式】(2015春•中江县期中)若+(3x+y﹣1)2=0,求5x+y2的平方根.【答案】解:∵+(3x+y﹣1)2=0,∴,解得,,∴5x+y2=5×1+(﹣2)2=9,∴5x+y2的平方根为±=±3.类型二、利用平方根解方程4、(2015春•鄂州校级期中)求下列各式中的x值(1)169x2=144(2)(x﹣2)2﹣36=0.【思路点拨】(1)移项后,根据平方根定义求解;(2)先将(x﹣2)看成一个整体,移项后,根据平方根定义求解.【答案与解析】解:(1)169x2=144,两边同时除以169,得1442x=169开平方,得x=(2)(x﹣2)2﹣36=0,移项,得(x﹣2)2=36开平方,得x﹣2=±6,解得:x=8或x=﹣4.【总结升华】本题考查了平方根,根据是一个正数的平方根有两个.类型三、平方根的应用5、要在一块长方形的土地上做田间试验,其长是宽的3倍,面积是1323平方米.求长和宽各是多少米?【答案与解析】解:设宽为x,长为3x,由题意得,x·3x=132332x=1323x=±21x=-21(舍去)答:长为63米,宽为21米.【总结升华】根据面积由平方根的定义求出边长,注意实际问题中边长都是正数.。

平方根和开平方知识讲解

平方根和开平方知识讲解

平方根和开平方知识讲解(总4页)-CAL-FENGHAL-(YICAI)-Company One 1-CAL-本页仅作为文档封面,使用请直接删除平方根和开平方(基础)【学习目标】1.了解平方根、算术平方根的概念,会用根号表示数的平方根.2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用讣算器求平方根.【要点梳理】要点一、平方根和算术平方根的概念1•平方根的定义如果疋=°,那么x叫做"的平方根.求一个数"的平方根的运算,叫做开平方."叫做被开方数.平方与开平方互为逆运算.2•算术平方根的定义正数d的两个平方根可以用“±苗”表示,其中丽表示d的正平方根(又叫算术平方根),读作“根号a ” :-丽表示d的负平方根,读作“负根号a ” •要点诠释:当式子需有意义时,a—泄表示一个非负数,即需$0, a20.要点二、平方根和算术平方根的区别与联系1.区别:(2)定义不同;(2)结果不同:和需2.联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3) 0的平方根和算术平方根均为0.要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根.(2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根.因此,我们可以利用算术平方根来研究平方根.要点三、平方根的性质a a>0\/a^ =1 a 1= < 0 a = 0一a a <0要点四.平方根小数点位数移动规律被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位•例如:^/62500 = 250, >/625 =25, >/6^25 =2.5,7^0625 =0.25.【典型例题】类型一、平方根和算术平方根的概念01、下列说法错误的是()是25的算术平方根是I的一个平方根c.(r『的平方根是一4 的平方根与算术平方根都是0[答案]C:【解析】诂I用平方根和算术平方根的定义判定得出正确选项.A.因为>/25 =5,所以本说法正确;B.因为土>/1 =±1,所以I是I的一个平方根说法正确;C.因为土不肝=±皿=±4,所以本说法错误;D.因为土丽=0,範=0,所以本说法正确:【总结升华】此题主要考查了平方根、算术平方根的定义,关键是明确运用好定义解决问题.举一反三:【变式】判断下列各题正误,并将错误改正:(1)-9没有平方根.()(2)>/16=±4.()(3)(—丄尸的平方根是土丄.()10 102 4(4)是上的算术平方根.()5 25【答案】J ; X ; V : X ,提示:(2) 716=4:(4) |是帶的算术平方根.紗2、填空:(1)“是_的负平方根.(3)需的算术平方根为(4)若77 = 3,贝Ijx = _,若7? = 3, W'J X =【思路点拨】(3)丄就是丄的算术平方根=丄,此题求的是丄的算术平方V81 81 9 9根.【答案与解析】(1)16; (2)-^4⑶2⑷9: ±316 4 3【总结升华】要审清楚题意,不要被表面现象迷惑•注意数学语言与数学符号之间的转化.举一反三:【变式1】下列说法中正确的有():①3是9的平方根. ②9的平方根是3.③4是8的正的平方根.④-8是64的负的平方根.A・1个B. 2个C. 3个D. 4个【答案】B:麻示:①④是正确的.【变式2】(2015*凉山州)』更的平方根是 ___ .【答案】±3.解:因:W乖9, 9的平方根是±3,所以答案为±3.03、使代数式后T冇意义的x的取值范围是 ____________________ .【答案】兀鼻—1;【解析】A+1^0,解得x^-1.【总结升华】当式子需有意义时,"一定表示一个非负数,即血20, "M0.举一反三:【变式】代数式y 有意义,则x的取值范围是_________ .【答案】x>3.类型二、利用平方根解方程(2015春•鄂州校级期中)求下列各式中的x值,(1)169X2=144(2)(x-2) 2 - 36=0・【思路点拨】(1)移项后,根据平方根注义求解:(2)移项后,根据平方根定义求解.【答案与解析】解:(1) 169X2=144,0 144x■二 ,169X=±—・13(2) (x-2) 2 - 36=0,(x- 2) 2=36,X - 2= ±y/36 ,x - 2二±6,/.x=8 或x=・ 4.【总结升华】本题考查了平方根,注意一个正数的平方根有两个,他们互为相反数. 类型三、平方根的应用a* 5、要在一块长方形的土地上做田间试验,其长是宽的3倍,面积是1323平方米.求长和宽各是多少米【答案与解析】解:设宽为X,长为3X,由题意得,X-3X =13233*2=1323x = ±21x =-21(舍去)答:长为63米,宽为21米.【总结升华】根据而积由平方根的定义求出边长,注意实际问题中边长都是正数.。

