二次函数常见关系式符号的判定

合集下载

二次函数a.b.c等的符号的确定

二次函数a.b.c等的符号的确定
y
-1 o 1 x
(5)△=b2-4ac决定抛物线与x轴交点情况:
① △>0 ② △=0
抛物线与x轴有两个交点; 抛物线与x轴有唯一的公共点;
③ △<0 抛物线与x轴无交点。
y ox
y ox
y ox
勇攀高峰
1. 二次函数y=ax2+bx+c的图象如图所示,下列结论中:
①abc>0;② a+b+c<0 ③ a-b+c>0 ;
o1 特殊值法
x
y aabb cc 0 0
y=ax2+bx+c 当x 1时 y=a-b+c
y aabbcc0 0 y
y aabbcc00
-1 o
x
y aabbcc00
x=-1
比拼速度
二次函数y ax2 bx c的图象如图,用(< , >或 =)填空: a< 0,b < 0,c > 0,a+b+c< 0,a-b+c> 0, Nhomakorabeay
开口向下
a<0
数形结合法
x
⑵c决定抛物线与y轴交点(0,c)的位置:
① 图象与y轴交点在y轴正半轴;
c>0
② 图象过原点
c=0
③ 图象与y轴交点在y轴负半轴
c<0
y
指出下列二次函数与y轴交点的坐标.
(1) y=x2-8x+7 (2) y=-2x2+9x-17
x
⑶a,b决定抛物线对称轴的位置: 对称轴是直线x =
转化 + 特殊值
根据抛物线y=ax2+bx+c图象位置,你 会判断那些字母或代数式的符号?

二次函数中常见关系式符号的判断

二次函数中常见关系式符号的判断
为对称轴 一 o= 2,
二U
所以 一 b= 4 a .
如果二次函数 Y= a N + +c ( a≠0 ) 的对称轴 =

则4 a+b = 0 .
所以④对.
在点( 1 , 0 ) 的 左边 , 则一 <1 , 当 o>0时 , 得2 a+
当Y =2时 , 对应的的值有两个 , 所以⑤错.
正确是 ( ) .
即①正确.
为 一1 <一 一 < 0,
二“
A . ① ④ C . ②⑤
, :
B . ③④ D . ③⑤
J I 1 Ⅱ一 2 a< 一b .
即 2 a—b<0 .
所 以② 正确. 一Fra bibliotek,? 0 i 2

7 、

因 为 图 象 经 过 (一1 , 2 ) ,
当 = 一 2时 , Y <0 ,
所以 a (一 2 ) +b X(一 2 )+ c < 0
贝 U 4 Ⅱ一 2 6+ c < 0 .
如图所示 , 则下列结论①6 一 4 a c< 0 , ②a b > O , ③n—b+ C : 0 , g ) 4 a+b: 0, ⑤ 当 Y: 2时 , 只能有 一个值. 其 中
A . 1 个 B . 2个
如 果 二 次 函数 y= 似 + +c ( a ≠0 ) 的 对 称 轴 =

) .
经过( 1 , 0 ) , 2 a+b = 0 .
举 例 如 下
分析
由 象得 ;
例 1 已知二 次函数 Y= a x +k +c ( a ≠0 ) 的 图象
所 以选 .
b> 0 , 当 a< 0时 , 2 0+b < 0 .

二次函数中的符号问题

二次函数中的符号问题
1
基础回顾:
1、抛物线y=ax2+bx+c的开口方向、形状与什么 有关?
a>0时,开口向上;a<0时,开口向下。
a 相等
抛物线的形状相同
2、抛物线y=ax2+bx+c与y轴的交点是(0、c).
3、抛物线y=ax2+bx+c的对称轴是 X=- b .
2a
2
归纳知识点:
抛物线y=ax2+bx+c的符号问题:
y
根据图像可得:
1、a>0
2、- b >0
2a
o
x 3、△=b²-4ac>0
4、C>0
6
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△的 符号:
y
根据图像可得:
1、a>0
b
2、-
<0
2a
o
x 3、△=b²-4ac>0
4、C=0
7
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△的 符号:
M
B 1
Ax
O
1
17
再想一想:
5.如图,在平面直角坐标系中,二次函数y=ax2+c(a<0)的
图象过正方形ABOC的三个顶点A、B、C,则ac的值是 -2 .
设正方形的对角线长为2n, 根据图像可得:
∵A(0、2n)、B(-n、n)、 C(n、n) ∴n=a(±n)²+2n、c=2n,
∴a=- 1 ,∴ac=2n*(-
②如图2a+b _______0 4a+2b+c_______0
12
根据图象填空:
(1)a_____0; (2)b_____0; (3)c______0; (4)b2 4ac _____0; (5)a+b+c_____0; (6)a-b+c_____0; (7)2a+b_____0;

