初中平方根知识讲解
初三数学平方根知识点汇总

初三数学平方根知识点汇总一、平方根的定义平方根是指一个数的平方等于给定数的非负实数解。
如果一个数的平方等于给定数,那么这个数就叫做给定数的平方根。
平方根表示为√。
二、平方根的性质1. 非负数的平方根是非负数。
2. 正数的平方根有两个解:一个正数和一个负数。
3. 0的平方根是0。
4. 负数没有实数平方根,但可以用虚数表达。
三、平方根的运算法则1. 平方根与平方的运算互相抵消,即√(a^2) = a。
2. 平方根与乘法可以交换次序,即√(a*b) = √a * √b。
3. 平方根与除法可以交换次序,即√(a/b) = √a / √b。
4. 平方根的和与差可以分别用相应数的平方根表示,即√a + √b ≠ √(a + b),√a - √b ≠ √(a - b)。
四、求平方根的方法1. 分解质因数法:将被开方数分解成质因数的形式,相同因数的指数减半。
2. 逼近法:通过不断逼近,找到一个足够接近被开方数的近似值。
3. 牛顿迭代法:通过求切线与x轴的交点,逐步逼近被开方数的平方根。
五、常见的平方根1. 平方根的近似值:- √2 ≈ 1.41- √3 ≈ 1.73- √5 ≈ 2.24- √7 ≈ 2.65- √10 ≈ 3.162. 完全平方数的平方根:- 1的平方根是1。
- 4的平方根是2。
- 9的平方根是3。
- 16的平方根是4。
- ...六、注意事项1. 在计算平方根时,要注意是否涉及虚数。
2. 求平方根时,如果不要求精确值,可以使用近似值进行计算。
3. 在运算中,要注意平方根的运算法则,以避免出现错误的结果。
以上是初三数学平方根的知识点汇总,希望对您有所帮助!。
初中平方根知识讲解

平方根知识点一、平方根和算术平方根的概念1.算术平方根的定义如果一个正数x 的平方等于a ,即2x a =,那么这个正数x 叫做a 的算术平方根(规定0的算术平方根还是0);a,读作“a 的算术平方根”,a 叫做被开方数.要点诠释:a≥0,a ≥0.2.平方根的定义如果2x a =,那么x 叫做a 的平方根.求一个数a 的平方根的运算,叫做开平方.平方与开平方互为逆运算. a (a ≥0)的平方根的符号表达为0)a ≥a 的算术平方根.知识点二、平方根和算术平方根的区别与联系1.区别:(1)定义不同;(2)结果不同:2.联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3)0的平方根和算术平方根均为0.要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根.(2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根.因此,我们可以利用算术平方根来研究平方根.知识点三、平方根的性质0||000a a a a a a >⎧⎪===⎨⎪-<⎩()20a a =≥知识点四、平方根小数点位数移动规律被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位.250=25=2.5=0.25=.【典型例题】类型一、平方根和算术平方根的概念1、下列说法错误的是( )A.5是25的算术平方根B.l 是l 的一个平方根C.()24-的平方根是-4D.0的平方根与算术平方根都是0举一反三:【变式】判断下列各题正误,并将错误改正:(1)9-没有平方根.( )(24=±.( )(3)21()10-的平方根是110±.( ) (4)25--是425的算术平方根.( ) 2、 填空:(1)4-是 的负平方根.(2表示 的算术平方根,= .(3的算术平方根为 .(43=,则x = ,若3=,则x = .举一反三:【变式1】下列说法中正确的有( ):①3是9的平方根. ② 9的平方根是3.③4是8的正的平方根.④ 8-是64的负的平方根.A .1个B .2个C .3个D .4个【变式2】求下列各式的值:(1) (2(3(43x 的取值范围是______________.类型二、利用平方根解方程4、求下列各式中的x .(1)23610;x -= (2)()21289x +=; (3)()2932640x +-= 类型三、平方根的应用5、要在一块长方形的土地上做田间试验,其长是宽的3倍,面积是1323平方米.求长和宽各是多少米?类型一、平方根和算术平方根的概念1、若2m -4与3m -1是同一个正数的两个平方根,求m 的值.举一反三:【变式】已知2a -1与-a +2是m 的平方根,求m 的值.类型二、平方根的运算3、求下列各式的值.-类型三、利用平方根解方程4、求下列各式中的x . (1)23610;x -= (2)()21289x +=; (3)()2932640x +-= 举一反三:【变式】求下列等式中的x :(1)若2 1.21x =,则x =______; (2)2169x =,则x =______;(3)若29,4x =则x =______; (4)若()222x =-,则x =______. 类型四、平方根的综合应用5、已知a 、b |0b -=,解关于x 的方程2(2)1a x b a ++=-.举一反三:0=,求20112012x y +的值.。
