新北师大版第三章图形的平移与旋转知识点与同步练习
(北师大新版)八年级数学下册第三章图形的平移与旋转 同步知识点训练

3.1图形的平移同步知识点训练一.生活中的平移现象(共9小题)1.下列现象中,不属于平移的是()A.滑雪运动员在平坦的雪地上滑行B.钟摆的摆动C.大楼上上下下迎送来客的电梯D.火车在笔直的铁轨上飞驰而过2.在下图所示的四个三角形中,能由△ABC经过平移得到的是()A.B.C.D.3.如图,某宾馆在重新装修后,准备在大厅的楼梯上铺上某种规格红色地毯,其侧面如图所示,则至少需要购买地毯米.第3题图第4题图第5题图4.在手工制作模型折铁丝活动中,同学们设计出模型如图所示,则所用铁丝长度为()A.a+b B.a+2b C.2a+6D.2a+2b5.如图所示,一块白色正方形板,边长是18cm,上面横竖各有两道彩条,各彩条宽都是2cm,问白色部分面积()A.220cm2B.196cm2C.168cm2D.无法确定6.以下现象属于平移的是()A.钟摆的摆动B.电风扇扇叶的转动C.分针的转动D.滑雪运动员在平坦的雪地上沿直线滑行7.下列现象属于数学中平移变换的是()A.把打开的书本合上B.电梯从底楼升到顶楼C.碟片在光驱中运行D.闹钟钟摆的运动8.如图,某公园里一处长方形风景欣赏区ABCD,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米.若AB=50米,BC=25米.小明沿着小路的中间从入口E处走到出口F处,则他所走的路线(图中虚线)长为()A.75米B.96米C.98米D.100米第8题图第9题图9.如图在一块长为12m,宽为6m的长方形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是2m)则空白部分表示的草地面积是()A.70B.60C.48D.18二.平移的性质(共11小题)10.如图,将周长为8的△ABC沿BC方向平移2个单位得到△DEF,则四边形ABFD的周长为()A.10B.12C.13D.1411.如图所示,下列各组图形中,一个图形经过平移能得到另一个图形的是()A.B.C.D.12.如图,将△ABC沿射线AB的方向平移到△DEF的位置,点A、B、C的对应点分别为点D、E、F,若∠ABC=75°,则∠CFE=第12题图第13题图13.如图,将直线m沿着射线AB平移得到直线n的位置.若∠2=130°,则∠1的度数是()A.130°B.50°C.90°D.40°14.如图,在三角形ABC中,∠ABC=90°,将三角形ABC沿AB方向平移AD的长度得到三角形DEF,已EF=8,BE=3,CG=3,则图中阴影部分的面积是()A..12.5B..19.5C..32D.,45.5第14题图第15题图15.如图所示,将△ABC沿着X→Y方向平移一定距离后得到△MNL,则下列结论中正确的有()①AM∥BN;②AM=BN;③BC=NL;④∠ACB=∠NML.A.1个B.2个C.3个D.4个16.如图,在△ABC中,AD⊥BC垂足为D,AD=4,将△ABC沿射线BC的方向向右平移后,得到△A'B'C,连接A'C,若BC'=10,B'C=3,则△A'CC'的面积为.第16题图第17题图17.如图所示,由三角形ABC平移得到的三角形有个.18.如图,在Rt△ABC中,∠C=90°,AC=4,将△ABC沿CB向右平移得到△DEF,若平移距离为3,则四边形ABED的面积等于.第18题图第19题图第20题图19.已知△DEC是由△CAB平移得到,若AE=2cm,∠ECA=20°,AC平分∠ECB,则BD=,∠B=.20.如图,将直角△ABC沿BC方向平移得到直角△DEF,其中AB=8,BE=6,DM=4,则阴影部分的面积是.三.坐标与图形变化-平移(共9小题)21.在平面直角坐标系中,将点(2,1)向右平移3个单位长度,则所得的点的坐标是()A.(0,5)B.(5,1)C.(2,4)D.(4,2)22.点A(﹣3,﹣5)向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为()A.(1,﹣8)B.(1,﹣2)C.(﹣6,﹣1)D.(0,﹣1)23.将直角坐标系中的点(﹣1,﹣3)向上平移4个单位,再向右平移2个单位后的点的坐标为()A.(3,﹣1)B.(﹣5,﹣1)C.(﹣3,1)D.(1,1)24.在平面直角坐标系中,已知A(﹣2,3),B(2,1),将线段AB平移后,A点的坐标变为(﹣3,2),则点B的坐标变为()A.(﹣1,2)B.(1,0)C.(﹣1,0)D.(1,2)25.如图,线段AB两端点的坐标分别为A(﹣1,0),B(1,1),把线段AB平移到CD位置,若线段CD 两端点的坐标分别为C(1,a),D(b,4),则a+b的值为()A.7B.6C.5D.4第25题图第27题图26.在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是()A.(﹣1,1)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)27.如图,把图中的圆A经过平移得到圆O(如图),如果左图⊙A上一点P的坐标为(m,n),那么平移后在右图中的对应点P′的坐标为.28.如图在直角坐标系中,右边的图案是由左边的图案经过平移以后得到的.左图案中左右眼睛的坐标分别是(﹣4,2)、(﹣2,2),右图中左眼的坐标是(3,4),则右图案中右眼的坐标是.29.将点A(1,1)先向左平移2个单位,再向下平移3个单位得到点B,则点B的坐标是.四.作图-平移变换(共7小题)30.数学课上,老师要求同学们利用三角板画两条平行线.小明的画法如下:①将含30°角的三角尺的最长边与直线a重合,另一块三角尺最长边与含30°角的三角尺的最短边紧贴:②将含30°角的三角尺沿贴合边平移一段距离,画出最长边所在直线b,则b∥a.小明这样画图的依据是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.两直线平行,同位角相等31.如图,在平面直角坐标系中,已知点A(﹣3,3),B(﹣5,1),C(﹣2,0),点P(a,b)是三角形ABC中任意一点,点P(a,b)经平移对应点为P1(a+5,b﹣3),将三角形ABC做同样的平移得到三角形A1B1C1.(1)在图中画出三角形A1B1C1;(2)直接写出点A1,B1,C1的坐标.32.如图,已知网格线是由边长为1的小正方形组成,△A′B′C′是由△ABC平移得到的,建立适当的平面直角坐标系后,C点坐标为(1,2)(1)请在图中画出这个平面直角坐标系;(2)根据(1)中建立的平面直角坐标系,点A′,B′,C′的坐标分别是A′B′C′;(3)若△ABC内点P的坐标为(a,b),写出平移后点P的对应点P′的坐标.33.如图,在平面直角坐标系中,已知点A(﹣3,4),B(﹣4,2),C(﹣2,0),且点P(a,b)是三角形ABC边上的任意一点,三角形ABC经过平移后得到三角形A1B1C1,点P(a,b)的对应点P1(a+6,b﹣3).(1)直接写出A1的坐标;(2)在图中画出三角形A1B1C1;(3)求出三角形ABC的面积.34.如图,△ABC的三个顶点都在每格为1个单位长度的格点上,请将△ABC先向下平移三个单位长度后,再向右平移四个单位长度后得到△A1B1C1.(1)画出平移后的△A1B1C1;(2)在(1)的条件下,连接BB1、CB1,直接写出△BCB1的面积为.35.如图,表示直线a平移得到直线b的两种画法,下列关于三角板平移的方向和移动的距离说法正确的是()A.方向相同,距离相同B.方向不同,距离不同C.方向相同,距离不同D.方向不同,距离相同36.在网格上,平移△ABC,并将△ABC的一个顶点A平移到点D处,(1)请你作出平移后的图形△DEF;(2)请求出△DEF的面积;(3)BE与AD什么关系?五.利用平移设计图案(共3小题)37.2019年10月18日,第七届军人运动会在武汉举行,如图是第七届运动会的吉祥物兵兵,下列图案中,是通过图平移得到的图案是()A.B.C.D.38.下列四个图形中,不能通过基本图形平移得到的是()A.B.C.D.39.下列四个图案中,运用了图形的平移进行图案设计的是()A.B.C.D.3.2图形的旋转同步知识点训练一.旋转的性质(共27小题)1.在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=5,BD=4,则以下四个结论中:①△BDE是等边三角形;②AE∥BC;③△ADE的周长是9;④∠ADE=∠BDC.其中正确的序号是()A.②③④B.①③④C.①②④D.①②③第1题图第2题图第3题图2.如图,小林坐在秋千上,秋千旋转了80°,小林的位置也从A点运动到了A'点,则∠OAA'的度数为()A.40°B.50°C.70°D.80°3.如图,将△ABC绕点A顺时针旋转60°得到△AED,若∠EAD=30°,则∠CAE的度数为.4.如图,将△ABC的绕点A顺时针旋转得到△AED,点D正好落在BC边上.已知∠C=80°,则∠EAB =°.第4题图第5题图第6题图5.如图,△ABC绕点A旋转一定角度后得到△ADE,若BC=4,AC=3,则下列说法正确的是()A.DE=3B.AE=4C.∠ACB是旋转角D.∠CAE是旋转角6.如图,在Rt△ABC中,∠ACB=90°,∠ABC=31°,将△ABC绕点C顺时针旋转α角(0°<α<180°)至△A′B′C,使得点A′恰好落在AB边上,则α等于()A.149°B.69°C.62°D.31°7.如图,在△ABC中,∠BAC=60°,将△ABC绕着点A顺时针旋转40°后得到△ADE,则∠BAE=()A.80°B.90°C.100°D.110°第7题图第8题图第9题图8.如图,在△ABC中,∠CAB=67°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A.46°B.50°C.65°D.67°9.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使点A′恰好落在AB上,则旋转角度为()A.30°B.45°C.60°D.90°10.如图,C是线段BD上一点,分别以BC、CD为边在BD同侧作等边△ABC和等边△CDE,AD交CE 于F,BE交AC于G,则图中可通过旋转而相互得到的三角形对数有()A.1对B.2对C.3对D.4对第10题图第11题图11.如图,△ABC绕A逆时针旋转使得C点落在BC边上的F处,则对于结论:①AC=AF;②∠F AB=∠EAB;③EF=BC;④∠EAB=∠F AC,其中正确结论的个数是()A.4个B.3个C.2个D.1个12.如图,在正方形ABCD中,△ABE经旋转,可与△CBF重合,AE的延长线交FC于点M,以下结论正确的是()A.BE=CE B.FM=MC C.AM⊥FC D.BF⊥CF13.如图,平面直角坐标系的原点O是正方形ABCD的中心,顶点A,B的坐标分别为(1,1)、(﹣1,1),把正方形ABCD绕原点O逆时针旋转45°得到正方形A′B′C′D′,则正方形ABCD与正方形A′B′C′D′重叠部分形成的正八边形的边长为()A.2﹣B.2﹣2C.4﹣2D.+1第13题图第14题图14.如图,在等边三角形ABC中,AB=6,D是BC上一点,且BC=3BD,△ABD绕点A旋转后得到△ACE,则CE的长度为()A.6B.5C.3D.215.某校九年级学习小组在探究学习过程中,用两块完全相同的且含30°角(∠E=∠C=30°)的直角三角板ABC与AFE按如图1所示位置放置,现将Rt△AEF绕A点按逆时针方向旋转角α(0°<α<90°),如图2,AE与BC交于点M,AC与EF交于点N,BC与EF交于点P.(1)求证:AM=AN;(2)当旋转角α=30°时,四边形ABPF是什么样的特殊四边形?