MATLAB实现频域平滑滤波以及图像去噪代码

合集下载

Matlab中的信号降噪与滤波技术详解

Matlab中的信号降噪与滤波技术详解

Matlab中的信号降噪与滤波技术详解正文部分:在信号处理的领域中,信号的降噪和滤波是非常重要的步骤。

Matlab作为一种常用的工具,提供了丰富的信号处理函数和工具箱,可以帮助我们实现高效的信号降噪和滤波。

本文将详细介绍Matlab中的信号降噪和滤波技术。

一、信号降噪技术1.1 经典的降噪方法在信号降噪的过程中,最常用的方法之一是使用滑动平均法。

该方法通过计算信号在一定窗口内的平均值来消除噪声的影响。

在Matlab中,可以使用smooth函数来实现该方法。

使用该函数时,需要指定窗口的大小。

较大的窗口可以平滑信号,但会导致信号的平均值偏移。

而较小的窗口则可以更有效地去除高频噪声,但可能会保留一些低频噪声。

此外,还可以使用中值滤波法来降噪,该方法能够消除信号中的离群值。

在Matlab中,可以使用medfilt1函数实现中值滤波。

该函数需要指定一个窗口大小,并对信号进行中值滤波处理。

较大的窗口可以更好地降噪,但可能会导致信号的细节信息丢失。

1.2 基于小波变换的降噪方法除了经典的降噪方法外,基于小波变换的降噪方法也是一种常用的技术。

小波变换是一种多分辨率分析方法,可以将信号分解为不同尺度的子信号。

在降噪过程中,可以通过滤除高频子信号中的噪声来实现降噪效果。

在Matlab中,可以使用wdenoise函数来实现基于小波变换的降噪。

该函数需要指定小波族,降噪方法和阈值等参数。

1.3 基于自适应滤波的降噪方法自适应滤波是一种根据信号的统计特性进行滤波的方法,它可以根据信号的自相关矩阵来调整滤波器的参数。

在Matlab中,可以使用wiener2函数来实现自适应滤波。

该函数需要指定一个噪声估计器,通过估计信号和噪声的自相关函数来调整滤波器的参数。

二、信号滤波技术2.1 无限脉冲响应滤波器无限脉冲响应滤波器(IIR滤波器)是一种常用的滤波器,它可以对信号进行低通、高通、带通或带阻滤波。

在Matlab中,可以使用butter函数来设计和应用IIR滤波器。

如何在Matlab中进行图像去噪与复原

如何在Matlab中进行图像去噪与复原

如何在Matlab中进行图像去噪与复原图像去噪与复原在计算机视觉和图像处理领域有着重要的应用价值。

当图像受到噪声污染或损坏时,我们需要采取适当的方法来还原图像的清晰度和准确性。

在这方面,Matlab作为一种强大的数值计算软件,提供了丰富的图像处理工具和函数,能够帮助我们有效地进行图像去噪和复原。

一、图像去噪方法介绍在进行图像去噪之前,我们需要了解一些常见的图像噪声类型和去噪方法。

常见的图像噪声类型包括高斯噪声、椒盐噪声和泊松噪声等。

对于这些噪声,我们可以采用滤波方法进行去噪处理。

Matlab提供了多种滤波函数,包括均值滤波、中值滤波、高斯滤波等。

这些函数能够基于不同的滤波算法,去除图像中的噪声,提高图像质量。

1.1 均值滤波均值滤波是一种简单的滤波方法,通过计算像素周围邻域的平均灰度值来减小噪声的影响。

在Matlab中,可以使用imfilter函数实现均值滤波。

该函数可以指定滤波器的大小和形状,对图像进行滤波处理。

均值滤波适用于高斯噪声的去除,但对于椒盐噪声等其他类型的噪声效果不佳。

1.2 中值滤波中值滤波是一种非线性滤波方法,通过在像素周围邻域中选择中间灰度值来减小噪声的影响。

在Matlab中,可以使用medfilt2函数实现中值滤波。

该函数可以指定滤波器的大小和形状,对图像进行滤波处理。

中值滤波适用于椒盐噪声的去除,对于高斯噪声等其他类型的噪声有效果不佳。

1.3 高斯滤波高斯滤波是一种线性滤波方法,通过根据像素周围邻域的权重来减小噪声的影响。

在Matlab中,可以使用imgaussfilt函数实现高斯滤波。

该函数可以指定滤波器的大小和标准差,对图像进行滤波处理。

高斯滤波适用于高斯噪声的去除,对于椒盐噪声等其他类型的噪声效果较好。

二、图像复原方法介绍除了去噪,图像复原也是图像处理中常见的任务之一。

图像复原主要是指恢复图像中的缺失或破损的信息,使得图像在视觉上更加清晰和准确。

在Matlab中,可以使用多种方法进行图像复原,包括图像插值、图像修复和图像增强等。

数字图像处理matlab代码

数字图像处理matlab代码

一、编写程序完成不同滤波器的图像频域降噪和边缘增强的算法并进行比较,得出结论。