(完整版)八年级下册数学--二次根式知识点整理

二次根式1、算术平方根的定义:一般地,如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根。
2、解不等式(组):尤其注意当不等式两边乘(除以)同一个负数,不等号方向改变。
如:-2x>4,不等式两边同除以-2得x<-2。
不等式组的解集是两个不等式解集的公共部分。
如{3、分式有意义的条件:分母≠04、绝对值:|a|=a (a≥0);|a|= - a (a<0)一、二次根式的概念一般地,我们把形如 a (a≥0)的式子叫做二次根式,“”称为二次根号。
★正确理解二次根式的概念,要把握以下五点:(1)二次根式的概念是从形式上界定的,必须含有二次根号“”,“”的根指数为2,即“2”,我们一般省略根指数2,写作“”。
如25 可以写作 5 。
(2)二次根式中的被开方数既可以是一个数,也可以是一个含有字母的式子。
(3)式子 a 表示非负数a的算术平方根,因此a≥0, a ≥0。
其中a≥0是 a 有意义的前提条件。
(4)在具体问题中,如果已知二次根式 a ,就意味着给出了a≥0这一隐含条件。
(5)形如b a (a≥0)的式子也是二次根式,b与 a 是相乘的关系。
要注意当b是分数时不能写成带分数,例如832 可写成8 23,但不能写成 2232 。
练习:一、判断下列各式,哪些是二次根式?(1) 6 ;(2)-18 ;(3)x2+1 ;(4)3-8 ;(5)x2+2x+1 ;(6)3|x|;(7)1+2x (x<-12)X≥-2X<5的解集为-2≤x<5。
二、当x 取什么实数时,下列各式有意义?(1)2-5x ;(2)4x 2+4x+1二、二次根式的性质:二次根式的性质符号语言文字语言应用与拓展注意a (a ≥0)的性质a ≥0 (a ≥0)一个非负数的算术平方根是非负数。
(1)二次根式的非负性(a ≥0,a ≥0)应用较多,如:a+1 +b-3 =0,则a+1=0,b-3=0,即a= -1,b=3;又如x-a +a-x ,则x 的取值范围是x-a ≥0,a-x ≥0,解得x=a 。
八年级数学上册平方根

八年级数学上册平方根一、平方根的定义。
1. 概念。
- 如果一个数x的平方等于a,即x^2=a,那么这个数x叫做a的平方根(也叫做二次方根)。
例如,因为(±2)^2 = 4,所以±2是4的平方根。
2. 表示方法。
- 正数a的平方根记为±√(a),读作“正负根号a”。
其中√(a)表示a的正平方根(又叫算术平方根),-√(a)表示a的负平方根。
例如,9的平方根表示为±√(9)=±3。
二、平方根的性质。
1. 正数的平方根。
- 一个正数有两个平方根,它们互为相反数。
例如16的平方根是±4,4和-4互为相反数。
2. 0的平方根。
- 0的平方根是0,因为0^2=0。
3. 负数的平方根。
- 在实数范围内,负数没有平方根。
因为任何实数的平方都是非负数,例如-4没有平方根,因为不存在一个实数x,使得x^2=-4。
三、求平方根的运算。
1. 利用定义求平方根。
- 对于简单的数,可根据平方根的定义来求。
例如求25的平方根,因为(±5)^2=25,所以25的平方根是±5。
2. 利用计算器求平方根(拓展)- 对于一些比较复杂的数,如√(2)≈1.414,√(3)≈1.732等,可以使用计算器来求其近似值。
在计算器上一般先输入被开方数,然后按平方根键(√())即可得到其算术平方根的值,再添上正负号得到平方根。
四、平方根在实际问题中的应用。
1. 几何问题中的应用。
- 例如,已知正方形的面积为S,求正方形的边长a。
根据正方形面积公式S = a^2,那么a=√(S)(因为边长不能为负,所以取算术平方根)。
如果正方形面积S = 36平方厘米,那么边长a=√(36) = 6厘米。
2. 物理等其他学科中的应用(拓展)- 在物理中,例如根据自由落体公式h=(1)/(2)gt^2(h是下落高度,g是重力加速度,t是下落时间),如果已知h和g,求t时,t=√(frac{2h){g}},这里就用到了平方根的运算。