并说明理由.16.如图,△ABC中,∠BAC=120°,以BC为边向△ABC外作等边△BCD,把△ABD绕点D,顺时针方向旋转60°后到△ECD的位置.若AB=4,AC=3.(1)试判断△ADE的形状,并说明理由;(2)求∠BAD的度数;(3)求AD的长.17.如图,在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转42°得到Rt△A'B'C',点A在边B'C上,则∠B'的大小为()A.42°B.48°C.52°D.58°第17题图第18题图18.如图,将△ABC绕点C按顺时针方向旋转至△A'B'C,使点A'落在BC的延长线上.已知∠A=27°,∠B=40°,则∠ACB'=度.19.在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,得到△A'B'C.如图,连接A'A、B'B,设△ACA'和△BCB'的面积分别为S△ACA′和S△BCB′.则S△ACA′:S△BCB′=.20.如图,四边形ABDC中,△EDC是由△ABC绕顶点C旋转40°所得,顶点A恰好转到AB上一点E的位置,则∠1+∠2=度.第20题图第21题图21.如图,O是正△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④S四边形AOBO′=6+3;⑤S△AOC+S△AOB═6+.其中正确的结论是.22.如图,点O为等边三角形ABC内一点,连接OA,OB,OC,将线段BO绕点B顺时针旋转60°到BM,连接CM,OM.(1)求证:AO=CM;(2)若OA=8,OC=6,OB=10,判断△OMC的形状并证明.23.如图,O是正△ABC内一点,OA=6,OB=8,OC=10,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为6;③∠AOB=150°;④S△BOC=12+16;⑤S四边形AOBO′=24+12.其中正确的结论是(填序号).24.如图,已知△OAB是正三角形,OC⊥OA,OC=OA.将△OAB绕点O按逆时针方向旋转,使得OB 与OC重合,得到△OCD,则旋转的角度是()A.150°B.120°C.90°D.60°25.如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°.若固定△ABC,将△DEC绕点C旋转.(1)当△DEC统点C旋转到点D恰好落在AB边上时,如图2.①当∠B=∠E=30°时,此时旋转角的大小为;②当∠B=∠E=α时,此时旋转角的大小为(用含a的式子表示).(2)当△DEC绕点C旋转到如图3所示的位置时,小杨同学猜想:△BDC的面积与△AEC的面积相等,试判断小杨同学的猜想是否正确,若正确,请你证明小杨同学的猜想.若不正确,请说明理由.26.已知:如图,在△ABC中,∠BAC=120°,以BC为边向形外作等边三角形BCD,把△ABD绕着点D按顺时针方向旋转60°后得到△ECD,若AB=5,AC=3,求∠BAD的度数与AD的长.27.如图,将Rt△ABC绕直角顶点A逆时针旋转90°得到△ADE,BC的延长线交DE于F,连接BD,若BC=2EF,试证明△BED是等腰三角形.二.旋转对称图形(共2小题)28.将一个等边三角形至少绕其中心旋转°,就能与本身重合.29.正三角形中心旋转度的整倍数之后能和自己重合.三.作图-旋转变换(共10小题)30.如图,在平面直角坐标系中,Rt△ABC的顶点分别是A(﹣3,1)B(0,4)C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1;(2)分别连接AB1,BA1后,求四边形AB1A1B的面积.31.如图,已知:△ABC在正方形网格中.(1)请画出△ABC绕着O逆时针旋转90°后得到的△A1B1C1;(2)请画出△ABC关于点O对称的△A2B2C2;(3)在直线MN上求作一点P,使△P AB的周长最小,请画出△P AB.32.如图,在平面直角坐标系中,Rt△ABC顶点分别是A(﹣3,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1;(2)分别连接AB1,BA1后,求四边形AB1A1B的面积.33.如图,在平面直角坐标系中,已知点B(4,2),BA⊥x轴于A.(1)画出将△OAB绕原点顺时针旋转90°后所得的△OA1B1,并写出点A1、B1的坐标;(2)画出△OAB关于原点O的中心对称图形△OA2B2,并写出点A2、B2的坐标.34.如图,在平面直角坐标系xOy中,△ABC的三个顶点坐标分别为A(1,1),B(4,0),C(4,4)(1)按下列要求作图:①将△ABC向左平移4个单位,得到△A1B1C1;②将△A1B1C1绕点B1逆时针旋转90°,得到△A2B2C2;(2)在x轴上求作点P,使|PC﹣P A|最大,请直接写出点P的坐标.35.如图,在平面直角坐标系中,△ABO的三个顶点坐标分别为A(1,3),B(4,0),O(0,0).(1)画出将△ABO向左平移4个单位长度,再向上平移2个单位长度后得到的△A1B1O1;(2)若将(1)中△A1B1O1看成是△ABO经过一次平移得到的,则这一平移的距离是;(3)画出△ABO关于点O成中心对称的图形△A2B2O.36.在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形)(1)①若△ABC和△A1B1C1关于原点O成中心对称,画出△A1B1C1;②将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2;(2)在x轴上找一点P,使PB1+PC1最小,此时PB1+PC1的值为.37.如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为:A(1,﹣4),B(5,﹣4),C(4,﹣1).(1)将△ABC经过平移得到△A1B1C1,若点C的应点C1的坐标为(2,5),则点A,B的对应点A1,B1的坐标分别为;(2)在如图的坐标系中画出△A1B1C1,并画出与△A1B1C1关于原点O成中心对称的△A2B2C2.38.如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC关于原点对称的△A1B1C1,并写出A1,B1,C1的坐标;(2)请画出△ABC绕点B逆时针旋转90°后的△A2B2C2.39.如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出△ABC向左平移5个单位长度后得到的△A1B1C1;(2)请画出△ABC关于原点对称的△A2B2C2;并写出点A2、B2、C2坐标;(3)请画出△ABC绕O顺时针旋转90°后的△A3B3C3;并写出点A3、B3、C3坐标.3.3--3.4同步知识点训练一.中心对称图形(共10小题)1.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.下列图形中,既是中心对称又是轴对称的图形是()A.B.C.D.4.山西剪纸是最古老的汉族民间艺术之一.剪纸作为一种镂空艺术,在视觉上给人以透空的感觉和艺术享受.下列四幅剪纸图案中,是中心对称图形的是()A.B.C.D.5.下列图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.6.下列标志既是轴对称图形又是中心对称图形的是()A.B.C.D.7.下列交通标志中既是轴对称图形又是中心对称图形的是()A.B.C.D.8.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.9.下列图案中,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个10.在下列四个汽车标志图案中,是中心对称图形的是()A.B.C.D.二.关于原点对称的点的坐标(共7小题)11.如果将点(﹣b,﹣a)称为点(a,b)的“反称点”,那么点(a,b)也是点(﹣b,﹣a)的“反称点”,此时,称点(a,b)和点(﹣b,﹣a)是互为“反称点”.容易发现,互为“反称点”的两点有时是重合的,例如(0,0)的“反称点”还是(0,0).请再写出一个这样的点:.12.平面直角坐标系中,点A(1,a)和点B(﹣1,b)关于原点对称,则a+b的值分别是()A.1B.﹣1C.0D.无法确定13.在平面直角坐标系中,点A的坐标为(a,﹣3),点B的坐标是(4,b),若点A与点B关于原点O对称,则ab=.14.若点P(a+4,﹣5﹣b)与点Q(2b,2a+8)关于原点成中心对称,a+b2=.15.在平面直角坐标系中,点P(﹣3,m2+4m+5)关于原点对称点在()A.第一象限B.第二象限C.第三象限D.第四象限16.若点B(m+1,3m﹣5)到x轴的距离与它到y轴的距离相等,则它关于原点的对称点坐标是.17.在平面直角坐标系中,点A(0,1)关于原点对称的点是.三.利用旋转设计图案(共2小题)18.如图所示的美丽图案,可以看作是由一个三角形绕旋转中心旋转次,每次旋转度形成的.19.如图,是3×3的正方形网格,将其中两个方格涂黑,使得涂黑后的整个图案是轴对称图形.请在以下备用网格中画出四个不同的图案(如果绕正方形的中心旋转,能重合的图案视为同一种,例如,下列四个图形就属于同一种).参考答案3.1图形的平移同步知识点训练一.生活中的平移现象(共9小题)1.B;2.C;3.8.4;4.D;5.B;6.D;7.B;8.C;9.B;二.平移的性质(共11小题)10.B;11.D;12.105°;13.B;14.B;15.C;16.7;17.5;18.12;19.4cm;140°;20.36;三.坐标与图形变化-平移(共9小题)21.B;22.C;23.D;24.B;25.B;26.A;27.(m+2,n﹣1);28.(5,4);29.(﹣1,﹣2);四.作图-平移变换(共7小题)30.A;31.;32.(﹣1,﹣1);(2,5);(﹣1,4);33.(3,1);34.;35.B;36.;五.利用平移设计图案(共3小题)37.C;38.C;39.A;3.2图形的旋转同步知识点训练一.旋转的性质(共27小题)1.D;2.B;3.30°;4.20;5.D;6.C;7.C;8.A;9.C;10.C;11.B;12.C;13.B;14.D;15.;16.;17.B;18.46;19.1:3;20.110°;21.①②③⑤;22.;23.①③④;24.A;25.60°;2α;26.;27.;二.旋转对称图形(共2小题)28.120;29.120;三.作图-旋转变换(共10小题)30.;31.;32.;33.;34.;35.2;36.;37.(﹣1,2),(3,2),;38.;39.;3.3--3.4同步知识点训练一.中心对称图形(共10小题)1.C;2.D;3.C;4.B;5.B;6.A;7.D;8.C;9.B;10.B;二.关于原点对称的点的坐标(共7小题)11.(3,﹣3);12.C;13.﹣12;14.﹣1;15.D;16.(﹣4,﹣4)或(﹣2,2);17.(0,﹣1);三.利用旋转设计图案(共2小题)18.7;45;19.;。
2020-2021学年北师大版八年级数学下册《第3章图形的平移与旋转》知识点分类训练(附答案)