1、不同滤波器的频域降噪1.1 理想低通滤波器(ILPF)I1=imread('eight.tif'); %读取图像I2=im2double(I1);I3=imnoise(I2,'gaussian',0.01);I4=imnoise(I3,'salt & pepper',0.01);figure,subplot(1,3,1);imshow(I2) %显示灰度图像title('原始图像'); %为图像添加标题subplot(1,3,2);imshow(I4) %加入混合躁声后显示图像title('加噪后的图像');s=fftshift(fft2(I4)); %将灰度图像的二维不连续Fourier 变换的零频率成分移到频谱的中心[M,N]=size(s); %分别返回s的行数到M中,列数到N中n1=floor(M/2); %对M/2进行取整n2=floor(N/2); %对N/2进行取整d0=40; %初始化d0for i=1:Mfor j=1:Nd=sqrt((i-n1)^2+(j-n2)^2); %点(i,j)到傅立叶变换中心的距离 if d<=d0 %点(i,j)在通带内的情况h=1; %通带变换函数else %点(i,j)在阻带内的情况h=0; %阻带变换函数ends(i,j)=h*s(i,j); %ILPF滤波后的频域表示endends=ifftshift(s); %对s进行反FFT移动s=im2uint8(real(ifft2(s))); %对s进行二维反离散的Fourier变换后,取复数的实部转化为无符号8位整数subplot(1,3,3); %创建图形图像对象imshow(s); %显示ILPF滤波后的图像title('ILPF滤波后的图像(d=40)');运行结果:1.2 二阶巴特沃斯低通滤波器(BLPF)I1=imread('eight.tif'); %读取图像I2=im2double(I1);I3=imnoise(I2,'gaussian',0.01);I4=imnoise(I3,'salt & pepper',0.01);figure,subplot(1,3,1);imshow(I2) %显示灰度图像title('原始图像'); %为图像添加标题subplot(1,3,2);imshow(I4) %加入混合躁声后显示图像title('加噪后的图像');s=fftshift(fft2(I4));%将灰度图像的二维不连续Fourier 变换的零频率成分移到频谱的中心[M,N]=size(s); %分别返回s的行数到M中,列数到N中n=2; %对n赋初值n1=floor(M/2); %对M/2进行取整n2=floor(N/2); %对N/2进行取整d0=40; %初始化d0for i=1:Mfor j=1:Nd=sqrt((i-n1)^2+(j-n2)^2); %点(i,j)到傅立叶变换中心的距离 h=1/(1+(d/d0)^(2*n)); %BLPF滤波函数s(i,j)=h*s(i,j); %ILPF滤波后的频域表示endends=ifftshift(s); %对s进行反FFT移动s=im2uint8(real(ifft2(s))); %对s进行二维反离散的Fourier变换后,取复数的实部转化为无符号8位整数subplot(1,3,3); %创建图形图像对象imshow(s); %显示ILPF滤波后的图像title('BLPF滤波后的图像(d=40)');实验结果:1.3 指数型低通滤波器(ELPF)I1=imread('eight.tif'); %读取图像I2=im2double(I1);I3=imnoise(I2,'gaussian',0.01);I4=imnoise(I3,'salt & pepper',0.01);figure,subplot(1,3,1);imshow(I2) %显示灰度图像title('原始图像'); %为图像添加标题subplot(1,3,2);imshow(I4) %加入混合躁声后显示图像title('加噪后的图像');s=fftshift(fft2(I4));%将灰度图像的二维不连续Fourier 变换的零频率成分移到频谱的中心[M,N]=size(s); %分别返回s的行数到M中,列数到N中n1=floor(M/2); %对M/2进行取整n2=floor(N/2); %对N/2进行取整d0=40;for i=1:Mfor j=1:Nd=sqrt((i-n1)^2+(j-n2)^2); %点(i,j)到傅立叶变换中心的距离 