实数,平方根等知识

实数,平方根等知识

实数知识点一、【平方根】如果一个数x 的平方等于a ,那么,这个数x 就叫做a 的平方根;也即,当)0(2≥=a a x 时,我们称x 是a 的平方根,记做:)0(≥±=a a x 。

因此:1、当a=0时,它的平方根只有一个,也就是0本身;2、当a >0时,也就是a 为正数时,它有两个平方根,且它们是互为相反数,通常记做:a x ±=。

3、当a <0时,也即a 为负数时,它不存在平方根。

例1.(1) 的平方是64,所以64的平方根是 ;(2) 的平方根是它本身。

(3)若x 的平方根是±2,则x= ;的平方根是(4)当x 时,x 23-有意义。

(5)一个正数的平方根分别是m 和m-4,则m 的值是多少?这个正数是多少? 知识点二、【算术平方根】:1、如果一个正数x 的平方等于a ,即a x =2,那么,这个正数x 就叫做a 的算术平方根,记为:“a ”,读作,“根号a”,其中,a 称为被开方数。

特别规定:0的算术平方根仍然为0。

2、算术平方根的性质:具有双重非负性,即:)0(0≥≥a a 。

3、算术平方根与平方根的关系:算术平方根是平方根中正的一个值,它与它的相反数共同构成了平方根。

因此,算术平方根只有一个值,并且是非负数,它只表示为:a ;而平方根具有两个互为相反数的值,表示为:a ±。

例2.(1)下列说法正确的是 ( )A .1的立方根是1±;B .24±=; (C )、81的平方根是3±; (D )、0没有平方根;(2)下列各式正确的是( )A 、981±=B 、14.314.3-=-ππC 、3927-=-D 、235=-(3)2)3(-的算术平方根是 。