2021年北师大版八年级数学下册《第3章图形的平移与旋转》知识点分类训练(附答案)一.生活中的平移现象1.下面生活中的物体的运动情况可以看成平移的是(填写序号即可).①摆动的钟摆;②在笔直的公路上行驶的汽车;③随风摆动的旗帜;④摇动的大绳;⑤汽车玻璃上雨刷的运动.二.平移的性质2.如图,△ABC沿AC平移得到△A'B'C',A'B'交BC于点D,若AC=6,D是BC的中点,则C'C=.三.坐标与图形变化-平移3.如图,点A、B分别在x轴和y轴上,OA=1,OB=2,若将线段AB平移至A'B',则a+b 的值为.四.作图-平移变换4.如图,△ABC的三个顶点坐标分别为A(0,2),B(﹣3,1),C(﹣2,﹣2).(1)将△ABC向右平移3个单位,作出△A′B′C′;(2)写出△A′B′C′的面积;(3)在y轴上是否存在点P,使得△APC的面积与△ABC的面积相等,若存在,求出P 点的坐标;若不存在,说明理由.五.利用平移设计图案5.如图,下列图案中可以看成是由图案自身的一部分经平移后而得到的是()A.B.C.D.六.生活中的旋转现象6.分别以正方形的各边为直径向其内部作半圆得到的图形如图所示,将该图形绕其中心旋转一个合适的角度后会与原图形重合,则这个旋转角的最小度数是度.七.旋转的性质7.如图,Rt△ABC中,∠ACB=90°,∠B=30°,S△ABC=2,将△ABC绕点C逆时针旋转至△A′B′C,使得点A'恰好落在AB上,A'B′与BC交于点D,则S△A′CD为()A.+1B.C.D.2﹣1八.旋转对称图形8.如图,三角形ABC中,∠BAC=150°,AB=6cm,三角形ABC逆时针方向旋转一定角度后,与三角形ADE重合,且点C恰好为AD中点.(1)指出旋转中心和图中所有相等的角;(2)求:AE的长度,请说明理由;(3)若是顺时针旋转,把三角形ABC旋转到与三角形ADE重合,则这个最小旋转角是多少.九.中心对称9.如图,点M为线段EF的中点,△AEC与△BFD成中心对称,试确定对称中心,并指出图中相等的线段和相等的角.十.中心对称图形10.不考虑颜色,对如图的对称性表述,正确的是()A.中心对称图形B.轴对称图形C.既是轴对称图形又是中心对称图形D.既不是轴对称图形又不是中心对称图形十一.关于原点对称的点的坐标11.平面直角坐标系中,点P(﹣2,3)与点Q(a,b)关于原点对称,则a+b=.十二.作图-旋转变换12.如图,在平面直角坐标系中,Rt△ABC的顶点坐标分别为A(﹣1,3),B(﹣3,﹣1),C(﹣3,3),已知△A1B1C1是由△ABC经过顺时针旋转变换得到的.(1)请写出旋转中心的坐标是,旋转角的大小是.(2)以(1)中的旋转中心为中心,画出△A1B1C1按顺时针方向旋转90°得到的△A2B2C2,并写出A2、B2、C2的坐标.十三.利用旋转设计图案13.如图是4×4的网格图.将图中标有①、②、③、④的一个小正方形涂灰,使所有的灰色图形构成中心对称图形,则涂灰的小正方形是()A.①B.②C.③D.④十四.几何变换的类型14.下列关于△ABC与△A'B'C'的几何变换中,配对正确的是()Ⅰ.轴对称;Ⅱ.中心对称;Ⅲ.旋转;Ⅳ.平移.A.①﹣Ⅰ,②﹣Ⅱ,③﹣Ⅲ,④﹣ⅣB.①﹣Ⅱ,②﹣Ⅰ,③﹣Ⅲ,④﹣ⅢC.①﹣Ⅱ,②﹣Ⅰ,③﹣Ⅲ,④﹣ⅣD.①﹣Ⅰ,②﹣Ⅱ,③﹣Ⅲ,④﹣Ⅲ参考答案一.生活中的平移现象1.解:①摆动的钟摆,属于旋转.②在笔直的公路上行驶的汽车,属于平移.③随风摆动的旗帜,不属于平移.④摇动的大绳,不属于平移.⑤汽车玻璃上雨刷的运动,属于旋转.故答案为:②二.平移的性质2.解:由平移的性质,可知,A′D∥AB,∵BD=CD,∴AA′=A′C=3,∴CC′=AA′=3,故答案为:3.三.坐标与图形变化-平移3.解:由作图可知,线段AB向右平移3个单位,再向下平移1个单位得到线段A′B′,∵A(﹣1,0),B(0,2),∴A′(2,﹣1),B′(3,1),∴a=﹣1,b=3,∴a+b=2,故答案为:2.四.作图-平移变换4.解:(1)如图,△A′B′C′即为所求作.(2)△A′B′C′的面积=××=5.(3)存在.设P(0,m),由题意,×|2﹣m|×2=5,解得m=7或﹣3,∴P(0,7)或(0,﹣3).五.利用平移设计图案5.解:A、是一个对称图形,不能由平移得到;B、是应该轴对称图形,不是平移;C、是平移;D、是中心对称图形,不是平移.故选:C.六.生活中的旋转现象6.解:图形可看作由一个基本图形每次旋转90°,旋转4次所组成,故最小旋转角为90°.故答案为:90.七.旋转的性质7.解:过C作CH⊥AB于H,∵∠ACB=90°,∠B=30°,∴∠A=60°,∴∠ACH=30°,∴AC=AB,∴CH=AC=AB,∵S△ABC=2,∴AB•CH=AB•AB=2,∴AB=4,∴AC=2,∵△ABC绕点C逆时针旋转至△A′B′C,使得点A′恰好落在AB上,∴CA=CA′=2,∠CA′B′=∠A=60°,∴△CAA′为等边三角形,∴∠ACA′=60°,∴∠BCA′=30°,∴∠A′DC=90°,在Rt△A′DC中,∵∠A′CD=30°,∴A′D=CA′=1,CD=A′D=,∴△A′CD的面积=×1×=.故选:C.八.旋转对称图形8.解:(1)旋转中心是点A,∠ACB=∠E,∠BAC=∠DAE,∠B=∠D;(2)由旋转的性质可知,AB=AD=6cm,AC=AE,∵AC=CD,∴AE=CD=AD=3(cm).(3)顺时针的最小旋转角=360°﹣∠BAC=210°.九.中心对称9.解:观察图形可知,A、E、M、F、B共线,∴旋转中心为M点,旋转角的度数为180°;根据旋转的性质可知,相等线段为:AC=BD,CE=DF,AE=BF,EM=FM,AM=BM,AF=BE,相等的角为:∠A=∠B,∠C=∠D,∠CEA=∠DFB.十.中心对称图形10.解:根据中心对称图形的概念和轴对称图形的概念可知:此图形是中心对称图形,不是轴对称图形,所以A选项正确.故选:A.十一.关于原点对称的点的坐标11.解:由点P(﹣2,3)与点Q(a,b)关于原点对称,得a=2,b=﹣3,则a+b=2+(﹣3)=﹣1,故答案为:﹣1.十二.作图-旋转变换12.解:(1)观察图象可知,旋转中心的坐标是O(0,0),旋转角为90°.故答案为:O(0,0),90°.(2)如图,△A2B2C2即为所求作.A2(1,﹣3),B2(3,1),C2(3,﹣3).十三.利用旋转设计图案13.解:如图,观察图象可知,把③涂灰,所有的灰色图形构成中心对称图形.故选:C.十四.几何变换的类型14.解:观察图象可知:①是中心对称,②是轴对称,③是旋转变换,④是平移变换.故选:B.。
新北师大版数学八年级下第三章图形在平移与旋转附答案

新北师大版数学八年级下第三章图形在平移与旋转附答案分题号一二三总分得分一、选择题(只要一个选项正确)1.某同窗读了«庄子»〝子非鱼安知鱼之乐〞后,兴致勃勃地应用电脑画出了几幅鱼的图案,请问:由图中所示的图案经过平移后失掉的图案是( ) 2.下面四个共享单车的手机APP图标中,属于中心对称图形的是( )3.如图,在平面直角坐标系中,将点M(2,1)向下平移2个单位长度失掉点N,那么点N的坐标为( )A.(2,-1) B.(2,3) C.(0,1) D.(4,1)第3题图第4题图4.如图,△ABC沿边BC所在直线向右平移失掉△DEF,那么以下结论中错误的选项是( )A.△ABC≌△DEF B.AC=DF C.AB=DE D.EC=FC5.如图,小聪坐在秋千上旋转了80°,其位置从P点运动到了P′点,那么∠OPP′的度数为( )A.40°B.50°C.70°D.80°6.点A(a,1)与点A′(5,b)关于坐标原点对称,那么实数a,b的值是( ) A.a=5,b=1 B.a=-5,b=1 C.a=5,b=-1 D.a=-5,b=-17.线段EF是由线段PQ平移失掉的,点P(-1,4)的对应点为E(4,7),那么点Q(-3,1)的对应点F的坐标为( )A.(-8,-2) B.(-2,-2) C.(2,4) D.(-6,-1)8.如下图的四个图案中,既可用旋转来剖析整个图案的构成进程,又可用轴对称来剖析整个图案的构成进程的有( )A.4个 B.3个 C.2个 D.1个9.如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AB=8,将△ABC沿CB向右平移失掉△DEF.假定四边形ABED的面积为8,那么平移的距离为( ) A.2 B.4 C.8 D.16第9题图第10题图第11题图10.如图,将△ABC绕点A逆时针旋转一定角度,失掉△ADE.假定∠CAE=65°,∠E=70°,且AD⊥BC,那么∠BAC的度数为( )A.60° B.85° C.75° D.90°11.如图,在6×4方格纸中,格点三角形甲经过旋转后失掉格点三角形乙,那么其旋转中心是( )A.点M B.点N C.点P D.点Q12.如图,将边长为2个单位的等边△ABC沿边BC所在直线向右平移1个单位失掉△DEF,那么四边形ABFD的周长为( )A.6 B.8 C.10 D.12第12题图第13题图第15题图13.如图,在正方形ABCD中,点E为DC边上的点,衔接BE,将△BCE绕C点按顺时针方向旋转90°失掉△DCF,衔接EF.假定∠BEC=60°,那么∠EFD的度数为( ) A.10° B.15° C.20° D.25°14.如图,Rt△ABC向右翻腾,以下说法正确的有( )(1)①→②是旋转;(2)①→③是平移;(3)①→④是平移;(4)②→③是旋转.A.1种 B.2种 C.3种 D.4种15.如图,在等边△ABC中,点D是边AC上一点,衔接BD,将△BCD绕点B逆时针旋转60°失掉△BAE,衔接ED.假定BC=5,BD=4,那么以下结论错误的选项是( ) A.AE∥BC B.∠ADE=∠BDCC.△BDE是等边三角形 D.△ADE的周长是9二、填空题(本大题共5小题,每题5分,共25分)16.2021年是香港回归祖国20周年,如下图的香港特别行政区区徽由五个相反的花瓣组成,它是以一个花瓣为〝基本图案〞经过延续四次旋转构成的,这四次旋转中旋转角最小是________度.第16题图第17题图第18题图17.将△ABC绕着点C按顺时针方向旋转50°后失掉△A′B′C.假定∠A=40°,∠B′=110°,那么∠BCA′的度数是________.18.如图是一个以A为对称中心的中心对称图形,假定∠C=90°,∠B=45°,AC =1,那么BB′=________.19.如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm,将线段DC沿着CB的方向平移7cm失掉线段EF,点E,F区分落在AB,BC上,那么△EBF的周长为________cm.19题图第20题图20.如图,长方形ABCD的对角线AC=10,边BC=8,那么图中五个小长方形的周长之和为________.三、解答题(本大题共7小题,各题分值见题号后,共80分)21.(8分)如图,经过△ABC平移后,顶点A移到了点D,请作出平移后的△DEF.22.(8分)如图,正方形网格中每个小正方形的顶点叫作格点.△ABC的三个顶点A,B,C都在格点上,将△ABC绕点A按顺时针方向旋转90°失掉△AB′C′.(1)在正方形网格中,画出△AB′C′;(2)画出△AB′C′向左平移4格后的△A′B″C″.23.(10分)如图,△ABO与△CDO关于O点中心对称,点E,F在线段AC上,且AF =CE.求证:FD=BE.24.(12分)如图,在Rt△ABC中,∠ACB=90°,点D,E区分在AB,AC上,CE=BC,衔接CD,将线段CD绕点C按顺时针方向旋转90°后得CF,衔接EF.(1)补全图形;(2)假定EF∥CD,求证:∠BDC=90°.25.(12分)如图,Rt△ABC中,∠ACB=90°,AC=3,AB=5,将△ABC沿AB边所在直线向右平移3个单位,记平移后的对应三角形为△DEF.(1)求DB 的长;(2)求此时梯形CAEF 的面积.26.(14分)如图,4×4的网格图都是由16个相反小正方形组成,每个网格图中有4个小正方形已涂上阴影,请在空白小正方形中按以下要求涂上阴影.(1)在图①中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个中心对称图形;(2)在图②中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个轴对称图形,但不是中心对称图形.27.