SPSS操作之方差分析教材(PPT77页)

合集下载

方差分析SPSS操作流程.pptx

方差分析SPSS操作流程.pptx
步骤二: 选“Post hoc
test”
勾选多重比较 的方法
(如LSD、 duncan法
确定显著性水 平
continue
实例-多重比较
Post Hoc Test
方差分析步骤
方差分析的思路: 将全部观测值的总变异按影响结果的诸因素分
解为相应的若干部分变异,构造出反映各部分变 异作用的统计量,在此基础上,构建假设检验统 计量,以实现对总体参数的推断。
检验假设: H0:三个组的总体均数相同; H1:三个组的总体均数不全相同;
单因素方差分析
• 也称有一维方差分析,对二组以上的均值加以比较。 • 检验由单一因素影响的一个(或几个相互独立的)
分析变量由因素各水平分组的均值之间的差异是否 有统计意义。 • 并可以进行两两组间均值的比较,称作组间均值的 多重比较,还可以对该因素的若干水平分组中哪些 组均值不具有显著性差异进行分析,即一致性子集 检验。
• One-Way ANOVA过程要求:
因(分析)变量属于正态分布总体,若因(分析) 变量的分布明显的是非正态,应该用非参数分析 过程。
对被观测对象的实验不是随机分组的,而是进行 的重复测量形成几个彼此不独立的变量,应该用 Repeated Measure菜单项,进行重复测量方差 分析,条件满足时,还可以进行趋势分析。
• 组内变异:每个处理组内部的各个观察值也大小不等,与每 组的样本均数也不相同,这种变异称为组内变异 (variation within groups)。组内变异只反映随机误差 的大小,如个体差异、随机测量误差等。因此,又称为误差 变异。用SS组内表示
方差分析中的多重比较
• 目的:
– 如果方差分析判断总体均值间存在显著差异,接下来可通过多 重比较对每个水平的均值逐对进行比较,以判断具体是哪些水 平间存在显著差异。

第五讲SPSS方差分析(共49张PPT)

第五讲SPSS方差分析(共49张PPT)

组间因素的多重比较组内因素的重比较• 处理被试内设计和混和设计使用 Repeated Measures 菜单。
重复测量的方差分析
Analyze→General Linear Model →Repeated
Measures
输入重复测 量次数
将factor1改为 变量名“测量”
>0.05,说明“测量”主效应对模型的贡献不大
>0.05,接受球形假设 ,可接受单因素方 差分析的结果
Analyze→General Linear Model →Univariate 这在种单设 因计素能方够差更分好析的控窗制口被中试只的选个入体一差个异影。响因素,其效果与Compare Means→ One-way ANOVA一样。 在实多验 因中素,实每验个设被计试中仅,接即受包一含个重实复验测处量理因,素称,为又被包试含间非设重计复。测量因素,称为混和设计。 这处里理用 被于试选内择设在计模和型混中和分设析计哪使些用因R素ep及ea其te交d M互e作as用ur。es 菜单。 模想型对选 模择型菜进单行是自一定个义非设常置重,要先的选菜这单里,。不同的实验设计所采用的不同方法,有些时候仅仅是在这里做了不同的设置而已。 0在5单,说因明素“测方量差”分主析效的应窗对口模中型只的选贡入献一不个大影响因素,其效果与Compare Means→ One-way ANOVA一样。 当在F方值法显1水著平时上,,必不须同进入行学平成均绩数等的级多的重数比学较成,绩以之便间了差解异影显响著因。素如何产生影响。 一各元因方 变差量分之析间的存所在有一条定件关系 单在因多素 因方素差实分验析设(计中Un,iva即ri包ate含) 重复测量因素,又包含非重复测量因素,称为混和设计。 这在种实设 验计中能,够每更个好被的试控仅制接被受试一的个个实体验差处异理。,称为被试间设计。 多元方差分析(Multivariate) 在方单法 因1素水方平差上分,析不的同窗入口学中成只绩选等入级一的个数影学响成因绩素之,间其差效异果显与著C。ompare Means→ One-way ANOVA一样。 单协因方素 差方分差析分(析an(alOysnies-owfacyoAvaNrOiaVnAce)) 在 协多方因差素 分实 析验 (设an计al中ys,is 即of包co含va重ria复n测ce量)因素,又包含非重复测量因素,称为混和设计。 在SPSS中实现方差分析