(完整)平方根和开平方(基础)知识讲解

平方根和开平方(基础)【学习目标】1.了解平方根、算术平方根的概念,会用根号表示数的平方根.2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.【要点梳理】要点一、平方根和算术平方根的概念1。
平方根的定义如果2x a =,那么x 叫做a 的平方根。
求一个数a 的平方根的运算,叫做开平方。
a 叫做被开方数。
平方与开平方互为逆运算。
2.算术平方根的定义正数a 的两个平方根可以用“a ±”表示,其中a 表示a 的正平方根(又叫算术平方根),读作“根号a ”;a -表示a 的负平方根,读作“负根号a ”.要点诠释:当式子a 有意义时,a 一定表示一个非负数,即a ≥0,a ≥0。
要点二、平方根和算术平方根的区别与联系1.区别:(1)定义不同;(2)结果不同:a ±和a2.联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3)0的平方根和算术平方根均为0.要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根.(2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根.因此,我们可以利用算术平方根来研究平方根。
要点三、平方根的性质20||000a a a a a a a >⎧⎪===⎨⎪-<⎩ ()()20a a a =≥要点四、平方根小数点位数移动规律被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位。
例如:62500250=,62525=, 6.25 2.5=,0.06250.25=.【典型例题】类型一、平方根和算术平方根的概念1、下列说法错误的是( )A.5是25的算术平方根B.l 是l 的一个平方根C 。
()24-的平方根是-4 D.0的平方根与算术平方根都是0【答案】C;【解析】利用平方根和算术平方根的定义判定得出正确选项.A 。
七年级数学下册【平方根】知识点

七年级数学下册【平方根】知识点1、平方根(1)平方根的定义:如果一个数x的平方等于a,那么这个数x就叫做a的平方根.即:如果x2=a,那么x叫做a的平方根.(2)开平方的定义:求一个数的平方根的运算,叫做开平方.开平方运算的被开方数必须是非负数才有意义。
(3)平方与开平方互为逆运算:±3的平方等于9,9的平方根是±3(4)一个正数有两个平方根,即正数进行开平方运算有两个结果;一个负数没有平方根,即负数不能进行开平方运算;0的平方根是0.(5)符号:正数a的正的平方根可用表示,也是a的算术平方根;正数a的负的平方根可用-表示.(6)<—>a是x的平方 x的平方是ax是a的平方根 a的平方根是x2、算术平方根(1)算术平方根的定义:一般地,如果一个正数x的平方等于a,即,那么这个正数x叫做a的算术平方根.a的算术平方根记为,读作“根号a”,a叫做被开方数.规定:0的算术平方根是0.也就是,在等式(x≥0)中,规定x=。
(2)的结果有两种情况:当a是完全平方数时,是一个有限数;当a不是一个完全平方数时,是一个无限不循环小数。
(3)当被开方数扩大时,它的算术平方根也扩大;当被开方数缩小时与它的算术平方根也缩小。
(4)夹值法及估计一个(无理)数的大小(5)(x≥0)<—>a是x的平方x的平方是ax是a的算术平方根 a的算术平方根是x(6)正数和零的算术平方根都只有一个,零的算术平方根是零。
(7)平方根和算术平方根两者既有区别又有联系:区别在于正数的平方根有两个,而它的算术平方根只有一个;联系在于正数的正平方根就是它的算术平方根,而正数的负平方根是它的算术平方根的相反数。
平方根知识点

平方根知识点平方根是数学中常见的一个概念,它指的是一个数的平方根是另一个数的平方。
平方根经常在数学、物理、工程等领域中使用,在实际问题中具有广泛的应用。
本文将介绍平方根的定义、性质以及计算方法,帮助读者更好地理解和应用平方根知识点。
一、平方根的定义平方根是指一个数的平方等于另一个数的非负数根。
对于一个非负数x,如果存在一个非负数y,使得y的平方等于x,那么y就是x的平方根。
平方根通常用符号√来表示,例如√4=2,表示4的平方根为2。
二、平方根的性质1. 非负数的平方根为非负数。
由于平方根是一个非负数的非负数根,所以一个非负数的平方根一定是非负数。
2. 负数没有实数平方根。
由于平方根是非负数的非负数根,所以负数没有实数平方根。
例如,-4没有实数平方根。
