三种碰撞
高一物理碰撞中的动量守恒知识精讲

高一物理碰撞中的动量守恒【本讲主要内容】碰撞中的动量守恒碰撞中的动量守恒问题的理解本讲的重点、难点是对三种碰撞:弹性碰撞(碰撞过程中动能守恒),非弹性碰撞(碰撞过程中动能不守恒),完全非弹性碰撞(碰撞过程中系统的动能损失最大)的理解和应用。
【知识掌握】【知识点精析】1. 碰撞 两物体互相接触时间极短而互相作用力较大的相互作用.在碰撞问题中,忽略碰撞时间,将物体接触的时间定义为极短,因此物体接触过程中的位移忽略,撞击物之间相互作用的内力极大。
为此,在碰撞现象中,有时尽管撞击物所受的合外力不为零,但合外力的冲量远小于内力的冲量,若仅以相撞物体为系统,则动量近似守恒。
假设碰撞的整个过程中,物体均做直线运动。
将碰撞问题可分为撞击模型和追及模型。
撞击模型中,若两物碰后同向运动,则撞入物的速度应小于或等于被撞物的速度;在追及模型中,碰撞后, 撞入物的速度应等于或大于被撞物的速度(即速度较大的物体在碰撞后仍具有较大的速度)。
假设在碰撞过程中,满足动量守恒定律要求的所有条件。
这就要求学生在解决此类问题的过程中,必须将动量守恒定律作为解决问题的手段之一。
并且部分的满足能量的转化与守恒定理,即除了爆炸与反冲现象以外,在碰撞的过程中,系统的动能不可能增加。
从动能改变的观点,可以将碰撞问题归结为:弹性碰撞(碰撞过程中动能守恒),非弹性碰撞(碰撞过程中动能不守恒),完全非弹性碰撞(碰撞过程中系统的动能损失最大)。
2. 完全弹性碰撞 两物体碰撞之后, 它们的动能之和不变。
完全弹性碰撞 如下图所示(五个小球质量全同)现象:左边下落与静止小球碰撞,最右边小球开始上升,出现了左右两边的小球速度交换运动。
例1. 设有两个质量分别为1m 和2m ,速度分别为10v 和20v 的弹性小球作对心碰撞,两球的速度方向相同。
若碰撞是完全弹性的,求碰撞后的速度1v 和2v 。
解析:取速度方向为正向,由动量守恒定律得讨论:(1)若21m m =,则201v v =,102v v =(2)若2m >1m ,且020=v ,则101v v -≈,02≈v(3)若2m <1m ,且020=v ,则101v v ≈,1022v v ≈3. 非弹性碰撞 由于非保守力的作用,两物体碰撞后,使机械能转换为热能、声能,化学能等其他形式的能量。
高考作文写作备考:关于“碰撞”的作文导写(附文题详解及范文)

高考作文写作备考:关于“碰撞”的作文导写(附文题详解及范文)【原题回放】阅读下面的材料,根据要求写一篇文章。
碰撞,生活中时有发生。
车与车的碰撞,鸡蛋与石头的碰撞,海浪与礁石的碰撞……当然,也有这样的碰撞:情与法的碰撞,理想与现实的碰撞,传统和现代的碰撞,不同文化的碰撞……要求:综合材料内容及含意,选好角度,确定立意,明确文体,自拟标题,不要套作,不得抄袭;不少于800字。
一、立意指导:碰撞,正如材料中所给出的,既有物质层面“实”的碰撞,也有精神层面“虚”的碰撞。
我们既可以从“实”的碰撞中得到启示,也可对“虚”的碰撞进行深入的思考和探讨。
碰撞是个过程,它是碰触摩擦、切磋交流、取长补短、融合共生的过程。
碰撞,既要包容异己,也要不失自我。
碰撞,可以是美与丑、善与恶、真与假、新与旧的纠葛、拉扯,也可以是自我内心不同意识或者矛盾思想的碰撞,是自我消灭、自我蜕变式的隐性混战之后,浪漫回落、复归平静的美,那是能力的拔高、思考的深沉、内蕴的丰厚、境界的升华。
碰撞,大大小小,时有发生,惟其如此,这个世界才越发精彩;当然,它有时也会给人带来痛苦,甚至是灾难。
而我们所希望看到的碰撞,不是你死我活的争斗,不是非生即死的较量,而应是直面差异的交流、高下之间的竞争、取长补短的融合,应是差异中多元、迥异中相互协同的一体化繁荣。
二、存在问题:1、立意上,误将具有“对比点”与“对立性”的两种事物的“并列式”存在即视为“碰撞”,不合逻辑,准度不够。
2、论证以“例”代“理”,而非就例说理,叙多而议少,繁叙而浅议。
3、论证生搬硬套,穿靴戴帽,贴“标签”,叙议虽能结合,但不能做到“明点”与“暗合”相得益彰,论证无力。
4、论证缺少梯度,不分角度,平面打转,没有深度与高度。
5、文章主次不分,详略无别,东拉西扯,面面俱到,蜻蜓点水,浅尝辄止。
6、书写潦草,随意涂抹,语言平淡,缺少亮度。
【精彩片段】碰撞本反映出的是两种物体的接触与摩擦,或激烈得迸发出一瞬间的火花,又或轻柔得像无事来过。
汽车碰撞试验方法