h=exp(log(1/sqrt(2))*(d/d0)^2);s(i,j)=h*s(i,j); %ILPF滤波后的频域表示endends=ifftshift(s); %对s进行反FFT移动s=im2uint8(real(ifft2(s))); %对s进行二维反离散的Fourier变换后,取复数的实部转化为无符号8位整数subplot(1,3,3); %创建图形图像对象imshow(s); %显示ILPF滤波后的图像title('ELPF滤波后的图像(d=40)');运行结果:1.4 梯形低通滤波器(TLPF)I1=imread('eight.tif'); %读取图像I2=im2double(I1);I3=imnoise(I2,'gaussian',0.01);I4=imnoise(I3,'salt & pepper',0.01);figure,subplot(1,3,1);imshow(I2) %显示灰度图像title('原始图像'); %为图像添加标题subplot(1,3,2);imshow(I4) %加入混合躁声后显示图像title('加噪后的图像');s=fftshift(fft2(I4));%将灰度图像的二维不连续Fourier 变换的零频率成分移到频谱的中心[M,N]=size(s); %分别返回s的行数到M中,列数到N中n1=floor(M/2); %对M/2进行取整n2=floor(N/2); %对N/2进行取整d0=10;d1=160;for i=1:Mfor j=1:Nd=sqrt((i-n1)^2+(j-n2)^2); %点(i,j)到傅立叶变换中心的距离 if (d<=d0)h=1;else if (d0<=d1)h=(d-d1)/(d0-d1);else h=0;endends(i,j)=h*s(i,j); %ILPF滤波后的频域表示endends=ifftshift(s); %对s进行反FFT移动s=im2uint8(real(ifft2(s))); %对s进行二维反离散的Fourier变换后,取复数的实部转化为无符号8位整数subplot(1,3,3); %创建图形图像对象imshow(s); %显示ILPF滤波后的图像title('TLPF滤波后的图像'); %为图像添加标题运行结果:1.5 高斯低通滤波器(GLPF)I1=imread('eight.tif'); %读取图像I2=im2double(I1);I3=imnoise(I2,'gaussian',0.01);I4=imnoise(I3,'salt & pepper',0.01);figure,subplot(1,3,1);imshow(I2) %显示灰度图像title('原始图像'); %为图像添加标题subplot(1,3,2);imshow(I4) %加入混合躁声后显示图像title('加噪后的图像');s=fftshift(fft2(I4));%将灰度图像的二维不连续Fourier 变换的零频率成分移到频谱的中心[M,N]=size(s); %分别返回s的行数到M中,列数到N中n1=floor(M/2); %对M/2进行取整n2=floor(N/2); %对N/2进行取整d0=40;for i=1:Mfor j=1:Nd=sqrt((i-n1)^2+(j-n2)^2); %点(i,j)到傅立叶变换中心的距离 h=1*exp(-1/2*(d^2/d0^2)); %GLPF滤波函数s(i,j)=h*s(i,j); %ILPF滤波后的频域表示endends=ifftshift(s); %对s进行反FFT移动s=im2uint8(real(ifft2(s))); %对s进行二维反离散的Fourier变换后,取复数的实部转化为无符号8位整数subplot(1,3,3); %创建图形图像对象imshow(s); %显示ILPF滤波后的图像title('GLPF滤波后的图像(d=40)');运行结果:1.6 维纳滤波器[B,Cmap]=imread('eight.tif'); %读取MATLAB中的名为eight的图像I1=im2double(B);I2=imnoise(I1,'gaussian',0.01);I3=imnoise(I2,'salt & pepper',0.01);figure,subplot(1,3,1);imshow(I1) %显示灰度图像title('原始图像'); %为图像添加标题subplot(1,3,2);imshow(I3) %加入混合躁声后显示图像title('加噪后的图像');I4=wiener2(I3);subplot(1,3,3);imshow(I4); %显示wiener滤波后的图像title('wiener滤波后的图像');运行结果:结论:理想低通滤波器,虽然有陡峭的截止频率,却不能产生良好的效果,图像由于高频分量的滤除而变得模糊,同时还产生振铃效应。