二次函数图像与性质完整归纳

二次函数图像与性质完整归纳

3 2 -2
3 2 0 5…
2
【例 2】 求作函数 y x 2 4 x 3 的图象。
【解】 y x 2 4x 3 ( x2 4x 3)
[( x 2) 2 7] [( x 2) 2 7 先画出图角在对称轴 x 2 的右边部分,列表
x -2 -1 0 1 2 y 76 5 4 3
【点评】 画二次函数图象步骤: (1) 配方; (2) 列表; (3) 描点成图; 也可利用图象的对称性,先画出函数的左(右)边部分图象,再利 用对称性描出右(左)部分就可。
, 3 ] 上是增函数,在区间 [ 3, 10
29 ymaz 20 ) 上是减函数。
【点评】 要研究二次函数顶点、对称轴、最值、单调区间等性质时,方法有两个:
(1) 配方法;如例 3
(2) 公式法:适用于不容易配方题目 ( 二次项系数为负数或分数 ) 如例 4,可避免出错。
任何一个函数都可配方成如下形式:
b 时, y 随 x 的增大而增大; 当 x b
2a
2a
b ,顶点坐标为 2a
b ,4ac b2 .当 2a 4a
x b 时, y 随 x 的增大而增大;当 x 2a
2
有最大值 4ac b . 4a
b 时, y 随 x 的增大而减小;当 x 2a
b 时, y 2a
六、二次函数解析式的表示方法
1. 一般式: y ax 2 bx c ( a , b , c 为常数, a 0 ); 2. 顶点式: y a ( x h)2 k ( a , h , k 为常数, a 0 );
向下
h ,k
x h 时, y 随 x 的增大而减小; x h 时, y X=h
随 x 的增大而增大; x h 时, y 有最大值 k .

九年级数学二次函数中a,b,c符号的确定

九年级数学二次函数中a,b,c符号的确定

九年级数学二次函数中a ,b ,c 符号的确定珠海市第四中学(519015) 邱金龙二次函数)0(2≠++=a c bx ax y 的图象是抛物线,利用图象来确定a ,b ,c 的符号,是常见的问题,解决的关键是对二次函数的图象和性质的正确理解。

一、a ,b ,c 符号的确定(1)a 符号的确定。

抛物线的开口向上,a >0,抛物线的开口向下,a <0。

(2)c 符号的确定。

因为x=0时,由c bx ax y ++=2得,y =c ,故抛物线与y 轴交点在y 轴的正半轴,c >0,抛物线与y 轴交点在y 轴的负半轴,c <0,抛物线经过原点,c =0。

(3)b 符号的确定。

b 的符号要看对称轴ab x 2-=,再结合a 的符号来确定。

二、应用举例1、二次函数c bx ax y ++=2的图象分别如图所示,试分别判断(A )(B )(C )(D )图中a ,b ,c 的符号。

分析:(A )图中,抛物线的开口向上,故a >0;抛物线与y 轴的交点P 在y 轴的负半轴,故c <0。

对称轴ab x 2-=>0,而a >0,故b <0。

(B )图中,抛物线的开口向下,故a <0;抛物线与y 轴的交点P 在y 轴的正半轴,故c >0。

对称轴ab x 2-=<0,而a <0,故b <0。

(C )图中(过程略),a >0,c >0 ,b >0。

(D )图中(过程略),a <0, c <0 ,b >0。

2、(2004重庆中考题)二次函数c bx ax y ++=2的图象如图,则点M (b ,ac )在( ) A 、第一象限 B 、第二象限C 、第三象限D 、第四象限分析:抛物线的开口向下,故a <0;抛物线与y 轴的交点在y 轴的正半轴,故c >0。

对称轴ab x 2-=>0,而a <0,故b >0。

因此,点M (b ,ac )的横坐标为正,纵坐标为负,在第四象限,选(D )。

3、(2004陕西中考题)二次函数y =ax 2+bx+c 的图象如图所示,则下列关于a 、b 、c 间的关系判断正确的是( )A 、ab <0B 、bc <0C 、.a+b+c >0D 、a -b+c <0分析:抛物线的开口向下,故a <0;抛物线与y 轴的交点在y 轴的负半轴,故c <0。