《SPSS的方差分析》课件

《SPSS的方差分析》课件
总结词
数据来源与格式
详细描述
介绍如何新建数据文件,以及如何导入不同格式的数据文件,如Excel、CSV等。同时说明数据的基本 格式和要求。
SPSS数据的基本操作与整理
总结词
数据清洗与整理技巧
VS
详细描述
介绍SPSS中常见的数据清洗和整理操作 ,如缺失值处理、异常值检测与处理、数 据排序与分组等。同时提供实际操作案例 和技巧。
03
对于非数值型数据或分类数据,需要进行 转换或处理,较为繁琐。
04
对于大规模数据集,计算量大,需要较长 时间才能得出结果。
方差分析的未来发展方向
结合机器学习算法
01
利用机器学习算法对方差分析进行优化,提高分析的效率和准
确性。
拓展到多因素分析
02
将方差分析拓展到多因素分析领域,对方差分析进行更深入的
06
总结与展望
方差分析的优缺点总结
01
优点
02
适用于多组数据的比较,能够快速准确地判断各组 之间的差异。
03
可用于不同类型的数据,如计数数据、计量数据等 ,具有广泛的适用性。
方差分析的优缺点总结
• 能够考虑多种影响因素,进行多因素分析 。
方差分析的优缺点总结
01
缺点
02
对数据的要求较高,需要满足一定的假设 条件,如正态分布、方差齐性等。
双因素方差分析
总结词
用于比较两个分类变量各自所划分的不同组 之间的总体均值是否存在显著差异。
详细描述
双因素方差分析是单因素方差分析的扩展, 用于比较两个分类变量各自所划分的不同组
之间的总体均值是否存在显著差异。在 SPSS中,可以通过“分析”菜单中的“一 般线性模型”选项进行双因素方差分析。

第七章 SPSS方差分析1(共63张PPT)

第七章 SPSS方差分析1(共63张PPT)
• 方差分析类型:单因素、多因素和协方差分析。
方差分析对变量要求
一、对控制变量要求
• 单因素方差分析:控制变量为一个定类或定序型
变量。
注:控制变量的不同取值或水平,称为控制变量 的不同水平。
• 多因素方差分析:控制变量为两个或以上定类或
定序型变量;
• 协方差分析:控制变量为定类或定序型变量,
协变量为定距型变量;
例一
结论:不同学历对基本工资影响不显著。
销售额
例二的ANOVA
Between Groups
Within Groups
Total
Sum of Squares df
5866.083 3
Mean Square F
1955.361 13.483
Sig. .000
20303.222 140 145.023
同水平是否对观测变量产生了显著影响。例如:研 究不同学历是否对工资收入产生显著影响等。
2、适应条件:一个定类或定序型变量对定距型 变量的影响分析。
3、明确控制变量和观测变量:
• 4、分解观测变量方差
将观测变量总的离差平方和分解为组间离差 平方和和组内离差平方和两部分,分别表示为 :
SST SSS ASE
本章内容
•7.1 方差分析概述
•7.2 单因素方差分析
•7.3 多因素方差分析
•7.4 协方差分析
方差分析概述
7.1.1 方差分析及类型 7.1.2 方差分析对变量要求 7.1.3 方差分析的原理
方差分析及类型
• 方差分析( ANOVA ;analysis of variance)
从观测变量的方差入手,研究一个或多个控制变 量对观测变量是否有显著影响的一种分析方法 。