如何使用MATLAB进行频域滤波与去噪

如何使用MATLAB进行频域滤波与去噪

如何使用MATLAB进行频域滤波与去噪使用MATLAB进行频域滤波与去噪引言:在数字信号处理领域,频域滤波与去噪是一项重要而常见的任务,在实际应用中有很多场景需要对信号进行去除噪声或者滤波处理。

MATLAB作为一种功能强大的科学计算软件,提供了丰富的工具和函数,可以帮助我们完成频域滤波与去噪的任务。

本文将介绍如何使用MATLAB进行频域滤波与去噪,并给出一些实用的例子。

一、频域滤波频域滤波是一种常用的信号处理方法,它通过将信号从时域转换到频域,对频域上的信号进行滤波处理,再将滤波后的信号转换回时域得到最终结果。

MATLAB提供了丰富的函数和工具箱,可以方便地进行频域滤波。

1. FFT(快速傅里叶变换)傅里叶变换是将信号从时域转换到频域的一种数学方法,而快速傅里叶变换(FFT)是对离散信号进行傅里叶变换的一种快速算法。

在MATLAB中,可以使用fft函数完成FFT变换,如下所示:```matlabY = fft(X);```其中,X为输入信号,Y为傅里叶变换后的结果。

通过FFT变换,我们可以将信号转换到频域进行进一步的处理。

2. 频域滤波器设计MATLAB提供了fir1、fir2、butter等函数用于设计常见的滤波器,根据滤波器的需求选择合适的函数进行滤波器设计。

以fir1函数为例,它可以设计出一种FIR (有限脉冲响应)滤波器,实现对频域信号的滤波。

下面是一个示例代码:```matlaborder = 32; % 滤波器阶数cutoff = 0.2; % 截止频率b = fir1(order, cutoff); % FIR滤波器设计```在上述代码中,我们指定了滤波器的阶数和截止频率,通过调用fir1函数进行滤波器设计,并得到滤波器的系数b。

将滤波器系数应用到信号上,可以实现对信号的频域滤波。

3. 频域滤波器应用设计好滤波器后,我们可以将滤波器应用到信号上,实现频域滤波。

MATLAB 提供了fftfilt函数用于对信号进行频域滤波,如下所示:```matlabY = fftfilt(b, X);```其中,b为滤波器系数,X为输入信号,Y为滤波后的结果。

matlab 频域高斯低通滤波

matlab 频域高斯低通滤波

matlab 频域高斯低通滤波一、前言在数字图像处理中,滤波是一种常用的技术。

频域滤波是其中一种基于傅里叶变换的滤波方法,可以有效地去除图像中的噪声。

高斯低通滤波是其中一种常用的频域滤波方法,可以平滑图像并去除高频噪声。

本文将详细介绍 MATLAB 中如何实现频域高斯低通滤波。

二、MATLAB 中的频域滤波MATLAB 中提供了许多函数来实现频域滤波,例如 fft2, ifft2, fftshift, ifftshift 等。

其中 fft2 和 ifft2 分别表示二维快速傅里叶变换和逆变换,fftshift 和 ifftshift 分别表示将零频分量移到中心位置和将中心位置移到零频分量处。

三、高斯低通滤波原理在进行高斯低通滤波之前,需要先了解高斯函数和低通滤波器的概念。

1. 高斯函数高斯函数是一个连续函数,其形式为:$$g(x,y)=\frac{1}{2\pi\sigma^2}e^{-\frac{x^2+y^2}{2\sigma^2}} $$其中 $\sigma$ 是标准差。