(4)若x x -+有意义,则=+1x ___________。

(5)已知△ABC 的三边分别是,,,c b a 且b a ,满足0)4(32=-+-b a ,求c 的取值范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平方根(提高)知识讲解标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-
平方根(提高)
【学习目标】
1.了解平方根、算术平方根的概念,会用根号表示数的平方根.
2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.
【要点梳理】
要点一、平方根和算术平方根的概念
1.算术平方根的定义
如果一个正数x的平方等于a,即2x a
=,那么这个正数x叫做a的算术平方根(规定
0的算术平方根还是0);a
a的算术平方根”,a叫做被
开方数.
要点诠释:
a
0,a≥0.
2.平方根的定义
如果2x a
=,那么x叫做a的平方根.求一个数a的平方根的运算,叫做开平
方.平方与开平方互为逆运算. a(a≥0)
的平方根的符号表达为0)
a≥
,其中
a的算术平方根.
要点二、平方根和算术平方根的区别与联系
1.区别:(1)定义不同;(2
)结果不同:
2.联系:(1)平方根包含算术平方根;
(2)被开方数都是非负数;
(3)0的平方根和算术平方根均为0.
要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫
它的算术平方根;负数没有平方根.
(2)正数的两个平方根互为相反数,根据它的算术平方根可以
立即写出它的另一个平方根.因此,我们可以利用算术平方
根来研究平方根.
要点三、平方根的性质
(0)
||0(0)
(0)
a a
a a
a a
>