方差分析的SPSS过程PPT课件

方差分析的SPSS过程PPT课件
2024/10/16
均数估计
41
点击“OK”,运行结果
2024/10/16
42
➢结果输出
2024/10/16
43
有效数据例数统计
2024/10/16
44
分组统计描 述(均数、 标准差)
2024/10/16
45
方差分析表
平方 和
自由 度
均方
F值 P值
2024/10/16
46
均数估计
均数
标准误
3.16
3.26
3.82
3.28
2024/10/16
19
t检验法的不足
t 检验法适用于单样本及两样本平均数间的差异显著性检验 ⑴ 检验过程烦琐
本例中用t 检验法要进行 3次两两平均数的差异显著性检验 若有k个处理,则要作 k(k-1)/2次类似的检验
⑵无统一的试验误差,误差估计的精确性和检验的灵敏性低 ⑶推断的可靠性低,检验的 I 型错误率大
• 另一种情况是处理因素确实有作用。组间均方是 由于误差与不同处理共同导致的结果,即各样本 来自不同总体。那么,组间均方会远远大于组内 均方。MS组间>>MS组内。
• MS组间/MS组内比值构成F分布。用F值与其临界 值比较,推断各样本是否来自相同的总体。
2024/10/16
5ቤተ መጻሕፍቲ ባይዱ
多重比较检验问题
多重比较是通过对总体均值之间的配对比较来进一步 检验到底哪些均值之间存在差异。
方此差43案224分02平 ..4例均 28/析1方 0将/1数 6和数((xQ据i i按))区组和处153理531657组4...3843两.802个方向进行17分3594组.55.5,6540属46..于20 无重2复247数44.97据.94的9 双向34

最新《SPSS数据分析教程》——方差分析ppt课件

最新《SPSS数据分析教程》——方差分析ppt课件

◆电信业务经营许可管理政策规定
—明确经营行为规范(第五章):基础企业的责任和 义务;增值企业的责任和义务;电信管理机构应建 立电信业务经营者的违法行为记录和公示制度、电 信业务市场监测制度。
*严格退出程序 条件:符合电信管理机构确定的电信行业管理总体布
局、有可行的用户妥善处理方案并已妥善处理用户 善后问题。 提交材料:比旧版要求更加明确
◆当前电信业务许可架构体系
一、许可架构 按照《行政许可法》规定,目前电信业务许可架构主
要包括以下几层:
1、第一层次:法律 《电信法》:已经多次征求意见,但尚未出台。
2、第二层次:国务院行政法规 《中华人民共和国电信条例》—国务院第291号令 《互联网信息服务管理办法》—国务院令292号 《外商投资电信企业管理规定》—国务院令第333号
◆电信业务经营许可管理政策规定
一、《电信条例》 1、许可方式:电信业务分为基础电信业务和增值电
信业务,按照电信业务分类,实行许可制度。
2、禁止:未取得电信业务经营许可证,任何组织或 者个人不得从事电信业务经营活动。
3、授权:许可证受理、审核和颁发、行业监管、电 信业务分类的调整—电信主管部门(工业和信息化 部)
选择【分析】→【一般线性模型】→【单变量】 把“incaft”选入“因变量(D)”框中;把变量“prog”选入“固
定因子(F)”框中,把“incbef”选入“协变量(C)”框中。
设置因子模型
结果及其解释
动手练习
得克萨斯州的一所大学提出了三种GMAT辅导课程:即3小时复习、1 天课程和10周强化班,他们需要了解这三种辅导方式如何影响 GMAT成绩。另外,通常考生来自三类院校,即商学院、工学院、 艺术与科学院。因此,了解不同类型学校毕业的考生GMAT成绩是 否有差异也是一个让人感兴趣的话题。他们在三类学校中每一个 随机抽取6个学生,随机指派两名到一门辅导课程中,最后他们的 GMAT成绩结果记录于数据文件GmatScore.sav中。 问题为: 1) 不同的辅导课程是否对学生GMAT的成绩有显著的影响?来自不同 类型学校的学生的GMAT成绩是否有显著的差别?请给出理由。 2) 是否一类学校的考生适应一种辅导课程,而另一类学校的考生适 合其他课程?请给出理由。