(16分)两块等腰直角三角形纸片AOB 和COD 按图①所示放置,直角顶点重合在点O 处,AB =25.坚持纸片AOB 不动,将纸片COD 绕点O 逆时针旋转α(0°<α<90°)角度,如图②所示.(1)应用图②证明AC =BD ,且AC ⊥BD ;(2)当BD 与CD 在同不时线上(如图③)时,假定AC =7,求CD 的长.参考答案与解析1.D 2.C 3.A 4.D 5.B 6.D 7.C 8.A 9.A10.B 11.B 12.B 13.B 14.C15.B 解析:∵△ABC 是等边三角形,∴∠ABC =∠C =60°.∵将△BCD 绕点B 逆时针旋转60°失掉△BAE ,∴∠EAB =∠C =∠ABC =60°,∴AE ∥BC ,应选项A 正确;∵△ABC 是等边三角形,∴AC =AB =BC =5.∵△BAE 是由△BCD 逆时针旋转60°失掉,∴AE =CD ,BD =BE ,∠EBD =60°,∴△BDE 是等边三角形,∴DE =BD =4,∴△AED 的周长为AE +AD +DE =AD +CD +BD =AC +BD =9,应选项C 与D 正确;∵没有条件证明∠ADE =∠BDC ,∴选项B 错误,应选B.16.72 17.80° 18.2 2 19.1320.28 解析:∵长方形ABCD 的对角线AC =10,BC =8,∴AB =AC 2-BC 2=102-82=6,由平移的性质可知五个小长方形的周长之和为2×(AB +BC )=2×14=28.21.解:如图,△DEF 即为所求.(8分)22.解:(1)如图,△AB ′C ′即为所求.(4分)(2)如图,△A ′B ″C ″即为所求.(8分)23.证明:∵△ABO 与△CDO 关于O 点中心对称,∴OB =OD ,OA =OC .(3分)∵AF =CE ,∴OF =OE .(5分)在△DOF 和△BOE 中,OD =OB ,∠DOF =∠BOE ,OF =OE ,∴△DOF ≌△BOE (SAS),(8分)∴FD =BE .(10分)24.(1)解:补全图形,如下图.(5分)(2)证明:由旋转的性质得∠DCF =90°,DC =FC ,∴∠DCE +∠ECF =90°.(7分)∵∠ACB =90°,∴∠DCE +∠BCD =90°,∴∠ECF =∠BCD .∵EF ∥DC ,∴∠EFC +∠DCF=180°,∴∠EFC =90°.(9分)在△BDC 和△EFC 中,⎩⎨⎧DC =FC ,∠BCD =∠ECF ,BC =EC ,∴△BDC ≌△EFC (SAS),∴∠BDC =∠EFC =90°.(12分)25.解:(1)∵将△ABC 沿AB 边所在直线向右平移3个单位失掉△DEF ,∴CF =AD =BE =3.∵AB =5,∴DB =AB -AD =2.(4分)(2)作CG ⊥AB 于G .在△ACB 中,∵∠ACB =90°,AC =3,AB =5,∴由勾股定理得BC =AB 2-AC 2=4.(7分)由三角形的面积公式得12CG ·AB =12AC ·BC ,∴3×4=5·CG ,解得CG =125.(9分)∴S 梯形CAEF =12(CF +AE )·CG =12×(3+5+3)×125=665.(12分) 26.解:(1)答案如下图(答案不独一).(7分)(2)答案如下图(答案不独一).(14分)27.(1)证明:延伸BD 交OA 于点G ,交AC 于点E .(1分)∵△AOB 和△COD 是等腰直角三角形,∴OA =OB ,OC =OD ,∠AOB =∠COD =90°,∴∠AOC +∠AOD =∠DOB +∠DOA ,∴∠AOC =∠DOB .(4分)在△AOC 和△BOD 中,⎩⎨⎧OA =OB ,∠AOC =∠BOD ,OC =OD ,∴△AOC ≌△BOD ,∴AC =BD ,∠CAO =∠DBO .(7分)又∵∠DBO +∠OGB =90°,∠OGB =∠AGE ,∴∠CAO +∠AGE =90°,∴∠AEG =90°,∴AC ⊥BD .(9分)(2)解:由(1)可知AC =BD ,AC ⊥BD .∵BD ,CD 在同不时线上,∴△ABC 是直角三角形.(12分)由勾股定理得BC =AB 2-AC 2=252-72=24.(14分)∴CD =BC -BD =BC -AC =17.。
北师大版初二数学上第三章总结与练习

北师大版初二数学上第三章总结与练习第三章图形的平移与旋转§3.1生活中的平移知识与技能目标:1.平移的定义2.平移的基本性质定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移注意:“将一个图形沿某个方向移动一定的距离”,意味着“图形上的每个点都沿同一个方向移动了相同的距离平移有什么特征呢?——平移不改变图形的形状和大小.经过平移,对应线段,对应角分别相等;对应点所连的线段平行且相等.这个性质也从局部刻画了平移过程中的不变因素:图形的形状和大小.Ⅳ.活动与探究 2.依萨克·牛顿是举世闻名的物理学家,数学家,他曾以诗歌的形式提出一个数学问题:要栽九棵树,请你来帮忙,每行栽三棵,恰好成十行.请同学们帮他画出示意图.过程:让学生充分发挥本领,积极行动起来,解决这个“九树栽十行”问题.结果:如图所示§3.2.1简单的平移作图(一)教学重点能按要求作出简单平面图形平移后的图形[例1]经过平移,△ABC的顶点A移到了点D,(如图),作出平移后的三角形.注意:作图时可用尺规进行作图,也可用三角板与直尺进行作图.过点B作BE∥AD且BE=AD,然后分别以D、E为圆心,以线段AC、BC的长为半径画弧,两弧交于F点,连结EF、DF,则△DEF就是所要求作的三角形.确定一个图形平移后的位置的条件:(1)图形原来所在的位置.(2)图形平移的方向.(3)图形平移的距离.Ⅵ.活动与探究1.画六边形.不用计算,请在一个已知的正六边形内画一个面积等于原正六边形面积九分之一的小正六边形.答案如图2.添棋子图中共有16枚棋子,这16枚棋子组成6行,每行4枚棋子.现在请你在图中再添上4枚棋子,使这些棋子共组成18行,每行仍有4枚棋子,你会添吗?答案如右图本节课我们探索了图案中图形之间的平移关系,了解了每个图案由于“基本图案”选取的不一样,则平移关系也不一样,尤其是一些复合图案,它的许多部分可以通过平移而相互得到.§3.3生活中的旋转教学重点:旋转的基本性质.旋转定义:在平面内,将一个图形绕着一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角称为旋转角.注意:“将一个图形绕一个定点沿某个方向转动一个角度”意味着图形上的每个点同时都按相同的方式转动相同的角度.在物体绕着一个定点转动时,它的形状和大小不变.因此,旋转具有不改变图形的大小和形状的特征.旋转的基本性质经过旋转,图形上的每一点都绕旋转中心沿相同方向转动了相同的角度.任意一对对应点与旋转中心的连线所成的角都是旋转角,旋转角彼此相等.对应点到旋转中心的距离相等.[例1]钟表的分针匀速旋转一周需要60分.(1)指出它的旋转中心;(2)经过20分,分针旋转了多少度?解:(1)它的旋转中心是钟表的轴心.(2)分针匀速旋转一周需要60分,因此旋转20分,分针旋转的角度为×20=120°.§3.4简单的旋转作图教学重点简单平面图形旋转后的图形的作法.[例1]如图,△ABC绕O点旋转后,顶点A的对应点为点D,试确定顶点B、C对应点的位置,以及旋转后的三角形.解:(1)连接OA、OD、OB、OC.(2)如下图,分别以OB、OC为一边作∠BOE、∠COF,使得∠BOE=∠COF=∠AOD.(3)分别在射线OE、OF上截取OE=OB、OF=OC.(4)连接EF、ED、FD.△DEF,就是△ABC绕O点旋转后的图形.要确定一个三角形旋转后的位置的条件为:(1)三角形原来的位置.(2)旋转中心.(3)旋转角.这三个条件缺一不可.只有这三个条件都具备,我们才能准确地找到一个三角形绕点旋转后的位置,进而作出它旋转后的图形.Ⅵ.活动与探究在五边形ABCDE中,AB=AE、BC+DE=CD,∠ABC+∠AED=180°.求证:AD平分∠CDE.结果:如图,连结AC,将△ABC 绕点A旋转∠BAE的度数到△AEF的位置,因为AB=AE,所以AB 与AE重合.因为∠ABC+∠AED=180°,且∠AEF=∠ABC,所以∠AEF+∠AED=180°.所以D、E、F三点在一直线上,AC=AF,BC=EF.在△ADC与△ADF中,DF=DE+EF=DE+BC=CD.,AF=AC,AD=AD,所以,△ADC≌△ADF(SSS)因此,∠ADC=∠ADF,即:AD平分∠CDE.§3.5它们是怎样变过来的教学重点探索图形之间的变换关系.回顾1、在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移,平移不改变图形的形状和大小.平移的基本性质:经过平移,对应线段、对应角分别相等,对应点所连的线段平行且相等.2、在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫旋转.旋转不改变图形的大小和形状.旋转的基本性质:经过旋转,图形上的每一个点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等.[例1]怎样将下图中的甲图案变成乙图案?解:可以先将甲图案绕图上的A点旋转,使得案被“扶直”,然后,再以AB的垂直平分线为对称轴,作它的轴对称图案,即可得到乙图案.Ⅵ.活动与探究题目略结果:A与M、B与P、C与Q、D与N 分别对应.§3.6简单的图案设计能够灵活运用平移旋转与轴对称的组合进行一定的图案设计.Ⅴ.活动与探究下图是由12个全等三角形组成的,利用平移、轴对称或旋转分析这个图案的形成过程.结果:这个图案可以看做是按照如下步 骤形成的.(1)以一个三角形的一条边为对称轴作与它轴对称的图形.(2)将得到的这组图形以一条边的中点为旋转中心旋转180°.(3)分别以这两组图形为平移的“基本图案”,各平移两次,即可得到最终的图形.§3.7回顾与思考知识与技能目标:1.平移的基本涵义及其性质.2.旋转的基本涵义及其性质.3.能按要求作出简单平面图形平移后或旋转后的图形.4.图形之间的变换关系.5.运用轴对称、平移和旋转的组合进行图案设计.梳理一下本章的结构框架下面我们通过练习来进一步熟悉掌握本章内容.Ⅲ.课堂练习(一)课本P78复习题A组1、3、6(3)(4).3.图中的菊花图案,绕中心旋转多少度后能和原来的图案互相重合?答案:图中的菊花图案绕中心旋转45°或其整数倍后能与原来的图案相互重合.6.任画一个Rt△ABC,其中∠B=90°,分别作出△ABC按如下条件旋转后或平移后的图形.(3)取三角形外一点P为旋转中心,按逆时针方向旋转180°.(4)将△ABC 平移,使得B点的对应点为A点.解:(3)分别连接AP、BP、CP并延长到D、E、F,使PD=AP,PE=PB,PF=PC连接DE、EF、FD,则△DEF就是以点P为旋转中心,按逆时针方向旋转180°后的三角形.(3)(4)(4)按照BC的方向作射线AD∥BC,在射线AD上截取线段AD,使AD=BC,延长BA到E,使AE=BA,连接ED,则△EAD就是△ABC平移后的三角形.(二)课本P80复习题B组1、3.1.利用一个圆、一个正三角形,通过2次旋转或平移设计一个图案,说明你的设计意图.答:(略)3.如图,△ABC、△ADE均是顶角为42°的等腰三角形,BC、DE分别是底边,图中的哪两个三角形可以通过怎样的旋转而相互得到.答案:△ABD与△ACE可以通过以点A为旋转中心的旋转变换而相互得到,旋转角度为42°.Ⅵ.活动与探究如图,过正方形的中心O点和边上一点P随意一条曲线,将所画的曲线绕O点按同一方向连续旋转三次,每次的旋转角度都是90°,这样就将正方形分成了四部分,这四部分之间有什么关系?过程:先让学生画出图(1),然后按照题意,旋转正方形,得到图(2),这时既可以通过观察图(2)得到结果;也可以按曲线把正方形剪成四部分,把这四部分重叠一下,即可得出结果.结果:这四部分是大小、形状完全相同的四块图案.5。