3. 平方根的乘积等于被开方的数。
如果a和b都是非负数,那么√a * √b = √(a * b)。
这个性质可以用来简化复杂的平方根运算。
4. 平方根的和差是两个数的平方根和差。
如果a和b都是非负数,那么√a + √b ≠ √(a + b),√a - √b ≠ √(a - b)。
平方根的和差并不能简化为一个更简单的形式。
5. 平方根的次方等于被开方数的次方除以指数。
如果a是非负数,n是一个正整数,那么(√a)^n = a^(1/n)。
这个性质可以用来计算较大数的平方根。
三、平方根的计算方法1. 通过负指数运算。
例如,√x可以写成x^(1/2)的形式。
2. 通过近似方法。
如果一个数的平方根不能通过简单的数学运算得到,可以通过近似方法来计算。
常见的近似方法有牛顿迭代法和二分法。
3. 通过计算器或计算软件。
现代科技使得平方根的计算变得更加便捷,我们可以利用计算器或计算软件来计算平方根。
四、平方根的应用平方根在数学、物理、工程等领域中具有广泛的应用。
以下是一些常见的应用示例:1. 几何学中,平方根被用于计算直角三角形的斜边长度。
根据勾股定理,直角三角形的斜边长度等于两个直角边的平方和的平方根。
平方根课程讲解

平方根课程讲解平方根是数学中非常重要的概念之一,它广泛应用于各个领域。
本文将详细讲解平方根的概念、性质以及计算方法,帮助读者更好地理解并掌握平方根的知识。
一、平方根的概念平方根是一个数的非负实数解,使得它的平方等于给定的数。
例如,数a的平方根表示为√a,满足√a × √a = a。
对于非负实数a,平方根可以是正数或零。
二、平方根的性质1. 非负实数的平方根是非负实数。
2. 非负实数的平方根存在唯一性,即每个非负实数都有唯一的平方根。
3. 如果一个数的平方根为正数,那么它的相反数也有平方根,且与正数的平方根模值相等,但符号相反。
三、平方根的计算方法平方根的计算可以通过近似方法和精确方法两种方式进行。
1. 近似方法近似方法主要有试探法和牛顿迭代法。
- 试探法是通过试探不同的数来逼近给定数的平方根,通过逐步调整试探数的大小来逼近平方根的值。
- 牛顿迭代法是利用函数的局部线性近似与零点的不动点迭代逼近的方法,通过不断迭代来逼近平方根的值。
2. 精确方法精确方法主要有化简法和公式法。
- 化简法是通过对给定数的因式分解,将平方根转化为不含平方根的表达式,从而得到精确的平方根值。
- 公式法是利用已知的特殊平方根公式,如勾股定理、三角函数等,通过运用相应的公式计算平方根的值。
综上所述,平方根是一个数学中重要且实用的概念。
它的概念、性质和计算方法是我们学习和应用平方根知识的基础。
通过掌握平方根的概念和相关计算方法,我们可以更好地解决实际问题,并在数学领域中有更深入的认识和应用。
在实际应用中,平方根广泛用于几何学、物理学、工程学等领域。
例如,在几何学中,平方根可以用于计算图形的边长、面积和体积;在物理学中,平方根可以用于计算速度、加速度等物理量。
因此,掌握平方根的概念和计算方法对我们的学习和应用具有重要意义。
总之,平方根是数学中的一个重要概念,它具有丰富的性质和多种计算方法。
通过本文的讲解,希望读者能够更好地理解和掌握平方根的知识,从而提升数学素养和解决实际问题的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平方根(基础)【学习目标】1.了解平方根、算术平方根的概念,会用根号表示数的平方根.2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.【要点梳理】知识点一、平方根和算术平方根的概念1.算术平方根的定义如果一个正数x 的平方等于a ,即2x a =,那么这个正数x 叫做a 的算术平方根(规定0的算术平方根还是0);a ,读作“a 的算术平方根”,a 叫做被开方数.要点诠释:a ≥0,a ≥0.2.平方根的定义如果2x a =,那么x 叫做a 的平方根.求一个数a 的平方根的运算,叫做开平方.平方与开平方互为逆运算. a (a ≥0)的平方根的符号表达为0)a ≥a 的算术平方根.知识点二、平方根和算术平方根的区别与联系1.区别:(1)定义不同;(2)结果不同:2.联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3)0的平方根和算术平方根均为0.要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根.(2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根.