===

⎪-<

()
2
a a
=≥
要点四、平方根小数点位数移动规律
被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位.例如:62500250=,62525=, 6.25 2.5=,0.06250.25=.
【典型例题】
类型一、平方根和算术平方根的概念
1、(2015秋•张家港市校级期中)已知2a ﹣1的平方根是±3,3a+b ﹣9的立方根是2,c 是的整数部分,求a+b+c 的平方根.
【思路点拨】首先根据平方根与立方根的概念可得2a ﹣1与3a+b ﹣9的值,进而可得a 、b 的值;接着估计的大小,可得c 的值;进而可得a+b+c ,根据平方根的求法可得答案.
【答案与解析】
解:根据题意,可得2a ﹣1=9,3a+b ﹣9=8;
故a=5,b=2;
又∵2<<3,
∴c=2,
∴a+b+c=5+2+2=9,
∴9的平方根为±3.
【总结升华】此题主要考查了平方根、立方根、算术平方根的定义及无理数的估算能力,还要掌握实数的基本运算技能,灵活应用.
举一反三:
【变式】已知2a -1与-a +2是m 的两个不同的平方根,求m 的值.
【答案】2a -1与-a +2是m 的平方根,所以2a -1与-a +2互为相反数. 解:当2a -1+(-a +2)=0时,a =-1,
所以m =()()22
221[2(1)1]39a -=⨯--=-=
2、x 为何值时,下列各式有意义 2x 4x -11x x +- (4)
13x x --. 【答案与解析】
解:(1)因为20x ≥,所以当x 2x
(2)由题意可知:40x -≥,所以4x ≥4x - (3)由题意可知:1010
x x +≥⎧⎨-≥⎩解得:11x -≤≤.所以11x -≤≤11x x
+-有意义.
(4)由题意可知:1030
x x -≥⎧⎨-≠⎩,解得1x ≥且3x ≠.
所以当1x ≥且3x ≠时,13x x --有意义. 【总结升华】(1)当被开方数不是数字,而是一个含字母的代数式时,一定要讨论,只有当被开方数是非负数时,式子才有意义.(2)当分母中含有字母时,只有当分母不为0时,式子才有意义. 举一反三: 【变式】已知4322232b a a =-+-+,求
11a b
+的算术平方根. 【答案】 解:根据题意,得320,230.
a a -≥⎧⎨-≥⎩则23a =,所以
b =2,∴1131222a b +=+=, ∴11a b
+的算术平方根为112a b +=. 类型二、平方根的运算
3、求下列各式的值.
(1)2222252434-+;(2)111200.36900435
--. 【思路点拨】(1)首先要弄清楚每个符号表示的意义.(2)注意运算顺序.
【答案与解析】
解:(1)22
22252434-+49257535==⨯=; (2)1118111200.369000.630435435--=-⨯-⨯90.26 1.72
=--=-. 【总结升华】(1)混合运算的运算顺序是先算平方开方,再乘除,后加减,同一级运算按先后顺序进行.(2)初学可以根据平方根、算术平方根的意义和表示方法来解,熟练后直接根据2(0)a a a =>来解.
类型三、利用平方根解方程
4、求下列各式中的x .
(1)23610;x -= (2)()2
1289x +=;
(3)()2932640x +-=
【答案与解析】
解:(1)∵23610x -=
∴2361x =
∴36119x =±=± (2)∵()2
1289x +=
∴1289x +=±
∴x +1=±17
x =16或x =-18.
(3)∵()2932640x +-= ∴()2
64329
x += ∴8323
x +=± ∴21499
x x ==-或 【总结升华】本题的实质是一元二次方程,开平方法是解一元二次方程的最基本方法.(2)(3)小题中运用了整体思想分散了难度. 举一反三: 【变式】求下列等式中的x :
(1)若2 1.21x =,则x =______; (2)2
169x =,则x =______; (3)若2
9,4
x =则x =______; (4)若()222x =-,则x =______. 【答案】(1)±;(2)±13;(3)32
±;(4)±2. 类型四、平方根的综合应用
【高清课堂:389316 平方根:例5】 5、已知a 、b 26|20a b ++=,解关于x 的方程
2(2)1a x b a ++=-.
【答案与解析】
解:∵a 、b 26|20a b +-=260a +≥,|20b ≥,
∴260a +=,20b =.
∴a =-3,2b =. 把a =-3,2b =代入2(2)1a x b a ++=-,得-x +2=-4,∴x =6.
【总结升华】本题是非负数的性质与方程的知识相结合的一道题,应先求出a 、b 的值,再解方程.此类题主要是考查完全平方式、算术平方根、绝对值三者的非负性,只需令每项分别等于零即可.
举一反三:
【高清课堂:389316 平方根:例5练习】
【变式】若2110x y -++=,求20112012x y +的值.
【答案】 解:由2110x y -++=,得210x -=,10y +=,即1x =±,1y =-.
①当x =1,y =-1时,20112012201120121(1)2x y +=+-=.
②当x =-1,y =-1时,2011201220112012(1)(1)0x y +=-+-=.
【高清课堂:389316 平方根:例6】
6、小丽想用一块面积为4002
cm 的正方形纸片,沿着边的方向裁出一块面积为3002cm 的长方形纸片,使它长宽之比为2:3,请你说明小丽能否用这块纸片裁出符合要求的长方形纸片. 【答案与解析】
解:设长方形纸片的长为3x (x >0) cm ,则宽为2x cm ,依题意得 32300x x ⋅=.
26300x =.
250x =.
∵ x >0,
∴ 50x =
∴ 长方形纸片的长为350cm .
∵ 50>49,
∴507>.
∴ 35021>, 即长方形纸片的长大于20cm .
由正方形纸片的面积为400 2cm , 可知其边长为20cm ,
∴长方形的纸片长大于正方形纸片的边长.
答: 小丽不能用这块纸片裁出符合要求的长方形纸片.
【总结升华】本题需根据平方根的定义计算出长方形的长和宽,再判断能否用边长为20cm的正方形纸片裁出长方形纸片.
举一反三:
【变式】(2015春•台安县月考)某小区为了促进全民健身活动的开展,决定在一块面积约为1000m2的正方形空地上建一个篮球场,已知篮球场的面积为
420m2,其中长是宽的倍,篮球场的四周必须留出1m宽的空地,请你通过计
算说明能否按规定在这块空地上建一个篮球场
【答案】
解:设篮球场的宽为xm,那么长为28
15
x m,
由题意知,
所以x2=225,
因为x为正数,
所以x==15,
又因为=900<1000,所以按规定在这块空地上建一个篮球场.。

相关文档
最新文档