新北师版八年级下数学第三章图形的平移与旋转复习课件

(图3)
(图6)
(3)将图3中的△ABF沿直线AF翻折到图6的位置, AB1交DE于点H,请证明:AH﹦DH
(3)证明:AHE与DHB1中, FAB1 EDF 300, FD FA,EF FB FB1, FD FB1 FA FE,即AE DB1 又 AHE DHB1, AHE DHB ( 1 AAS) AH DH
7.如图1,小明将一张矩形纸片沿对角线剪开,得到两张 三角形纸片(如图2),量得他们的斜边长为10cm,较小 锐角为30°,再将这两张三角纸片摆成如图3的形状,但 点B、C、F、D在同一条直线上,且点C与点F重合(在图 3至图6中统一用F表示)
(图1)
(图2)
(图3)
(图4)
小明在对这两张三角形纸片进行如下操作时遇到了三 个问题,请你帮助解决. (1)将图3中的△ABF沿BD向右平移到图4的位置,使点 B与点F 重合,请你求出平移的距离; 解:(1)图形平移的距离就是线段BC的长, 又∵在Rt△ABC中,斜边长为10cm,∠BAC=300, ∴BC=5cm,∴平移的距离为5cm。
(2)将图3中的△ABF绕点F顺时针方向旋转30°到 图5的位置,A1F交DE于点G,请你求出线段FG的长度;
(图3)
(图5)
解:(2) A1 FA 300, GFD 600,D 300, FGD 900。 5 3 在RtEFD中,ED 10cm, FD 5 3,FG cm. 2
b a
图形的平移和旋转
议一议
1米
b a s1=b(a-1)
图形的平移和旋转
议一议
1米
b
a s2=b(a-1)
图形的平移和旋转
议一议
北师大版八年级下册第三章:图形的平移和旋转专题一【图形的平移】知识点+经典、例题+变式训练(无答案)

第三章图形的平移与旋转专题一:图形的平移知识点一:平移的概念例1:下面2,3,4,5幅图中那幅图是由1平移得到的?例2:在以下现象中,属于平移的是()①在挡秋千的小朋友;②打气筒打气时,活塞的运动;③钟摆的摆动;④传送带上,瓶装饮料的移动A.①②B.①③C.②③D.②④例3:如图,有a、b、c三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线()A a户最长B b户最长C c户最长D三户一样长挑战自我,勇攀高分1.下列那幅图可以通过(1)平移而得?2.下列运动属于平移的是()A.在冷水加热过程中,小气泡上升为大气泡B.急刹车时,汽车在地面上的滑动C.随手抛出的彩球的运动D.随风飘动的风筝在空中的运动3.用力掷出的铅球运动是平移嘛?知识点二:平移的特点例1:如果三角形ABC沿着北偏东300的方向移动了2cm,那么三角形ABC的一条边AB边上的一点P向__________移动了__________cm。
例2:火车沿笔直的轨道行驶、缆车沿笔直的索道滑行、火箭升空等物体都是沿着一条直线运动的,那么在运动的过程中这些物体的形状、大小、位置等因素中,哪些没有发生改变?哪些发生了变化?这种运动就叫做什么?挑战自我,勇攀高分1.已知△ABC在平面直角坐标系的位置如图所示,将△ABC向右平移6个单位,则平移后A 点的坐标是()A、(-2,1)B、(2,1)C、(2,-1)D、(-2,-1)知识点三:平移的性质例1:如图,四边形ABCD平移后得到四边形EFGH,填空(1)CD=______,(2)∠F=______(3)HE=,(4)∠D=_____,(5)DH=_________。
例2:如图,已知等腰Rt△ABC中,∠C=90°,BC=△A C=4,现将ABC沿CB方向平移到△A′B′C′的位置,若平移距离为3,求△ABC与△A′B′C′的重叠部分的面积。
A A'C C'B B'例3:如图,在△DEC中,DE=DC,DC+CE=7CM.沿着射线CE的方向把DE边平移CE/2长,得到线段AB.连接AD和BE.那么ABCD是什么图形?能不能求出它的周长?例4:如图,在△ABC中,D、E是BC边上两点,BD=CE,试说明AB+AC>AD+AE。
北师大版八年级数学下册第三章图形的平移与旋转单元复习试题(附答案).doc

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】第三章复习一、选择题(每小题3分,共30分)1、下列图形经过平移后恰好可以与原图形组合成一个长方形的是( ) A 、三角形 B 、正方形 C 、梯形 D 、都有可能2、在图形平移的过程中,下列说法中错误的是( )A 、图形上任意点移动的方向相同B 、图形上任意点移动的距离相同C 、图形上可能存在不动的点D 、图形上任意两点连线的长度不变 3、有关图形旋转的说法中错误的是( ) A 、图形上每一点到旋转中心的距离相等 B 、图形上每一点移动的角度相同 C 、图形上可能存在不动点D 4、如右图所示,观察图形,下列结论正确的是( ) A 、它是轴对称图形,但不是旋转对称图形; B 、它是轴对称图形,又是旋转对称图形; C 、它是旋转对称图形,但不是轴对称图形; D 、它既不是旋转对称图形,又不是轴对称图形。
5、下列图形中,既是轴对称图形,又是旋转对称图形的是( ) A 、等腰三角形 B 、平行四边形 C 、等边三角形 D 、三角形6、等边三角形的旋转中心是什么?旋转多少度能与原来的图形重合( ) A 、三条中线的交点,60° B 、三条高线的交点,120° C 、三条角平分线的交点,60° D 、三条中线的交点,180°7、如图1,△BOD 的位置经过怎样的运动和△AOC 重合( ) A 、翻折 B 、平移 C 、旋转90° D 、旋转180°8、钟表上12时15分钟时,时针与分针的夹角为( ) A 、90° B 、82.5° C 、67.5° D 、60° 二、填空题(每小题4分,共32分)9、经过平移, 和 平行且相等, 相等。
10、如图2,△ABC 中,∠ACB=90°,AB=13,AC=12,将△ABC 沿射线BC 的方向平移一段距离后得到△DCE ,那么CD= ;BD= 。
北师大版八年级下册数学 第三章 图形的平移与旋转 同步课时练习题(含答案)

北师大版八年级下册数学第三章图形的平移与旋转同步课时练习题3.1图形的平移第1课时平移的认识01基础题知识点1平移的认识1.下列现象中属于平移的是(A)A.升降电梯从一楼升到五楼B.闹钟的钟摆运动C.树叶从树上随风飘落D.汽车方向盘的转动2.下列选项中能由左图平移得到的是(C)3.如图,由△ABC平移得到的三角形有(B)A.15个B.5个C.10个D.8个知识点2平移的性质4.如图,将直线l1沿着AB的方向平移得到直线l2,若∠1=50°,则∠2的度数是(B)A.40°B.50°C.90°D.130°5.下列说法:①图形平移,对应点所连的线段互相平分;②确定一个图形平移后的位置需要知道平移的方向和距离;③平移不改变图形的形状和大小,只改变图形的位置;④一个图形和它经过平移所得的图形的对应线段平行(或在一条直线上)且相等.其中正确的有(C)A.1个B.2个C.3个D.4个6.如图,△ABC沿着点B到点E的方向,平移到△DEF,已知BC=5,EC=3,那么平移的距离为(A) A.2 B.3 C.5 D.77.如图,已知线段DE是由线段AB平移而得,AB=DC=4 cm,EC=5 cm,则△DCE的周长是13cm.8.如图,△ABC经过一次平移到△DFE的位置,请回答下列问题:(1)点C的对应点是点E,∠D=∠A,BC=FE;(2)连接CE,那么平移的方向就是点C到点E的方向,平移的距离就是线段CE的长度;(3)连接AD,BF,BE,与线段CE相等的线段有AD,BF.知识点3 平移作图9.下列平移作图错误的是(C)10.如图,经过平移,四边形ABCD 的顶点A 移到了点A′. (1)指出平移的方向和平移的距离; (2)画出平移后的四边形A′B′C′D′.解:(1)如图,连接AA′,平移的方向是点A 到点A′的方向,平移的距离是线段AA′的长度. (2)如图,四边形A′B′C′D′即为所求.02 中档题11.如图,已知△ABC 平移后得到△DEF ,则下列说法中,不正确的是(C)A .AB =DE B .BC ∥EFC .平移的距离是线段BD 的长 D .平移的距离是线段AD 的长 12.(2017·西安期中)如图,在两个重叠的直角三角形中,将其中的一个直角三角形沿着BC 方向平移BE 距离得到此图形,其中AB =6,BE =5,DH =3,则四边形DHCF 的面积为(C)A .35 B.652 C.452D .3113.如图,在△ABC 中,AB =4,BC =6,∠B =60°,将△ABC 沿着射线BC 的方向平移2个单位长度后,得到△A′B′C′,连接A′C ,则△A′B′C 的周长为12.14.(2016·安徽)如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD 的两条边AB 与BC ,且四边形ABCD 是一个轴对称图形,其对称轴为直线AC. (1)试在图中标出点D ,并画出该四边形的另两条边;(2)将四边形ABCD 向下平移5个单位长度,画出平移后得到的四边形A′B′C′D′.解:(1)点D 以及四边形ABCD 另两条边如图所示. (2)得到的四边形A′B′C′D′如图所示.15.如图,一块边长为8米的正方形土地,在上面修了三条道路,宽都是1米,空白的部分种上各种花草. (1)请利用平移的知识求出种花草的面积;(2)若空白的部分种植花草共花费了4 620元,则每平方米种植花草的费用是多少元?解:(1)(8-2)×(8-1)=6×7=42(平方米). 答:种花草的面积为42平方米. (2)4 620÷42=110(元).答:每平方米种植花草的费用是110元.03 综合题16.如图,在Rt △ABC 中,∠C =90°,BC =4,AC =4,现将△ABC 沿CB 方向平移到△A′B′C′的位置. (1)若平移距离为3,求△ABC 与△A ′B ′C ′重叠部分的面积;(2)若平移距离为x(0≤x ≤4),用含x 的代数式表示△ABC 与△A ′B ′C ′重叠部分的面积.解:(1)由题意,得CC′=3,BB ′=3,∴BC ′=1.又由题意易得,重叠部分是一个等腰直角三角形, ∴重叠部分的面积为12×1×1=12.(2)当平移的距离是x 时,CC ′=BB′=x , 则BC′=4-x.∴重叠部分面积为12(4-x)2.第2课时 沿x 轴或y 轴方向平移的坐标变化01 基础题知识点 沿x 轴或y 轴方向平移的坐标变化 1.(2017·平顶山市宝丰县期中)如图,在平面直角坐标系中,将点A(-2,3)向右平移3个单位长度后对应的点A′的坐标是(C)A.(-2,-3) B.(-2,6) C.(1,3) D.(-2,1)2.在平面直角坐标系中,将点(2,3)向上平移1个单位长度,所得到的点的坐标是(C)A.(1,3) B.(2,2)C.(2,4) D.(3,3)3.在平面直角坐标系中,将线段OA向下平移2个单位长度,平移后,点O,A的对应点分别为点O1,A1.若点O(0,0),A(1,4),则点O1,A1的坐标分别是(B)A.(0,-2),(-1,4) B.(0,-2),(1,2)C.(-2,0),(1,4) D.(-2,0),(-1,4)4.(2017·郴州)在平面直角坐标系中,把点A(2,3)向左平移1个单位长度得到点A′,则点A′的坐标为(1,3).5.如图所示的平面直角坐标系中,四边形ABCD的四个顶点的坐标分别是A(1,2),B(3,-2),C(5,1),D(4,4),画出将四边形ABCD向左平移3个单位长度后得到的四边形A1B1C1D1,并写出平移后四边形各个顶点的坐标.