第五章SPSS方差分析课件

第五章SPSS方差分析课件

TARGET DEVICE
1
1
2
1
3
1
4
1
1
2
2
2
3
2
4
2
1
3
2
3
3
3
4
3
…………
LIGHT SCORE 12 19 1 10 18 11 19 1 10 1 11 15 15 17 12
数据准备:一个分析变量SCORE ,三个因素 变量TARGET, DEVICE , LIGHT 。
数据文件:spssjiaoan\例题数据\多维交互效 应方差分析
误差Error),还有很多选项相应的结果。
结果解释:两种药物A和B均对治疗缺铁性贫 血有显著疗效,两种药物A和B的协同作用也 很显著。
输出文件:spssjiaoan\例题数据\ 2×2析因实验
方差分析
5.1.4拉丁方区组设计的方差分析 拉丁方实验设计的特点:有两个以上因素变量,
每个因素变量的水平数相等。
分析过程:
Analyze->General Linear Model-> Univariate
Dependent:Score Fixed Factors: Target、 Device、 Light Model:保留全模型选项(不对Model操作) 选择输出Option选项:选Target*Device* Light进
Dependent:redcell Fixed Factors:drugA、drugB 保留全模型选项(不对Model操作) 选择Plot选项: 作三个图drugA、drugB、
drugA*drugB 选择输出Option选项:选 drugA、drugB、