在图像处理中,高斯函数可以用来平滑图像并去除噪声。

2. 低通滤波器低通滤波器是一种可以通过去除高频信号来平滑图像的滤波器。

在频域中,低通滤波器可以通过将高频信号设置为零来实现。

3. 高斯低通滤波原理高斯低通滤波是一种将高斯函数与低通滤波器相结合的方法。

具体来说,可以通过以下步骤来实现:1)对输入图像进行二维傅里叶变换,得到频域图像。

2)在频域图像中心位置创建一个和输入图像大小相同的矩形掩膜,掩膜内部数值为 1,外部数值为 0。

3)将掩膜与一个高斯函数卷积,得到一个新的掩膜。

4)将新的掩膜应用于频域图像,得到经过高斯低通滤波后的频域图像。

5)对经过滤波后的频域图像进行逆傅里叶变换,得到经过高斯低通滤波后的空域图像。

四、MATLAB 中实现高斯低通滤波在 MATLAB 中实现高斯低通滤波可以通过以下步骤来完成:1)读入图像并显示。

matlab-空域和频域进行滤波处理

matlab-空域和频域进行滤波处理

图像平滑处理的空域算法和频域分析1 技术要求对已知图像添加高斯白噪声,并分别用低通滤波器(频域法)和邻域平均法(空域法)对图像进行平滑处理(去噪处理),并分析比较两种方法处理的效果。

2 基本原理2.1 图像噪声噪声在理论上可以定义为“不可预测,只能用概率统计方法来认识的随机误差”。

实际获得的图像一般都因受到某种干扰而含有噪声。

引起噪声的原因有敏感元器件的内部噪声、相片底片上感光材料的颗粒、传输通道的干扰及量化噪声等。

噪声产生的原因决定了噪声的分布特性及它和图像信号的关系。

根据噪声和信号的关系可以将其分为两种形式:(1)加性噪声。

有的噪声与图像信号g(x,y)无关,在这种情况下,含噪图像f(x,y)可表示为f(x,y)=g(x,y)+n(x,y)(2)乘性噪声。

有的噪声与图像信号有关。

这又可以分为两种情况:一种是某像素处的噪声只与该像素的图像信号有关,另一种是某像点处的噪声与该像点及其邻域的图像信号有关,如果噪声与信号成正比,则含噪图像f(x,y)可表示为f(x,y)=g(x,y)+n(x,y)g(x,y)另外,还可以根据噪声服从的分布对其进行分类,这时可以分为高斯噪声、泊松噪声和颗粒噪声等。