解:如图所示.由图可知,A1(-2,2),B1(0,-2),C1(2,1),D1(1,4).02中档题6.将△ABC各顶点的纵坐标加“-3”,连接这三点所成的三角形是由△ABC(B)A.向上平移3个单位长度得到的B.向下平移3个单位长度得到的C.向左平移3个单位长度得到的D.向右平移3个单位长度得到的7.若将点P(m+2,2m+1)向右平移1个单位长度后,点P的对应点正好落在y轴上,则m=-3.8.如图,把“QQ”笑脸放在平面直角坐标系中,已知左眼A的坐标是(-2,3),嘴唇C的坐标为(-1,1),则将此“QQ”笑脸向右平移3个单位长度后,右眼B的坐标是(3,3).9.如图,在平面直角坐标系中,已知点A(-3,-1),点B(-2,1),平移线段AB,使点A落在A1(0,-1),点B落在点B1,则点B1的坐标为(1,1).10.观察下图,与图1中的鱼相比,图2中的鱼发生了一些变化,若图1中鱼上点P的坐标为(4,3.2),则这个点在图2中的对应点P1的坐标应为(4,2.2).11.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC的顶点都在格点上,建立平面直角坐标系.(1)点A的坐标为(2,7),点C的坐标为(6,5);(2)将△ABC向下平移7个单位长度,请画出平移后的△A1B1C1;(3)如果M为△ABC内的一点,其坐标为(a,b),那么平移后点M的对应点M1的坐标为(a,b-7).解:平移后的△A1B1C1如图所示.第3课时沿x轴,y轴方向两次平移的坐标变化01基础题知识点沿x轴,y轴方向两次平移的坐标变化1.将点(1,2)先向左平移3个单位长度,再向上平移1个单位长度,所得的点的坐标是(A) A.(-2,3) B.(4,3)C.(-2,1) D.(4,1)2.如图,在平面直角坐标系中,△ABC的顶点都在方格纸的格点上,如果将△ABC先向右平移4个单位长度,再向下平移1个单位长度,得到△A1B1C1,那么点A的对应点A1的坐标为(D)A.(4,3) B.(2,4)C.(3,1) D.(2,5)3.在如图所示的平面直角坐标系内,画在透明胶片上的四边形ABCD,点A的坐标是(0,2).现将这张胶片平移,使点A落在点A′(5,-1)处,则此平移可以是(B)A.先向右平移5个单位长度,再向下平移1个单位长度B.先向右平移5个单位长度,再向下平移3个单位长度C.先向右平移4个单位长度,再向下平移1个单位长度D.先向右平移4个单位长度,再向下平移3个单位长度4.将点P(-4,y)先向左平移2个单位长度,再向下平移3个单位长度后得到点Q(x,-1),则x=-6,y=2.5.(2017·西安高新区期中)在平面直角坐标系中,点A,B的坐标分别为(-3,1),(-1,-2),将线段AB沿某一方向平移后,得到点A的对应点A′的坐标为(-1,0),则点B的对应点B′的坐标为(1,-3).6.如图,下列网格中,每个小正方形的边长都是1个单位长度,图中鱼的各个顶点A,B,C,D都在格点上.(1)把鱼先向右平移4个单位长度,再向上平移2个单位长度,请你画出平移后得到的图形;(2)写出A,B,C,D四点平移后的对应点A′,B′,C′,D′的坐标.解:(1)如图所示,四边形A′B′C′D′即为所求.(2)A′(4,2),B′(0,6),C′(2,2),D′(1,1).02中档题7.如图,线段AB经过平移得到线段A1B1,其中A,B的对应点分别为A1,B1,这四个点都在格点上,若线段AB上有一个点P(a,b),则点P在A1B1上的对应点P1的坐标为(A)A.(a-4,b+2) B.(a-4,b-2)C.(a+4,b+2) D.(a+4,b-2)8.如图,△ABC各顶点的坐标分别为A(-2,6),B(-3,2),C(0,3),将△ABC先向右平移4个单位长度,再向上平移3个单位长度,得到△DEF.(1)画出△DEF,并分别写出△DEF各顶点的坐标;(2)如果将△DEF看成是由△ABC经过一次平移得到的,请指出这一平移的平移方向和平移距离.解:(1)△DEF如图所示,其各顶点的坐标分别为D(2,9),E(1,5),F(4,6).(2)连接AD.由图可知,AD=32+42=5.∴如果将△DEF看成是由△ABC经过一次平移得到的,那么这一平移的平移方向是由A到D的方向,平移的距离是5个单位长度.03综合题9.在平面直角坐标系中,把点向右平移2个单位长度,再向上平移1个单位长度记为一次“跳跃”.点A(-6,-2)经过第一次“跳跃”后的位置记为A1,点A1再经过一次“跳跃”后的位置记为A2,…,以此类推.(1)写出点A3的坐标:A3(0,1);(2)写出点A n的坐标:A n(-6+2n,-2+n)(用含n的代数式表示).3.2图形的旋转第1课时旋转的认识01基础题知识点1旋转的有关概念1.下面生活中的实例,不是旋转的是(A)A.传送带传送货物B.螺旋桨的运动C.风车风轮的运动D.自行车车轮的运动2.(2017·西安期中)如图,在△ABC中,AB=AC,∠A=40°,将△ABC绕点B逆时针旋转得到△A′BC′,若点C的对应点C′落在AB边上,则旋转角为(B)A.40°B.70°C.80°D.140°3.如图,△ABC是等边三角形,D是BC边上的中点,△ABD经过旋转后到达△ACE的位置,那么:(1)旋转中心是点A;(2)点B,D的对应点分别是点C,E;(3)线段AB,BD,DA的对应线段分别是线段AC,CE,EA;(4)∠B的对应角是∠ACE;(5)旋转角度为60°.知识点2旋转的性质4.如图,将△AOB绕点O按逆时针方向旋转60°后得到△COD,若∠AOB=15°,则∠AOD的度数是(C) A.15 °B.60°C.45°D.75°5.(2017·平顶山市宝丰县期末)如图所示,在平面直角坐标系中,点A,B的坐标分别为(-2,0)和(2,0).月牙①绕点B顺时针旋转90°得到月牙②,则点A的对应点A′的坐标为(B)A.(2,2) B.(2,4)C.(4,2) D.(1,2)6.如图,△ABC绕点A逆时针旋转30°至△ADE,AB=5 cm,BC=8 cm,∠BAC=130°,则AD=AB=5cm,DE=BC=8cm,∠EAC=∠BAD=30°,∠DAC=100°.02 中档题 7.(2016·大连)如图,将△ABC 绕点A 逆时针旋转得到△ADE ,点C 和点E 是对应点,若∠CAE =90°,AB =1,则BD =2.8.(2017·西安期中)如图,在△ABC 中,∠C =90°,AC =8,BC =6,将△ABC 绕点A 逆时针旋转,使点C 落在线段AB 上的点E 处,点B 落在点D 处,则B ,D 两点间的距离为210.9.(2017·朝阳市建平县期末)如图,△ABC 中,AB =AC ,∠BAC =40°,将△ABC 绕点A 按逆时针方向旋转100°得到△ADE ,连接BD ,CE 交于点F. (1)求证:△ABD ≌△ACE ; (2)求∠ACE 的度数.解:(1)证明:∵△ABC 绕点A 按逆时针方向旋转100°得到△ADE , ∴∠BAD =∠CAE ,AB =AD ,AC =AE. 又∵AB =AC ,∴AB =AC =AD =AE. ∴△ABD ≌△ACE(SAS).(2)∵∠CAE =100°,AC =AE , ∴∠ACE =∠AEC.∴∠ACE =12×(180°-∠CAE)=12×(180°-100°)=40°.03 综合题 10.(2017·陕西蓝田县期末)如图,在Rt △ABC 中,∠B =90°,AB =BC =2,将△ABC 绕点C 顺时针旋转60°,得到△DEC ,连接AE ,则AE 的长为2+6.第2课时 旋转作图01 基础题 知识点 旋转作图1.将△AOB 绕点O 旋转180°得到△DOE ,则下列作图正确的是(C)2.(2017·广州)如图,将正方形ABCD中的阴影三角形绕点A顺时针旋转90°后,得到的图形为(A)3.(2017·枣庄)将数字“6”旋转180°,得到数字“9”,将数字“9”旋转180°,得到数字“6”,现将数字“69”旋转180°,得到的数字是(B)A.96 B.69 C.66 D.994.如图,在正方形网格中,以点A为旋转中心,将△ABC按逆时针方向旋转90°,画出旋转后的△AB1C1.解:如图.5.如图,△ABC绕点O旋转后,顶点A的对应点为A′,试确定旋转后的三角形.解:如图所示.02中档题6.同学们曾玩过万花筒,它是由三块等宽等长的玻璃片围成的.如图看到的是万花筒的一个图案,图中所有小三角形均是全等的等边三角形,其中的平行四边形AEFG可以看成是把平行四边形ABCD以A为中心(D)A.顺时针旋转60°得到B.顺时针旋转120°得到C.逆时针旋转60°得到D.逆时针旋转120°得到7.如图,已知Rt△ABC和三角形外一点P,按要求完成图形.(1)将△ABC绕顶点C顺时针方向旋转90°,得△A′B′C′;(2)将△ABC绕点P沿逆时针方向旋转60°,得△A″B″C″.解:(1)△A′B′C′如图所示. (2)△A″B″C″如图所示.8.(2017·平顶山市宝丰县期末)如图所示的网格中,每个小正方形的边长都是1,△ABC 的三个顶点都在格点上,点A(-4,2),点D(0,5).(1)画出△ABC 绕点D 逆时针方向旋转90°后的△EFG ; (2)写出点E ,F ,G 的坐标.解:(1)如图所示,△EFG 即为所求.(2)如图所示,E(3,1),F(1,2),G(3,4).小专题(五) 教材P89T12的变式与应用教材母题:(教材P89T12)如图,△ABC ,△ADE 均是顶角为42°的等腰三角形,BC ,DE 分别是底边,图中的哪两个三角形可以通过怎样的旋转而相互得到?解:∵△ABC ,△ADE 均是顶角为42°的等腰三角形, ∴∠BAC =∠DAE =42°,AB =AC ,AD =AE.∵∠BAD =∠BAC -∠DAC ,∠CAE =∠DAE -∠DAC , ∴∠BAD =∠CAE.在△ABD 和△ACE 中,⎩⎨⎧AB =AC ,∠BAD =∠CAE ,AD =AE ,∴△ABD ≌△ACE(SAS).∴△ABD 与△ACE 可通过旋转相互得到,△ABD 以点A 为旋转中心,逆时针旋转42°,使△ABD 与△ACE 重合.1.如图,△ABC 和△ADE 都是等腰直角三角形.(1)求证:BD =CE ;(2)△ABD 可以看作是由△ACE 逆时针旋转90°得到的.证明:△ABC 和△ADE 都是等腰直角三角形, ∴AB =AC ,AD =AE ,∠BAC =∠DAE =90°. ∴∠BAD =∠CAE.在△BAD 和△CAE 中,⎩⎨⎧AB =AC ,∠BAD =∠CAE ,AD =AE ,∴△BAD ≌△CAE(SAS). ∴BD =CE.2.如图,点P 是等边△ABC 内一点,PA =4,PB =3,PC =5.线段AP 绕点A 逆时针旋转60°到AQ ,连接PQ. (1)求PQ 的长.(2)求∠APB 的度数.解:(1)∵AP =AQ ,∠PAQ =60° ∴△APQ 是等边三角形. ∴PQ =AP =4. (2)连接QC.∵△ABC ,△APQ 都是等边三角形, ∴∠BAC =∠PAQ =60°.∴∠BAP =∠CAQ =60°-∠PAC.在△ABP 和△ACQ 中,⎩⎨⎧AB =AC ,∠BAP =∠CAQ ,AP =AQ ,∴△ABP ≌△ACQ(SAS).∴BP =CQ =3,∠APB =∠AQC. ∵在△PQC 中,PQ 2+CQ 2=PC 2,∴△PQC 是直角三角形,且∠PQC =90°. ∵△APQ 是等边三角形,∴∠AQP =60°.∴∠APB =∠AQC =60°+90°=150°.3.