二次函数a、b、c及有关代数式判定

二次函数a、b、c及有关代数式判定

课题二次函数图象与系数符号学习目标:1.探索发现二次函数的系数a,b,c,△的符号与图象之间的关系;2.由抛物线确定a,b,c,△及相关代数式的符号;学习过程一、知识回顾:1.抛物线y=ax2+bx+c 的开口方向由决定:⇒开口向上⇒开口向下.2.抛物线y=ax2+bx+c与y轴的交点坐标是().c>o⇒与y轴的交点在;c<o⇒与y轴的交点在;c=o⇒抛物线过点3.抛物线y=ax2+bx+c的对称轴是直线 .b=0⇒对称轴是;0⇒对称轴在y轴的侧;a、b同号⇒-b2a0⇒对称轴在y轴的侧.a、b异号⇒-b2a4.若抛物线y=ax2+bx+c与x轴有交点,则交点的横坐标就是一元二次方程ax2+bx+c=0的根,因此抛物线y=ax2+bx+c与x轴的交点个数由决定.抛物线与x轴有两个交点;抛物线与x轴有一个交点;抛物线与x轴没有交点.二、协作归纳,获取新知(一)a、b、c、△=b2-4ac的符号与抛物线位置的关系。

1. 抛物线y=ax2+bx+c开口向上⇒;抛物线y=ax2+bx+c开口向下⇒ .2. 抛物线y=ax2+bx+c与y轴的交点在y轴的负半轴上⇒;抛物线y=ax2+bx+c与y轴的交点在y轴的正半轴上⇒,抛物线经过坐标原点⇒ .3. 抛物线y=ax 2+bx+c 的对称轴是y 轴⇒b 0;抛物线y=ax 2+bx+c 的对称轴在y 轴的左侧⇒-b2a 0⇒a 、b 号; 抛物线y=ax 2+bx+c 的对称轴在y 轴的右侧⇒-b 2a 0⇒a 、b 号. 4. 抛物线y=ax 2+bx+c 与x 轴有两个交点⇒△ ; 抛物线y=ax 2+bx+c 与x 轴有一个交点⇒△ ; 抛物线y=ax 2+bx+c 与x 轴无交点⇒△ . 试一试:根据二次函数c bx ax y ++=2的图象,判断a 、b 、c 、b 2-4ac 的符号,并说明理由.(二)确定代数式a+b+c ; a-b+c ; 4a+2b+c ;4a-2b+c ;2a+b ;2a-b 的符号1.二次函数y=ax 2+bx+c 中,当x=1时,y= ;当x=-1时,y= .2.二次函数y=ax 2+bx+c 中,当x=2时,y= ;当x=-2时,y= . 试一试:抛物线y=ax 2+bx+c 如图所示,判断下列各式的符号 (1)a+b+c (2)a-b+c (3)4a+2b+c (4) 4a-2b+c (5)2a+b (6)2a-b三、归纳小结,升华提高四、累化回味,形成技能1.二次函数y=kx2-3x+2k-k2的图象经过原点,则k= .2.若二次函数y=ax2+3x-1与x轴有两个交点,则a的取值范围是 .3.二次函数cbxaxy++=2与一次函数caxy+=在同一坐标系中的图象大致是( )4. 若0,0,0<><c b a ,则抛物线c bx ax y ++=2的大致图象为( )5.若无论x 取何实数,二次函数y=ax 2+bx+c 的值总为负,则下列结论成立的是( ) A.a>0且b 2-4ac ≥0 B.a>0且b 2-4ac>0 C.a<0且b 2-4ac<0 D.a <0且b 2-4ac ≤0 五、拓广探索: 观察抛物线图象填空:(1)方程ax 2+bx +c =0的根为___________; (2)方程ax 2+bx +c =-3的根为__________; (3)方程ax 2+bx +c =-4的根为__________; (4)不等式ax 2+bx +c >0的解集为________; (5)不等式ax 2+bx +c <0的解集为________; (6)不等式-4<ax 2+bx +c <0的解集为________.xxxx。