因此,我们可以利用算术平方根来研究平方根.知识点三、平方根的性质知识点四、平方根小数点位数移动规律被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位.250=25= 2.5=0.25=.【典型例题】类型一、平方根和算术平方根的概念1、下列说法错误的是( )A.5是25的算术平方根B.l 是l 的一个平方根C.()24-的平方根是-4D.0的平方根与算术平方根都是0【答案】C ;【解析】利用平方根和算术平方根的定义判定得出正确选项.A.=5,所以本说法正确;B.1,所以l 是l 的一个平方根说法正确;C.4,所以本说法错误;D.因为=0=0,所以本说法正确;【总结升华】此题主要考查了平方根、算术平方根的定义,关键是明确运用好定义解决问题.举一反三:【变式】判断下列各题正误,并将错误改正:(1)9-没有平方根.( )(24=±.( )(3)21()10-的平方根是110±.( ) (4)25--是425的算术平方根.( ) 【答案】√ ;×; √; ×,提示:(24=;(4)25是425的算术平方根.2、 填空: (1)4-是 的负平方根.(2表示 的算术平方根,= .(3的算术平方根为 .(43=,则x = ,若3=,则x = .【思路点拨】(3181的算术平方根=19,此题求的是19的算术平方根. 【答案与解析】(1)16;(2)11;164 (3)13(4) 9;±3 【总结升华】要审清楚题意,不要被表面现象迷惑.注意数学语言与数学符号之间的转化.举一反三:【变式1】下列说法中正确的有( ):①3是9的平方根. ② 9的平方根是3.③4是8的正的平方根.④ 8-是64的负的平方根.A .1个B .2个C .3个D .4个【答案】B ;提示:①④是正确的.【变式2】求下列各式的值:(1) (2(3(4【答案】(1)15;(2)15;(3)-0.3;(4)6553x 的取值范围是______________.【答案】x ≥1-;【解析】x +1≥0,解得x ≥1-.【总结升华】有意义时,a 0,a ≥0.举一反三:【变式】代数式y =3-x 有意义,则x 的取值范围是 .【答案】3x ≥.类型二、利用平方根解方程4、求下列各式中的x .(1)23610;x -= (2)()21289x +=; (3)()2932640x +-= 【思路点拨】表面上看本题是一元二次方程,但是本题可以通过开平方的方法(2)小题将()1x +看作一个整体,(3)小题将()32x +看作一个整体,求出它们的解后,再求x .【答案与解析】解:(1)∵23610x -= ∴2361x = ∴19x ==±(2)∵()21289x += ∴1x += ∴x +1=±17 x =16或x =-18.(3)∵()2932640x +-= ∴()264329x += ∴8323x +=± ∴21499x x ==-或 【总结升华】本题的实质是一元二次方程,开平方法是解一元二次方程的最基本方法.(2)(3)小题中运用了整体思想分散了难度.类型三、平方根的应用5、要在一块长方形的土地上做田间试验,其长是宽的3倍,面积是1323平方米.求长和宽各是多少米?【答案与解析】解:设宽为x ,长为3x ,由题意得,x ·3x =132332x =1323x =-21(舍去)答:长为63米,宽为21米.【总结升华】根据面积由平方根的定义求出边长,注意实际问题中边长都是正数.(提高)【典型例题】类型一、平方根和算术平方根的概念1、若2m -4与3m -1是同一个正数的两个平方根,求m 的值.【思路点拨】由于同一个正数的两个平方根互为相反数,由此可以得到2m -4=-(3m -1),解方程即可求解.【答案与解析】解:依题意得 2m -4=-(3m -1),解得m =1;∴m 的值为1.【总结升华】此题主要考查了平方根的性质:一个正数有两个平方根,它们互为相反数.举一反三:【变式】已知2a -1与-a +2是m 的平方根,求m 的值.【答案】2a -1与-a +2是m 的平方根,所以2a -1与-a +2相等或互为相反数.解:①当2a -1=-a +2时,a =1,所以m =()()22212111a -=⨯-=②当2a -1+(-a +2)=0时,a =-1,所以()()22221[2(1)1]39a -=⨯--=-=2、x 为何值时,下列各式有意义?. 【答案与解析】解:(1)因为20x ≥,所以当x(2)由题意可知:40x -≥,所以4x ≥(3)由题意可知:1010x x +≥⎧⎨-≥⎩解得:11x -≤≤.所以11x -≤≤(4)由题意可知:1030x x -≥⎧⎨-≠⎩,解得1x ≥且3x ≠.