如图1,在△ABC 中,D ,E 分别是AB ,AC 上的点,AB =AC ,AD =AE ,然后将△ADE 绕点A 顺时针旋转一定角度,连接BD ,CE ,得到图2,将BD ,CE 分别延长至M ,N ,使DM =12BD ,EN =12CE ,得到图3,请解答下列问题:(1)在图2中,BD 与CE 的数量关系是BD =CE ;(2)在图3中,判断△AMN 的形状,及∠MAN 与∠BAC 的数量关系,并证明你的猜想. 解:△AMN 为等腰三角形,∠MAN =∠BAC. 证明:易证△BAD ≌△CAE , ∴∠ABD =∠ACE ,BD =CE. 又∵DM =12BD ,EN =12CE ,∴BM =CN.在△ABM 和△ACN 中,⎩⎨⎧BM =CN ,∠ABM =∠ACN ,BA =CA ,∴△ABM ≌△ACN(SAS).∴AM =AN ,∠BAM =∠CAN ,即∠BAC +∠CAM =∠CAM +∠MAN. ∴△AMN 为等腰三角形,∠MAN =∠BAC.3.3 中心对称01 基础题知识点1 中心对称的有关概念及性质 1.下列说法正确的是(B)A .全等的两个图形一定成中心对称B .关于某个点中心对称的两个图形一定全等C .关于某个点中心对称的两个图形不一定全等D .不全等的两个图形有可能关于某点中心对称2.如图,已知△ABC 与△A′B′C′关于点O 成中心对称,则下列说法不正确的是(B)A .∠ABC =∠A′B′C′B .∠BOC =∠B′A′C′ C .AB =A′B′D .OA =OA′3.如图所示的4组图形中,左边图形与右边图形成中心对称的有(C)A .1组B .2组C.3组D.4组4.如图,线段AB和CD关于点O中心对称,若∠B=40°,则∠D的度数为40°.5.如图,△ADE是由△ABC绕A点旋转180°后得到的,那么△ABC与△ADE关于A点中心对称,A点叫做对称中心.6.小明、小辉两家所在位置关于学校中心对称.如果小明家距学校2公里,那么他们两家相距4公里.知识点2画中心对称的图形7.如图,已知四边形ABCD和点O,画出四边形ABCD关于点O成中心对称的四边形A′B′C′D′.解:四边形A′B′C′D′如图所示.知识点3中心对称图形8.(2017·陕西师范大学附属中学期中)下列四个图形中是中心对称图形的是(D)9.(2017·成都)下列图标中,既是轴对称图形,又是中心对称图形的是(D)10.(2017·玉林)五星红旗上的每一个五角星(A)A.是轴对称图形,但不是中心对称图形B.是中心对称图形,但不是轴对称图形C.既是轴对称图形,又是中心对称图形D.既不是轴对称图形,也不是中心对称图形11.请写出一个是中心对称图形的几何图形的名称:正方形(答案不唯一).02中档题12.(2017·河北)图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是(C)A .①B .②C .③D .④13.如图是一个以点O 为对称中心的中心对称图形,若∠A =30°,∠C =90°,OC =1,则AB 的长为(A)A .4 B.33C.233D.43314.如图,△ABC 与△DEF 关于O 点中心对称,则线段BC 与EF 的关系是平行且相等.15.(2017·平顶山市宝丰县期中)如图,△ABO 与△CDO 关于O 点中心对称,点E ,F 在线段AC 上,且AF =CE.求证:DF =BE.证明:∵△ABO 与△CDO 关于O 点中心对称, ∴OB =OD ,OA =OC. ∵AF =CE ,∴OF =OE.在△DOF 和△BOE 中,⎩⎨⎧OD =OB ,∠DOF =∠BOE ,OF =OE ,∴△DOF ≌△BOE(SAS). ∴DF =BE.16.如图,正方形ABCD 与正方形A 1B 1C 1D 1关于某点中心对称,已知A ,D 1,D 三点的坐标分别是(0,4),(0,3),(0,2).(1)求对称中心的坐标;(2)写出顶点B ,C ,B 1,C 1的坐标.解:(1)根据中心对称的性质,可得:对称中心是D1D的中点.∵点D1,D的坐标分别是(0,3),(0,2),∴对称中心的坐标是(0,2.5).(2)∵点A,D的坐标分别是(0,4),(0,2),∴正方形ABCD与正方形A1B1C1D1的边长都是4-2=2.∴点B,C的坐标分别是(-2,4),(-2,2).∵A1D1=2,点D1的坐标是(0,3),∴点A1的坐标是(0,1).∴点B1,C1的坐标分别是(2,1),(2,3).综上可得:顶点B,C,B1,C1的坐标分别是(-2,4),(-2,2),(2,1),(2,3).03综合题17.如图,已知四边形ABCD.(1)画出四边形A1B1C1D1,使四边形A1B1C1D1与四边形ABCD关于直线MN对称;(2)画出四边形A2B2C2D2,使四边形A2B2C2D2与四边形ABCD关于点O中心对称;(3)四边形A1B1C1D1与四边形A2B2C2D2成轴对称或中心对称吗?若是,请在图上画出对称轴或对称中心.解:(1)(2)如图所示.(3)四边形A1B1C1D1与四边形A2B2C2D2成轴对称,对称轴是直线EF,如图.周周练(3.1~3.3)(时间:45分钟满分:100分)一、选择题(每小题4分,共32分)1.下列现象是数学中的平移的是(D)A.骑自行车时的轮胎滚动B.碟片在光驱中运行C.“神舟”十号宇宙飞船绕地球运动D.生产中传送带上的电视机的移动过程2.(2017·西安期中)下列图形是中心对称图形的是(C)3.平面直角坐标系中,将正方形向上平移3个单位长度后,得到的正方形各顶点与原正方形各顶点坐标相比(A) A.横坐标不变,纵坐标加3B.纵坐标不变,横坐标加3C.横坐标不变,纵坐标乘3D.纵坐标不变,横坐标乘34.将如图所示的图案以圆心为中心,旋转180°后得到的图案是(D)5.(2016·长春)如图,在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转48°得到Rt△A′B′C,点A在边B′C上,则∠B′的大小为(A)A.42°B.48°C.52°D.58°6.△ABO与△A1B1O在平面直角坐标系中的位置如图所示,它们关于点O成中心对称,其中点A(4,2),则点A1的坐标是(A)A.(-4,-2) B.(4,-2)C.(-2,-3) D.(-2,-4)7.某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是(D)A.甲种方案所用铁丝最长B.乙种方案所用铁丝最长C.丙种方案所用铁丝最长D.三种方案所用铁丝一样长8.(2017·西安高新区期中)如图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转的度数分别为(B)A.4,30°B.2,60°C.1,30°D.3,30°二、填空题(每小题5分,共30分)9.(2017·黔东南)在平面直角坐标系中有一点A(-2,1),将点A先向右平移3个单位长度,再向下平移2个单位长度,则平移后点A的坐标为(1,-1).10.如图所示,在正方形网格中,图①经过平移变换可以得到图②;图③是由图②经过旋转变换得到的,其旋转中心是点A(填“A”“B”或“C”).11.(2017·平顶山市宝丰县期中)正三角形绕其中心至少旋转120度能与原三角形重合.12.(2017·宜宾)如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB=15°,则∠AOD的度数是60°.13.(2017·太原)如图,已知△ABC三个顶点的坐标分别为A(0,4),B(-1,1),C(-2,2),将△ABC向右平移4个单位长度,得到△A′B′C′,点A,B,C的对应点分别为A′,B′,C′,再将△A′B′C′绕点B′顺时针旋转90°,得到△A″B″C″,点A′,B′,C′的对应点分别为A″,B″,C″,则点A″的坐标为(6,0).14.如图是两张全等的图案,它们完全重合地叠放在一起,按住下面的图案不动,将上面图案绕点O顺时针旋转,至少旋转60度角后,两张图案构成的图形是中心对称图形.三、解答题(共38分)15.(12分)如图,△ABC沿直线l向右平移3 cm得到△FDE,且BC=6 cm,∠B=40°.(1)求BE;(2)求∠FDB的度数;(3)找出图中相等的线段(不另外添加线段); (4)找出图中互相平行的线段(不另外添加线段).解:(1)∵△ABC 沿直线l 向右平移了3 cm , ∴CE =BD =3 cm.∴BE =BC +CE =6+3=9(cm). (2)∵∠FDE =∠B =40°,∴∠FDB =140°.(3)相等的线段有AB =FD ,AC =FE ,BC =DE ,BD =CE =CD. (4)平行的线段有AB ∥FD ,AC ∥FE.16.(12分)如图,在平面直角坐标系中,Rt △ABC 的三个顶点分别是A(-3,2),B(0,4),C(0,2).(1)将△ABC 以点C 为旋转中心旋转180°,画出旋转后对应的△A 1B 1C 1,平移△ABC ,使点A 的对应点A 2的坐标为(0,-4),画出平移后对应的△A 2B 2C 2;(2)若将△A 1B 1C 1绕某一点旋转可以得到△A 2B 2C 2,请直接写出旋转中心的坐标. 解:(1)如图所示.(2)旋转中心的坐标为(32,-1).17.(14分)如图,固定一块三角板,另一块三角板按图示开始平移至两条较大直角边重合时停止.(两个同学为一组,利用30°角的三角板作图形的平移运动)(1)观察平移过程中的重叠部分是什么图形?你能把它画出来吗? (2)分别求出平移距离为4 cm 或10 cm 时,重叠部分的面积. 解:(1)平移过程中的重叠部分是三角形或五边形,如图:(2)当平移距离为4 cm 时,重叠部分是三角形OAA′,如图1,此时AA′=4 cm. ∵∠OAA ′=∠OA′A =60°, ∴△OAA ′是等边三角形. ∴S △OAA ′=4 3 cm 2.当平移距离为10 cm时,重叠部分是五边形ODC′CE,如图2,此时AA′=10 cm. ∵AC=A′C′=7 cm,∴A′C=AC′=3 cm.∵∠A=∠A′=60°,∠AC′D=∠A′CE=90°,∴C′D=CE=3 3 cm.∴S五边形ODC′CE=S△OAA′-S△AC′D-S△A′CE=12×10×53-12×3×33×2=163(cm2).3.4简单的图案设计01基础题知识点1分析图案的形成过程1.在图示的四个汽车标志图案中,能用平移交换来分析其形成过程的图案是(C)2.如图,国旗上的四个小五角星,通过怎样的变化可以相互得到(D)A.轴对称B.平移C.旋转D.平移或旋转3.在下列某品牌T恤的四个洗涤说明图案的设计中,没有运用旋转或轴对称知识的是(C)4.如图所示的图案中,可以由一个“基本图案”连续旋转45°得到的是(B)A. B. C. D.5.右边的图案是由下面五种基本图形中的两种拼接而成,这两种基本图形是(D)A.①⑤B.②④C.③⑤D.②⑤知识点2利用平移、旋转、轴对称等方式设计图案6.下列基本图形中,经过平移、旋转或轴对称变换后,不能得到如图所示图案的是(C)A. B.C. D.7.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,涂黑的小正方形的序号是②.8.(2017·西安期中)如图,在4×3的网格上,由个数相同的白色方块与黑色方块组成一幅图案,请仿照此图案,在下列网格中分别设计出符合要求的图案(注:①不得与原图案相同;②黑、白方块的个数要相同).(1)是轴对称图形,但不是中心对称图形;(2)是中心对称图形,但不是轴对称图形;(3)既是轴对称图形,又是中心对称图形.解:如图所示.(1)(2)(3)02中档题9.下列能通过基本图形旋转得到的有(D)A.1个B.2个C.3个D.4个10.如图,下列这些复杂的图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们中每一个图案都可以由一个“基本图案”通过连续旋转得来,它们旋转的角度均是60°.11.