判定二次函数中的a,b,c的符号

判定二次函数中的a,b,c的符号

10A B C D二次函数:图象位置与a,b,c,(1)a决定抛物线的开口方向:a>0⇔;a<0⇔.(2)C决定抛物线与y轴交点的位置,c>0⇔抛物线交y轴于;c<0⇔抛物线交y轴于;c=0⇔.(3)ab决定抛物线对称轴的位置,当a,b同号时⇔对称轴在y轴;b=0⇔对称轴为;a,b异号⇔对称轴在y轴,简称为.一、通过抛物线的位置判断a,b,△c,的符号.例1.根据二次函数y=ax2+bx+c的图象,判断a、b、c、b2-4ac的符号yx2.看图填空(1)a+b+c_______0(2)a-b+c_______0(3)2a-b_______0(4)4a+2b+c_______0二、通过a,b,△c,的符号判断抛物线的位置:例1.若a<0,b>0,c<0,则抛物线y=ax2+bx+c的大致图象为()y y y yOx O x O x O xA B C D例2.若a>0,b>0,c>△0,>0,那么抛物线y=ax2+bx+c经过象限.例3.已知二次函数y=ax2+bx+c且a<0,a-b+c>0;则一定有b2-4ac0例4.如果函数y=kx+b的图象在第一、二、三象限内,那么函数y=kx2+bx-1的大致图象是()y yy 1x0x-1x 0-101.若抛物线y=ax2+bx+c开口向上,则直线y=ax+3经过象限.2.二次函数y=ax2+bx+c的图象如图所示,则下列条件不正确的是()yO x3.二次函数 y=ax 2+bx+c 的图象如图,则点, ⎪ 在.( )⎝ b 2 - 4ac b ⎭y yA 、 a < 0, b > 0, c < 0B 、 b 2 - 4ac < 0C 、 a + b + c < 0D 、 a - b + c > 0⎛ a + b ac ⎫yA 、第一象限B 、第二象限C 、第三象限D 、第四象限O4.二次函数 y=ax 2+bx+c 与一次函数 y = ax + c 在同一坐标系中的图象大致是() yyO xO xO x OxABCD5.二次函数 y=ax 2+bx+c (a ≠ 0)的图象,如图,下列结论①c < 0 ② b > 0 ③ 4a + 2b + c > 0 ④ (a + c )2 < b 2 其中正确的有()A 、1 个B 、2 个C 、3 个D 、4 个6.已知函数 y=ax 2+bx+c 的图象如图所示,关于系数 a, b , cyOxx = 1y有下列不等式① a < 0 ② b < 0 ③ c > 0 ④ 2a + b < 0 ⑤ a + b + c > 0 其中正确个数为 .7.已知直线 y=ax 2+bx+c 不经过第一象限,则抛物线y = ax 2 + bx 一定经过()A .第一、二、四象限B .第一、二、三象限C .第一、二象限D .第三、四象限8. 如图所示的抛物线是二次函数 y =ax 2-3x +a 2-1 的图象,那么 a 的值是__.- O 1x.. 轴正半轴相交,其顶点坐标为,1⎪ ,下列结论:①ac<0;② 精品资料 欢迎下载9. 若抛物线 y =x 2-bx +9 的顶点在 x 轴上,则 b 的值为______若抛物线 y =x 2-bx +9 的顶点在 y 轴上,则 b 的值为______10.已知二次函数 y =ax 2+bx +c(a≠0)的图象如图所示,有下列结论:①abc>0;②a+b +c=2; ③a >结论是( )1 2;④b<1.其中正确的A .①②B .②③C .②④D .③④11.二次函数 y =ax 2+bx +c(a≠0)的图象开口向上,图象经过点(-1,2)和(1,0),且与 y 轴负半轴交于一点,给出以下结论①abc<0;②2a+b >0;③a+c =1;④a>1.其中正确的结论是()A 、1 个B 、2 个C 、3 个D 、4 个12. 二次函数 y =ax 2 -2x -1 与 x 轴有交点,则 k 的取值范围________。