第4讲.SPSS方差分析课件PPT

第4讲.SPSS方差分析课件PPT
二、操作
3.“两两比较”按钮对应的对话框 该对话框用于设置均值的多重比较检验。
用Student Range分布进行所有 各组均值间的配对比较
用Student Range统计量进行所 有组间均值的配对比较,用所 有配对比较误差率作为实验误 差率。
用Student Range分布进行所有各组均 值间的配对比较。其精确值为前两种 检验相应值的平均值。
如果方差分析只针对一个因素进行分析,则称为:单因素方差分析; 如果同时针对多个因素进行,则称为:多因素方差分析。
2)水平(Level):因素的具体表现。例如,销售的不同方式,就是销 售的4种等级。有时候,水平是人为划分的,例如好、中、差。
3)单元(Cell):因素和水平的组合,例如销售方式的5种效果,就是5 个单元。
二、操作
示例数据(信息来源与传播.sav) 菜单:“分析→比较均值→来自因素ANOVA” 1.基本选择窗口
选择因变量
备选变量列表
2021/3/10
选择因子,即因素 变量
9
SPSS单因素方差分析整体分析与设计的内容 二、操作
2.“对比”按钮对应的对话框 该对话框可以设置均值的精细比较。
选择多项式的次数
多重配对比较的t检验法,用于处理 对一个控制类均值的比较,默认的 控制类是最后一组。
基于t检验进行配 对比较。
基于 Student最大模 的成对比较法。
三种检验区间,分 别是:
1)单边检验 2)左边检验 3)右边检验
2021/3/10
该方法比较灵活
13
基于 Student极值的 成对比较法。
SPSS单因素方差分析整体分析与设计的内容 二、操作
2021/3/10
18
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 如果进行先验对比检验,则应在Coefficients后依次输入系 数ci,并确保∑ci=0。应注意系数输入的顺序,它将分别与 控制变量的水平值相对应。
• 例如,当k=4时, 即有A、B、C、D 4个处理组,如果只将 B组和D组比较,则线性组合系数依次为0、-1、0、-1;如果 C组与其他3组的平均水平比较,则线性组合系数依次为-1、1、3、-1,余类推。线性组合系数要按照分类变量水平的顺 序依次填入Coefficients框中。
• Coefficients:为多项式指定各组均值的系数。因素变量分为 几组,输入几个系数,多出的无意义。如果多项式中只包括第 一组与第四组的均值的系数,必须把第二个、第三个系数输入 为0值。如果只包括第一组与第二组的均值,则只需要输入前 两个系数,第三、四个系数可以不输入 。多项式的系数需要 由根据研究的需要输入。
解为相应的若干部分变异,构造出反映各部分变 异作用的统计量,在此基础上,构建假设检验统 计量,以实现对总体参数的推断。
检验假设: H0:三个组的总体均数相同; H1:三个组的总体均数不全相同;
单因素方差分析
• 也称有一维方差分析,对二组以上的均值加以比较。 • 检验由单一因素影响的一个(或几个相互独立的)
分析变量由因素各水平分组的均值之间的差异是否 有统计意义。 • 并可以进行两两组间均值的比较,称作组间均值的 多重比较,还可以对该因素的若干水平分组中哪些 组均值不具有显著性差异进行分析,即一致性子集 检验。
• 步骤
Analyze→Compare means→
One-way ANOVA
One-Way过程
n 对被观测对象的实验不是随机分组的,而是进行 的重复测量形成几个彼此不独立的变量,应该用 Repeated Measure菜单项,进行重复测量方差 分析,条件满足时,还可以进行趋势分析。
• analyze→compare means→one-way ANVOA
响应变量
因素
Contrasts:线性组合比较。是参数或统计量的线性函数,用于 检验均数间的关系,除了比较差异外,还包括线性趋势检验
Post Hoc(均数的多重比较选项)
• 进行多重比较是对每两个组的均值进行如下比较:MEAN(i)MEAN(j)≥4.6625×RANGE×SQRT(1/N(i)+1/N(j));其中i、j分 别为组序号, MEAN(i)、MEAN(j)分别为第i、j组均值, N(i)、N(j) 分别为第i、j组中的观测数。各组均值的多重比较方法的算法 不同RANGE值也不同。
• One-Way过程:单因素简单方差分析过程。在 Compare Means菜单项中,可以进行单因素方差 分析(完全随机设计资料的多个样本均数比较和样 本均数间的多重比较,也可进行多个处理组与一个 对照组的比较)、均值多重比较和相对比较,用于。
• One-Way ANOVA过程要求:
n 因(分析)变量属于正态分布总体,若因(分析) 变量的分布明显的是非正态,应该用非参数分析 过程。
方差分析中的多重比较
• 目的:
– 如果方差分析判断总体均值间存在显著差异,接下来可通过多 重比较对每个水平的均值逐对进行比较,以判断具体是哪些水 平间存在显著差异。
• 常用方法备选:
– LSD法:t检验的变形,在变异和自由度的计算上利用了整个样本信息。 – Duncan 新复极差测验法 – Tukey 固定极差测验法 – Dunnett最小显著差数测验法 等
• 组间变异:由于各组处理不同所引起的变异称为组间变异 (variation between groups)。它反应了处理因素对不同 组的影响,同时也包括了随机误差。用SS组间表示
• 组内变异:每个处理组内部的各个观察值也大小不等,与每 组的样本均数也不相同,这种变异称为组内变异 (variation within groups)。组内变异只反映随机误差 的大小,如个体差异、随机测量误差等。因此,又称为误差 变异。用SS组内表示
• 实现手段:
– 方差分析菜单中的“Post hoc test…”按钮
步骤一: 同one-way ANOVA
步骤二: 选“Post hoc
test”
勾选多重比较 的方法
(如LSD、 duncan法
确定显著性水 平
continue
实例-多重比较
Post Hoc Test
方差分析步骤
方差分析的思路: 将全部观测值的总变异按影响结果的诸因素分
均值的多项式比较
• 可以同时建立多个多项式。一个多项式的一级系数 输入结束,激活Next按钮,单击该按钮后 Coefficients 框中清空,准备接受下一组系数数据。
• 如果认为输入的几组系数中有错误,可以分别单击 Previous或Next按钮前后翻找出错误的一组数据。 单击出错的系数,该系数显示在编辑框中,可以在 此进行修改,修改后击Change按钮,在系数显示框 中出现正确的系数值。当在系数显示框中选中一个 系数时,同时激活Remove按钮;单击该按钮将选中 的系数清除。
方差相等时可选 择的比较方法
方差不等时可选 择的比较方法
用t检验完成各组 均值的配对比较
与对照组的 配对比较
• LSD(最小显著差异法):用 t检验完成各组均值间的配对 比较。 在变异和自由度的计算上利用了整个样本信息。对 多重比较误差率不进行调整;S操作—方差分析
SPSS操作之方差分析教材(PPT77页)
方差分析由英国统计
学家R.A.Fisher在 1923年提出,为纪念 Fisher,以F命名, 故方差分析又称 F 检 验。
三种变异
• 总变异:全部观察值大小各不相等,其变异就称为总变异 (total variation)。用SST表示
Contrasts可以表达为: a1u1+ a2u2 +···+akuk =0;满足a1+ a2+···+ak =0。式中ai为线性组合系数,ui为总体均数,k为分 类变量的水平数
• Polynomial(多项式比较):均值趋势的检验有5种多 项式:Linear线性、Quadratic二次、Cubic三次、 4th四次、5th五次多项式
相关文档
最新文档