如图是某设计师设计的方桌布图案的一部分,请你运用旋转变换的方法将该图形绕O点顺时针依次旋转90°,180°,270°,你会得到一个什么样的立体图形?解:得到的是一个星星图案,如图.12.定义:两组邻边分别相等的四边形,称之为筝形.如图,四边形ABCD是筝形,其中AB=AD,CB=CD,请仿照图2的画法,在图3所示的8×8网格中重新设计一个由四个全等的筝形组成的新图案,具体要求如下:①顶点都在格点上;②所设计的图案既是轴对称图形又是中心对称图形;③将新图案中的四个筝形都涂上阴影.解:如图所示:答案不唯一.13.请运用平移、轴对称和旋转分析下面图案的设计过程.解:若从原图中提取的基本图案如图所示,则可按下面的两种几何变换(不唯一)得到整个图案:形成方式一:形成方式二:03综合题14.已知每个网格中小正方形的边长都是1,图1中的阴影图案是由三段以格点为圆心,半径分别为1和2的圆弧围成.请你在图2中以图1为基本图案,借助轴对称、平移或旋转设计一个完整的花边图案(要求至少含有两种图形变换).图1图2解:答案不唯一,以下提供三种图案.章末复习(三)图形的平移与旋转01基础题知识点1平移1.下列图形中,可由左图经过平移得到的是(C)A B C D2.(2016·安顺)如图,将△PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P平移后的坐标是(A)A.(-2,-4) B.(-2,4)C.(2,-3) D.(-1,-3)3.如图,把三角板的斜边紧靠直尺平移,一个顶点从刻度“5”平移到刻度“10”,则顶点C平移的距离CC′=5.4.如图,△A1B1C1是△ABC向右平移4个单位长度后得到的,且三个顶点的坐标分别为A1(1,1),B1(4,2),C1(3,4).(1)请画出△ABC ,并写出点A ,B ,C 的坐标; (2)求出△AOA 1的面积.解:(1)如图所示,A(-3,1),B(0,2),C(-1,4). (2)S △AOA 1=12×4×1=2.知识点2 旋转 5.(2016·新疆)如图所示,将一个含30°角的直角三角板ABC 绕点A 旋转,使得点B ,A ,C ′在同一条直线上,则三角板ABC 旋转的角度是(D)A .60°B .90°C .120°D .150°6.如图,在△ABC 中,∠ACB =90°,AB =5,BC =4,将△ABC 绕点C 顺时针旋转90°,若点A ,B 的对应点分别是点D ,E ,画出旋转后的三角形,并求点A 与点D 之间的距离.(不要求尺规作图)解:如图.连接AD.在Rt △ABC 中,AB =5,BC =4,∴AC =AB 2-BC 2=3.由旋转的性质,得CD =AC =3,∠ACD =90°. ∴AD =AC 2+CD 2=3 2. 知识点3 中心对称 7.(2017·郑州月考)下列图形中,是中心对称图形的是(A)8.如图,在平面直角坐标系中,若△ABC 与△A 1B 1C 1关于E 点成中心对称,则对称中心E 点的坐标是(A)A .(3,-1)B .(0,0)C .(2,-1)D .(-1,3)知识点4图案设计9.如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形).若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有4种.02中档题10.如图,紫荆花图案旋转一定角度后能与自身重合,则旋转的角度可能是(C)A.30°B.60°C.72°D.90°11.如图,在平面直角坐标系中,点B,C,E在y轴上,Rt△ABC经过变换得到Rt△ODE.若点C的坐标为(0,1),AC=2,则这种变换可以是(A)A.△ABC绕点C顺时针旋转90°,再向下平移3 个单位长度B.△ABC绕点C顺时针旋转90°,再向下平移1 个单位长度C.△ABC绕点C逆时针旋转90°,再向下平移1 个单位长度D.△ABC绕点C逆时针旋转90°,再向下平移3 个单位长度12.(2017·西安高新区期中)某景点拟在如图的长方形荷塘上架设小桥,若荷塘中小桥的总长为100米,则荷塘周长为200米.13.如图是一个4×4的正方形网格,每个小正方形的边长为1.请你在网格中以左上角的三角形为基本图形,通过平移、对称或旋转变换,设计一个精美图案,使其满足:①既是轴对称图形,又是以点O为对称中心的中心对称图形;②所作图案用阴影标识,且阴影部分面积为4.解:如图所示:答案不唯一.14.(2017·郑州月考)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,Rt△ABC的顶点均在格点上,点A的坐标为(-6,1),点B的坐标为(-3,1),点C的坐标为(-3,3).(1)将Rt△ABC沿x轴正方向平移8个单位长度得到Rt△A1B1C1,试在图上画出Rt△A1B1C1的图形,并写出点A1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年春北师大版八年级数学下册
第三章《图形的平移与旋转》知识点与同步练习
知识点一、平移的概念:
1.在平面内将一个图形沿移动一定的距离,这样的图形运动称为平移。
平移不改变图形的和.
注意:1、前提在同一平面内,物体在曲面上运动不称之为平移2、必须是沿同一个不变的方向移动3、图形平移是有平移的方向和距离决定的
知识点二、平移的性质
2、经过平移,,分别相等,对应点所连的线段.
【基础训练】
1.以下现象:①电梯的升降运动;②飞机在地面沿直线滑行;③风车的转动,④汽车轮胎的转动.其中属于平移的是()A.②③B、②④C.①②D.①④
2、如下左图,△经过平移到△的位置,则下列说法:①∥,;②∠∠;③平移的方向是点C到点E的方向;④平移距离为线段的长. 其中说法正确的有()
A.个
B.2个
C.3个
D.4个
3、如下右图,在等边△中,D、E、F分别是边、、的中点,则△经过平移可以得到()A.△ B.△ C.△ D. △和△
4.下列图形属于平移位置变换的是( ) .
5.下列图形中,是由(1)仅通过平移得到的是( )
6.如图,△平移后得到△A ′B ′C ′,线段与线段A ′B ′的位置关系是 . 7.在1题中,与线段′平行且相等的线段有 .
8、将长度为5 的线段向上平移10所得线段长度是
( )
A 、10
B 、5
C 、0
D 、无法确定
9.如图,O 是正六边形的中心,下列图形中可由△平移得到的是( • )A .△ B .△ C .△ D .△
10.将面积为122的等腰直角△向右上方平移20,得到△,则△是 三角形,它的面积是 2.
11.如图7,四边形是由四边形平移得到的,已知5,∠70°,则( )A .5,∠70° B .5,∠70°C .5,∠70° D .5,∠70°
13、在图示的方格纸中(1)作出△关于对称的图形△A1B1C1;(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的? 二、图形的旋转:
A .
B .
C .
D .
A
A ′
C ′ B ′
知识点一、旋转的定义.
在平面内将一个图形,这样的图形运动称为旋转,
这个定点称为旋转中心,转动的角称为旋转角,旋转不改变图
形的和.
知识点二、旋转的性质
1、经过旋转后的图形与原图形的对应线段,对应角
2、对应点到旋转中心的距离
3、都是旋转角.
4、经过旋转,图形上每一点都绕旋转中心沿相同方向转动了相同角度
理解旋转这一概念应注意以下两点:(1)旋转和平移一样是图形的一种基本变换(2)图形旋转的决定因素是旋转中心和旋转的角度及旋转的方向【基础训练】
1、下列运动是属于旋转的是( ) A、滾动过程中篮球的滚动B、钟表的钟摆
的摆动
C、气球升空的运动
D、一个图形沿某直线对折过程
2、将图形按顺时针方向旋转900后的图形是( )
A B C D
3.如图,将△绕着点C顺时针旋转50°后得到△A′B′C′.若∠40°.∠B′=110°,则∠′的度数是( )
A.110°B.80°C.40°D.30°
4.如图,将△(其中∠35°,∠90°)绕点A 按顺时针方向旋转到△1C1的位置,使得点C 、A 、B1在同一条直线上,那么旋转角等于( )
5.如图,在等边三角形中,6,D 是上一点,且3,△绕点A 旋转后得到△,则的长度为 .
6、如图所示,△是等腰直角三角形,是斜边,将△绕点A 逆时针旋转后,能与△′重合,如果3,那么′的长等于
A.
B. C. D.
7.如图,E 、F 分别是正方形的边、上的点,,连接、,将△绕正方形的中心按逆时针方向转到△,旋转角为a (0°<a <180°),则∠.
8.钟表上的分针和时针 经过20分钟,钟表的时针和分针旋转的角度分别为()度
A.10和20
B.120和20
C. 120和10 D . 20和10
9如图,在平面直角坐标系中,△的三个顶点都在
格点上,点A 的坐标为(2,4),请解答下列问题:(1)画出△关于x 轴对称的△A1B1C1,并写出点A1的坐标.(2)画出△A1B1C1绕原点O 旋转180°后得到的△A2B2C2,并写出点A2的坐标.
10.如图,在边长为1个单位长度的小正方形组成的两格中,点A 、B 、C 都是格点.
A
B
C
D
F
(1)将△向左平移6个单位长度得到得到△A1B1C1;
(2)将△绕点O按逆时针方向旋转180°得到△A2B2C2,请画出△A2B2C2.11、把正方形绕着点A,按顺时针方向旋转得到正方形,边与交于点H(如图).(1)试问线段与线段相等吗?请先观察猜想,然后再证明你的猜想.
中心对称知识点一、中心对称图形的概念
平面内,如果把一个图形绕着某一点旋转180°后能与自身重合,那么这个图形叫做中心对称图形。
这个点就是它的对称中心。
(如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形。
这条直线叫做对称轴)
知识点二、中心对称图形的性质:中心对称图形上的每一对对应点所连成的线段
都被对称中心平分。
知识点三、轴对称图形与中心对称图形的区别
轴对称图形中心对称图形
有一条对称轴直线有一个对称中心点
沿对称轴对折绕对称中心旋转180°
对折后与原图形重合旋转180°后与原图形重合
【基础训练】
1、下列图形中,是轴对称图形的是()
A.B .C.D.
2、下列图形中,既是轴对称图形又是中心对称图形的是
3、下列图形中,既是轴对称图形又是中心对称图形的是( ).
4.下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为中心对称图形的是()
A.B.C.D.
5.下列图案中,不是中心对称图形的是()
A.B.C.D.
6、在如图所示的单位正方形网格中,△经过平移后得到△A1B1C1,已知在上一点P (2.4,2)平移后的对应点为P1,点P1绕点O 逆时针旋转180°,得到对应点P2,则P2点的坐标为( )
A .(1.4,-1)
B .(1.5,2)
C .(1.6,1)
D .(2.4,1)
7、下列“表情图”中,属于轴对称图形的是( ) A .
B .
C .
D .
8、(2013四川遂宁)下列图案由正多边形拼成,其中既是轴对
称图形又是中心对称图形的是( )
A .
B .
C .
D .
9、以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图形的是( )
10.如图,将△绕点A 逆时针旋转一定角度,得到△,若∠65°,∠70°,且⊥,则∠的度数为( ). A .60° B .75°C .85°D .90°
11.如图,把“”笑脸放在直角坐标系中,已知左眼
A 的坐标是(-2,3),嘴唇C 点的坐标为(-1,1),则将此“”笑脸向右平移3
个
图
单位后,右眼B的坐标是。
12.如图,在平面直角坐标系中,将线段绕点A按逆时针方向旋转90°后,得到线段,则点的坐标为 .
13.如图,△与△关于O点中心对称,点E、F在线段上,且.求证:.。