二次函数图像与性质完整归纳

二次函数图像与性质完整归纳

二次函数的图像与性质一、二次函数的基本形式1. 二次函数基本形式:的性质:2y ax =a 的绝对值越大,抛物线的开口越小。

2. 的性质:2y ax c =+上加下减。

3. 的性质:()2y a x h =-左加右减。

4. 的性质:()2y a x h k =-+的符号a 开口方向顶点坐标对称轴性质a >向上()00,轴y 时,随的增大而增大;时,0x >y x 0x <随的增大而减小;时,有最小值y x 0x =y .00a <向下()00,轴y 时,随的增大而减小;时,0x >y x 0x <随的增大而增大;时,有最大值y x 0x =y .0的符号a 开口方向顶点坐标对称轴性质a >向上()0c ,轴y 时,随的增大而增大;时,0x >y x 0x <随的增大而减小;时,有最小值y x 0x =y .c 0a <向下()0c ,轴y 时,随的增大而减小;时,0x >y x 0x <随的增大而增大;时,有最大值y x 0x =y .c 的符号a 开口方向顶点坐标对称轴性质a >向上()0h ,X=h时,随的增大而增大;时,x h >y x x h <随的增大而减小;时,有最小值y x x h =y .00a <向下()0h ,X=h时,随的增大而减小;时,x h >y x x h <随的增大而增大;时,有最大值y x x h =y .0的符号a 开口方向顶点坐标对称轴性质a >向上()h k ,X=h时,随的增大而增大;时,x h >y x x h <随的增大而减小;时,有最小值y x x h =y二、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式,确定其顶点坐标;()2y a x h k =-+()h k ,⑵ 保持抛物线的形状不变,将其顶点平移到处,具体平移方法如下:2y ax =()h k,【【【(h <0)【【【【【(h >0)【【【(h 【【|k|【【【2. 平移规律在原有函数的基础上“值正右移,负左移;值正上移,负下移”.h k 概括成八个字“左加右减,上加下减”. 方法二:⑴沿轴平移:向上(下)平移个单位,变成c bx ax y ++=2y m c bx ax y ++=2(或)m c bx ax y +++=2m c bx ax y -++=2⑵沿轴平移:向左(右)平移个单位,变成c bx ax y ++=2m c bx ax y ++=2(或)c m x b m x a y ++++=)()(2c m x b m x a y +-+-=)()(2三、二次函数与的比较()2y a x h k =-+2y ax bx c =++从解析式上看,与是两种不同的表达形式,后者通过()2y a x h k =-+2y ax bx c =++配方可以得到前者,即,其中.22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭2424b ac b h k a a -=-=,.k 0a <向下()h k ,X=h时,随的增大而减小;时,x h >y x x h <随的增大而增大;时,有最大值y x x h =y .k四、二次函数图象的画法2y ax bx c =++五点绘图法:利用配方法将二次函数化为顶点式,确2y ax bx c =++2()y a x h k =-+定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与轴的交点、以及关于对称轴对称的点y ()0c ,()0c ,、与轴的交点,(若与轴没有交点,则取两组关于对称轴()2h c ,x ()10x ,()20x ,x 对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴的交点,与轴的交点.x y 五、二次函数的性质2y ax bx c =++ 1. 当时,抛物线开口向上,对称轴为,顶点坐标为.0a >2bx a =-2424b ac b a a ⎛⎫-- ⎪⎝⎭,当时,随的增大而减小;当时,随的增大而增大;当2b x a <-y x 2bx a>-y x 时,有最小值.2b x a =-y 244ac b a- 2. 当时,抛物线开口向下,对称轴为,顶点坐标为.当0a <2bx a =-2424b ac b aa ⎛⎫-- ⎪⎝⎭,时,随的增大而增大;当时,随的增大而减小;当时,2b x a <-y x 2b x a >-y x 2bx a=-有最大值.y 244ac b a-六、二次函数解析式的表示方法1. 一般式:(,,为常数,);2y ax bx c =++a b c 0a ≠2. 顶点式:(,,为常数,);2()y a x h k =-+a h k 0a ≠3. 两根式:(,,是抛物线与轴两交点的横坐标).12()()y a x x x x =--0a ≠1x 2x x 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与轴有交点,即时,抛物线的解析式才可以x 240b ac -≥用交点式表示.二次函数解析式的这三种形式可以互化.七、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数中,作为二次项系数,显然.2y ax bx c =++a 0a ≠ ⑴ 当时,抛物线开口向上,的值越大,开口越小,反之的值越小,开口越0a >a a 大;⑵ 当时,抛物线开口向下,的值越小,开口越小,反之的值越大,开口越0a <a a 大.总结起来,决定了抛物线开口的大小和方向,的正负决定开口方向,的大小决a a a 定开口的大小.2. 一次项系数b在二次项系数确定的前提下,决定了抛物线的对称轴.a b ⑴ 在的前提下,0a >当时,,即抛物线的对称轴在轴左侧;0b >02ba-<y 当时,,即抛物线的对称轴就是轴;0b =02ba-=y 当时,,即抛物线对称轴在轴的右侧.0b <02ba->y ⑵ 在的前提下,结论刚好与上述相反,即0a <当时,,即抛物线的对称轴在轴右侧;0b >02ba->y 当时,,即抛物线的对称轴就是轴;0b =02ba-=y 当时,,即抛物线对称轴在轴的左侧.0b <02ba-<y 总结起来,在确定的前提下,决定了抛物线对称轴的位置.a b 的符号的判定:对称轴在轴左边则,在轴的右侧则,ab abx 2-=y 0>ab y 0<ab 概括的说就是“左同右异”总结:3. 常数项c⑴ 当时,抛物线与轴的交点在轴上方,即抛物线与轴交点的纵坐标为正;0c >y x y⑵ 当时,抛物线与轴的交点为坐标原点,即抛物线与轴交点的纵坐标为;0c =y y 0 ⑶ 当时,抛物线与轴的交点在轴下方,即抛物线与轴交点的纵坐标为0c <y x y 负.总结起来,决定了抛物线与轴交点的位置.c y 总之,只要都确定,那么这条抛物线就是唯一确定的.a b c ,,二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与轴的两个交点的横坐标,一般选用两根式;x 4. 已知抛物线上纵坐标相同的两点,常选用顶点式.八、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于轴对称x关于轴对称后,得到的解析式是; 2y ax bx c =++x 2y ax bx c =---关于轴对称后,得到的解析式是;()2y a x h k =-+x ()2y a x h k =--- 2. 关于轴对称y关于轴对称后,得到的解析式是; 2y ax bx c =++y 2y ax bx c =-+关于轴对称后,得到的解析式是;()2y a x h k =-+y ()2y a x h k =++ 3. 关于原点对称 关于原点对称后,得到的解析式是;2y ax bx c =++2y ax bx c =-+-关于原点对称后,得到的解析式是;()2y a x h k =-+()2y a x h k =-+- 4. 关于顶点对称(即:抛物线绕顶点旋转180°)关于顶点对称后,得到的解析式是;2y ax bx c =++222b y ax bx c a=--+-关于顶点对称后,得到的解析式是.()2y a x h k =-+()2y a x h k =--+ 5. 关于点对称()m n ,关于点对称后,得到的解析式是()2y a x h k =-+()m n ,()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择a 合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.二次函数图像参考:y=3(x+4)22y=3x 2十一、【例题精讲】一、一元二次函数的图象的画法【例1】求作函数的图象64212++=x x y 【解】)128(21642122++=++=x x x x y 2-4)(214]-4)[(21 2222+=+=x x 以为中间值,取的一些值,列表如下:4-=x x x …-7-6-5-4-3-2-1…y …25023--223-025…【例2】求作函数的图象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数常见关系式符号的判定
例1如图1是抛物线的图像,则① 0;② 0;③ 0;