如果一个噪声,它的幅度分布服从高斯分布,而它的功率谱密度又是均匀分布的,则称它为高斯白噪声,一般为加性噪声。

2.2 图像平滑处理技术平滑技术主要用于平滑图像中的噪声。

平滑噪声在空间域中进行,其基本方法是求像素灰度的平均值或中值。

为了既平滑噪声又保护图像信号,也有一些改进的技术,比如在频域中运用低通滤波技术。

(1)空域法在空域中对图像进行平滑处理主要是邻域平均法。

这种方法的基本思想是用几个像素灰度的平均值来代替每个像素的灰度。

假定有一幅N*N 个像素的图像f(x,y),平滑处理后得到一幅图像g(x,y)。

g(x,y)由下式决定式中,x,y=0,1,2,…,N-1;S 是(x,y)点邻域中点的坐标的集合,但其中不包括(x,y)点;M 是集合内坐标点的总数。

Matlab中的图像去噪方法探究

Matlab中的图像去噪方法探究

Matlab中的图像去噪方法探究引言:图像去噪是数字图像处理中一个重要的领域,通常被用于清除图像中的噪声,提高图像的质量。

Matlab作为最常用的科学计算软件之一,提供了众多图像去噪方法的实现。

本文将探究在Matlab环境下常用的图像去噪方法,包括均值滤波、中值滤波、小波去噪和Total Variation(TV)去噪等。

1. 均值滤波均值滤波是一种简单且常用的图像去噪方法。

其基本思想是通过计算像素周围邻域像素的平均值来减少噪声的影响。

在Matlab中,可以使用`imfilter`函数来实现均值滤波。

该函数通过对图像进行卷积操作,可以选择不同大小的滤波器来达到不同程度的去噪效果。

然而,均值滤波的缺点是会导致图像的细节模糊化,并且无法处理噪声的非高斯分布情况。

2. 中值滤波中值滤波是一种基于排序统计的图像去噪方法。

它的原理是通过对像素周围邻域像素进行排序,然后选择中间值作为输出像素的值。

与均值滤波相比,中值滤波能够更好地保留图像的细节信息。

Matlab中的`medfilt2`函数可以用于实现中值滤波。

需要注意的是,中值滤波对于椒盐噪声和脉冲噪声等非高斯分布噪声具有较好的去除效果,但对于高斯噪声等其他类型噪声的去噪效果相对较差。

3. 小波去噪小波去噪是一种基于小波变换的图像去噪方法,它通过将图像信号分解为不同频率的小波系数,然后根据小波系数的能量分布情况进行去噪处理。

在Matlab中,可以使用Wavelet Toolbox提供的函数来实现小波去噪。

其中,`wdenoise`函数可以根据设定的阈值对小波系数进行修正,从而实现图像去噪的效果。

由于小波去噪考虑了图像的频域特性,因此在去除噪声的同时能够尽可能地保留图像的细节信息。

4. Total Variation(TV)去噪Total Variation(TV)去噪是一种基于偏微分方程的图像去噪方法,它通过最小化图像的总变差来减少图像中的噪声。

在Matlab中,可以使用Image Processing Toolbox中的`imdenoise`函数来实现TV去噪。

MATLAB实现频域平滑滤波以及图像去噪代码

MATLAB实现频域平滑滤波以及图像去噪代码

MATLAB实现频域平滑滤波以及图像去噪代码用MATLA实现频域平滑滤波以及图像去噪代码悬赏分:50 - 解决时间 :2008-11-8 14:21 是数字图象处理的实验,麻烦高人给个写好的代码,希望能在重要语句后面附上一定的说明,只要能在 MATLAE t运行成功,必然给分。

具体的实验指导书上的要求如下 : 频域平滑滤波实验步骤1. 打开 Matlab 编程环境 ;2. 利用’imread '函数读入图像数据;3. 利用' imshow' 显示所读入的图像数据 ;4. 将图像数据由' uint8 ' 格式转换为' double ' 格式,并将各点数据乘以 (-1)x+y 以便 FFT 变换后的结果中低频数据处于图像中央;5. 用' fft2 ' 函数对图像数据进行二维 FFT 变换,得到频率域图像数据;6. 计算频率域图像的幅值并进行对数变换,利用' imshow' 显示频率域图像;7. 在频率图像上去除滤波半径以外的数据 (置 0);8. 计算频率域图像的幅值并进行对数变换,利用' imshow' 显示处理过的频域图像数据;9. 用' ifft2 ' 函数对图像数据进行二维 FFT 逆变换,并用' real '函数取其实部,得到处理过的空间域图像数据;10. 将图像数据各点数据乘以 (-1)x+y;11. 利用' imshow' 显示处理结果图像数据;12. 利用' imwrite '函数保存图像处理结果数据。

图像去噪实验步骤 :1. 打开 Matlab 编程环境;2. 利用' imread' 函数读入包含噪声的原始图像数据 ;3. 利用' imshow' 显示所读入的图像数据 ;4. 以 3X3 大小为处理掩模,编写代码实现中值滤波算法,并对原始噪声图像进行滤波处理 ;5. 利用' imshow' 显示处理结果图像数据 ;6. 利用' imwrite ' 函数保存图像处理结果数据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用MATLAB实现频域平滑滤波以及图像去噪代码
悬赏分:50 - 解决时间:2008-11-8 14:21
是数字图象处理的实验,麻烦高人给个写好的代码,希望能在重要语句后面附上一定的说明,只要能在MATLAB上运行成功,必然给分。

具体的实验指导书上的要求如下:
频域平滑滤波实验步骤
1. 打开Matlab 编程环境;
2. 利用’imread’函数读入图像数据;
3. 利用’imshow’显示所读入的图像数据;
4. 将图像数据由’uint8’格式转换为’double’格式,并将各点数据乘以
(-1)x+y 以便FFT 变换后的结果中低频数据处于图像中央;
5. 用’fft2’函数对图像数据进行二维FFT 变换,得到频率域图像数据;
6. 计算频率域图像的幅值并进行对数变换,利用’imshow’显示频率域图
像;
7. 在频率图像上去除滤波半径以外的数据(置0);
8. 计算频率域图像的幅值并进行对数变换,利用’imshow’显示处理过的
频域图像数据;
9. 用’ifft2’函数对图像数据进行二维FFT 逆变换,并用’real’函数取其实部,得到处理过的空间域图像数据;
10. 将图像数据各点数据乘以(-1)x+y;
11. 利用’imshow’显示处理结果图像数据;
12. 利用’imwrite’函数保存图像处理结果数据。