所以当1x ≥且3x ≠时,3x -有意义. 【总结升华】(1)当被开方数不是数字,而是一个含字母的代数式时,一定要讨论,只有当被开方数是非负数时,式子才有意义.(2)当分母中含有字母时,只有当分母不为0时,式子才有意义.举一反三:【变式】已知2b =,求11a b+的算术平方根.【答案】解:根据题意,得320,230.a a -≥⎧⎨-≥⎩则23a =,所以b =2, ∴1131222a b +=+=,∴11a b+= 类型二、平方根的运算3、求下列各式的值.2234+; 【思路点拨】(1)首先要弄清楚每个符号表示的意义.(2)注意运算顺序. 【答案与解析】解:2234+257535==⨯=;110.63035=⨯-⨯90.26 1.72=--=-. 【总结升华】(1)混合运算的运算顺序是先算平方开方,再乘除,后加减,同一级运算按先后顺序进行.(2)(0)a a =>来解. 类型三、利用平方根解方程4、求下列各式中的x .(1)23610;x -= (2)()21289x +=; (3)()2932640x +-= 【答案与解析】解:(1)∵23610x -= ∴2361x = ∴19x ==±(2)∵()21289x += ∴1x += ∴x +1=±17 x =16或x =-18.(3)∵()2932640x +-= ∴()264329x += ∴8323x +=± ∴21499x x ==-或 【总结升华】本题的实质是一元二次方程,开平方法是解一元二次方程的最基本方法.(2)(3)小题中运用了整体思想分散了难度.举一反三:【变式】求下列等式中的x :(1)若2 1.21x =,则x =______; (2)2169x =,则x =______; (3)若29,4x =则x =______; (4)若()222x =-,则x =______. 【答案】(1)±1.1;(2)±13;(3)32±;(4)±2. 类型四、平方根的综合应用5、已知a 、b |0b =,解关于x 的方程2(2)1a x b a ++=-.【答案与解析】解:∵a 、b |0b =0≥,|0b ≥,∴260a +=,0b =.∴a =-3,b =把a =-3,b =2(2)1a x b a ++=-,得-x +2=-4,∴x =6.【总结升华】本题是非负数的性质与方程的知识相结合的一道题,应先求出a 、b 的值,再解方程.此类题主要是考查完全平方式、算术平方根、绝对值三者的非负性,只需令每项分别等于零即可.举一反三:0=,求20112012x y +的值. 【答案】0=,得210x -=,10y +=,即1x =±,1y =-.①当x =1,y =-1时,20112012201120121(1)2x y +=+-=.②当x =-1,y =-1时,2011201220112012(1)(1)0x y +=-+-=.6、小丽想用一块面积为4002cm 的正方形纸片,沿着边的方向裁出一块面积为3002cm 的长方形纸片,使它长宽之比为2:3,请你说明小丽能否用这块纸片裁出符合要求的长方形纸片.【答案与解析】解:设长方形纸片的长为3x (x >0) cm ,则宽为2x cm ,依题意得32300x x ⋅=.26300x =.250x =.∵ x >0,∴ x =∴ 长方形纸片的长为cm .∵ 50>49,7>.∴ 21>, 即长方形纸片的长大于20cm .由正方形纸片的面积为400 2cm , 可知其边长为20cm ,∴ 长方形的纸片长大于正方形纸片的边长.答: 小丽不能用这块纸片裁出符合要求的长方形纸片.【总结升华】本题需根据平方根的定义计算出长方形的长和宽,再判断能否用边长为20cm的正方形纸片裁出长方形纸片.仅供个人参考仅供个人用于学习、研究;不得用于商业用途。
For personal use only in study and research; not for commercial use.Nur für den persönlichen für Studien, Forschung, zu kommerziellen Zwecken verwendet werden.Pour l 'étude et la recherche uniquement à des fins personnelles; pas à des fins commerciales.толькодля людей, которые используются для обучения, исследований и не должны использоваться в коммерческих целях.以下无正文不得用于商业用途。