0;⑤
0;⑥
0;⑦
0。

图3
例 2如图2,已知二次函数的图像与轴相交于(
,0 ),(
, 0)两点,且,与轴相交于(O ,-2),下列结论:①


;③

④;⑤。


其中正确结论的个数为( ) A .1个 B .2个 C .3个 D .4个
练习1、如图3,的二次函数2y ax bx c =++的图象中,刘星同学观察得出了下面四条信息:(1)2
40b ac ->;(2)c >1;(3)2a -b <0;(4)a +b +c <0. 你认为其中错误..的有( ) A .2个
B .3个
C .4个
D .1个
2、函数)0(2≠++=a c bx ax y 图象如图4,下列结论正确的是:__________ ① 0>abc ; ② c a b +<; ③ 4a +2b +c >0; ④ 2c <3b; ⑤ 2a +b =0; ⑥ a +b >m (am +b ); ⑦042
<-ac b
图5
图4 图6
3、二次函数y=ax2+bx+c(a≠0)的图象如图5,给出下列结论:①b2-4ac>0;② 2a+b<0;
③ 4a-2b+c=0;④a︰b︰c=-1︰2︰3.其中正确的是( )
A.①②B.②③C.③④D.①④
4、如图6为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0②2a+b=0③a+b+c>0④当-1<x<3时,y>0其中正确的个数为( )
A.1 B.2 C.3 D.4
压轴题训练:如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y 轴交于点C(0,﹣3)(1)求抛物线的解析式;
(2)点P在抛物线位于第四象限的部分上运动,当四边形ABPC的面积最大时,求点P的坐标和四边形ABPC的最大面积.
(3)直线l经过A、C两点,点Q在抛物线位于y轴左侧的部分上运动,直线m经过点B 和点Q,是否存在直线m,使得直线l、m与x轴围成的三角形和直线l、m与y轴围成的三角形相似?若存在,求出直线m的解析式,若不存在,请说明理由.。

相关文档
最新文档