图像去噪实验步骤:
1. 打开Matlab 编程环境;
2. 利用’imread’函数读入包含噪声的原始图像数据;
3. 利用’imshow’显示所读入的图像数据;
4. 以3X3 大小为处理掩模,编写代码实现中值滤波算法,并对原始噪声
图像进行滤波处理;
5. 利用’imshow’显示处理结果图像数据;
6. 利用’imwrite’函数保存图像处理结果数据。

即使不是按这些步骤来的也没关系,只要是那个功能,能实现就OK,谢谢大家
%%%%%%%%spatial frequency (SF) filtering by low pass filter%%%%%%%%
% the SF filter is unselective to orientation (doughnut-shaped in the SF % domain).
[FileName,PathName,FilterIndex] = uigetfile ;
filename = fullfile(PathName, FileName) ;
[X map] = imread(filename, fmt); % read image
L = double(X); % transform to double
%%%%%%%%%%%%% need to add (-1)x+y to L
% calculate the number of points for FFT (power of 2)
fftsize = 2 .^ ceil(log2(size(L)));
% 2d fft
Y = fft2(X, fftsize(1), fftsize (2));
Y = fftshift(Y);
% obtain frequency (cycles/pixel)
f0 = floor([m n] / 2) + 1;
fy = ((m: -1: 1) - f0(1) + 1) / m;
fx = ((1: n) - f0(2)) / n;
[mfx mfy] = meshgrid(fx, fy);
% calculate radius
SF = sqrt(mfx .^ 2 + mfy .^ 2);
% SF-bandpass and orientation-unselective filter
filt = SF > k0;
A_filtered = filt .* A; % SF filtering
L_filtered = real(ifft2(ifftshift(A_filtered))); % IFFT
L_filtered = L_filtered(1: size(L, 1), 1: size(L, 2)); %%%%%%%%%%need to add (-1)x + y to L_filtered
% show
figure(1);
clf reset;
colormap gray;
% plot image
subplot(2, 2, 1);
imagesc(L);
colorbar;
axis square;
set(gca, 'TickDir', 'out');
title('original image');
xlabel('x');
ylabel('y');
imwrite(L, fullfile(FilePath, 'original image.bmp'), 'bmp') ;
% plot amplitude
A = abs(A);
A = log10(A);
% spectral amplitude
subplot(2, 2, 2);
imagesc(fx, fy, A);
axis xy;
axis square;
set(gca, 'TickDir', 'out');
title('amplitude spectrum');
xlabel('fx (cyc/pix)');
ylabel('fy (cyc/pix)');
imwrite(A, fullfile(FilePath, 'amplitude spectrum.bmp'), 'bmp') ;
% filter in the SF domain
subplot(2, 2, 3);
imagesc(fx, fy, filt);
axis xy;
axis square;
set(gca, 'TickDir', 'out');
title('filter in the SF domain');
xlabel('fx (cyc/pix)');
ylabel('fy (cyc/pix)');
imwrite(filt, fullfile(FilePath, 'filter in SF.bmp'), 'bmp') ;
% filtered image
subplot(2, 2, 4);
imagesc(L_filtered);
colorbar;
axis square;
set(gca, 'TickDir', 'out');
title('filtered image');
xlabel('x');
ylabel('y');
imwrite(filtered, fullfile(FilePath, 'filtered image.bmp'), 'bmp');
%%%%%%%%%%%%%%%%%median filter%%%%%%%%%%%%%%%%
[FileName,PathName,FilterIndex] = uigetfile ;
filename = fullfile(PathName, FileName) ;
[LNoise map] = imread(filename, fmt); % read image
L = medfilt2(LNoise, [3 3]); % remove the noise with 3*3 block
figure ;
imshow(LNoise) ;
title('image before fitlering') ;
figure
imshow(L)
title('filtered image') ;
imwrite(FilePath, 'filtered image.bmp', bmp)
13回答者: 820802461。

相关文档
最新文档