汽车碰撞试验方法随着汽车行业的迅猛发展,汽车碰撞试验方法成为保障车辆安全的重要手段。
本文将从整车碰撞试验、正面碰撞试验、侧面碰撞试验、后面碰撞试验以及翻车试验等几个方面,探讨汽车碰撞试验方法的规范和标准。
一、整车碰撞试验整车碰撞试验是汽车安全性评价的核心内容之一,它通过模拟真实碰撞情况来测定汽车结构的强度和安全装备的有效性。
整车碰撞试验分为正面碰撞、侧面碰撞和后面碰撞三种情况,并采用相应的试验设备和试验方法。
二、正面碰撞试验正面碰撞试验是对汽车在前方碰撞中的安全性能进行评估的重要试验。
试验中,汽车以一定的速度与刚性障碍物相撞,通过测量变形程度、应变和动态力等参数,来评估汽车在碰撞中的保护能力。
试验过程中需要考虑车辆速度、角度、撞击位置等因素,以确保试验结果的准确性和可靠性。
三、侧面碰撞试验侧面碰撞试验是评估汽车侧面安全性能的重要手段。
试验中,汽车以一定的速度与侧面障碍物相撞,通过测量侧面结构的刚度、变形程度以及对车内乘员的保护能力等参数,来评估汽车在碰撞中的安全性能。
侧面碰撞试验中还需考虑乘员保护设备(如侧面气囊)的有效性,并采取适当的试验方法和评估指标。
四、后面碰撞试验后面碰撞试验是评估汽车后部碰撞安全保护能力的重要手段。
试验过程中,汽车以一定速度与后方障碍物碰撞,通过测量车辆后部结构的变形程度、应变和乘员保护设备的有效性,来评估汽车在碰撞中的安全性能。
后面碰撞试验还需要考虑汽车尾部的强度和刚度等因素,并根据碰撞位置和角度选择合适的试验设备和试验方法。
五、翻车试验翻车试验是评估汽车在侧翻和前翻事故中的安全性能的重要试验。
通过模拟车辆在高速行驶或失控情况下的翻滚过程,测量车辆结构的变形程度、应变和乘员保护装置的有效性等参数,来评估汽车在翻车事故中的保护能力。
翻车试验需要考虑车辆的几何形状、动力学参数以及试验过程中的乘员保护措施。
结语汽车碰撞试验方法的规范和标准对于保障乘员的安全至关重要。
通过整车碰撞试验、正面碰撞试验、侧面碰撞试验、后面碰撞试验和翻车试验等多种试验手段,可以全面评估汽车在不同碰撞情况下的安全性能。
剖析碰撞问题把握"三个三"字

剖析碰撞问题 把握“三个三”字由于碰撞是作用力极大、作用时间极短的相互作用,因而,碰撞过程动量守恒,且势能变化忽略不计.碰撞类问题是用动量和能量观点解答的综合问题,也是各种资料乃至各类考试命题的热点之一.因此,应剖析清此类问题,把握住“三个三”字.1、碰撞的三种类型 1.1、完全弹性碰撞完全弹性碰撞同时满足动量守恒定律和动能守恒定律.此类题目中一般有这样的字眼:金属球(如钢球)、弹性球、刚性球,或碰撞过程中无机械能(或动能)损失、无机械能向其它形式的能转化,或告知为弹性碰撞,或各接触面均光滑等.1.2、完全非弹性碰撞完全非弹性碰撞只遵守动量守恒定律,而动能损失最大(设为△E m ).这类问题的特点是:碰撞后一起运动.如二物体碰撞后粘合在一起、子弹打入木块并留在其中等.1.3、一般非弹性碰撞介于上述两类碰撞之间的碰撞是较常见的碰撞,可称为一般非弹性碰撞.此类碰撞仍遵守动量守恒定律,但动能有损失,且动能损失量介于上述两类碰撞之间,即0﹤△E ﹤△E m .2、完全弹性碰撞的三个结论如图所示,在光滑水平面上,质量为m 1、速度为v 1的小球A ,沿直线追上质量为m 2、速度为v 2的小球B ,发生弹性碰撞,求碰后球A 、B 的速度v 1'、 v 2'.由动量守恒定律和动能守恒定律知,m 1 v 1+ m 2 v 2= m 1 v 1'+ m 2 v 2'222211222211' v m 21' v m 21 v m 21 v m 21+=+二式联立可得:v 1'=2112122m m v )m m (v 2m +-+v 2'=2121211m m v )m m (v 2m +-+当m 1=m 2时, v 1'=v 2v 2'= v 1结论1:质量相等的两个物体发生弹性.............碰撞后,二物体交换速度;简记为:等质弹...................碰,交换速度........当v 1﹥0,v 2=0,m 2>>m 1时, v 1'=21121m m v )m m (+-≈-v 1v 2'=2111m m v 2m +≈0结论2:一个质量很小的运动物体,碰...........一个质量很大的静止物体后,小物体原速率...................返回,而大物体几乎静止不动;简记为:小...................动碰大静,原速返小大不动.(..............请读者思考,若只是m 2>m 1,碰后球A 、B 的速度v 1'、 v 2'怎样?m 1一定返回但速率小于v 1,m 2将向前运动).当v 1﹥0,v 2=0,m 1>>m 2时, v 1'=21121m m v )m m (+-≈v 1v 2'=2111m m v 2m +≈2 v 1结论3:一个质量很大的运动物体,碰...........一个质量很小的静止物体后,大物体几乎毫...................无阻碍的原速前进,而小物体以2倍速快速...................前行;简记为:大动碰小静,小物倍速大原...................行.(...若只是m 1>m 2,碰后球A 、B 的速度v 1'、 v 2'怎样?m 1向前运动但速率小于v 1,2m2向前运动的速率满足2v1>v2'>v1).3、解答碰撞类问题的三条原则原则之一:动量守恒;原则之二:动能不增,或动能损失存在范围0≤△E k≤△E km;原则之三:符合实际.由上述对三类碰撞的分析可知,无论是哪类碰撞,都遵守动量守恒定律.而动能可以守恒,可以有损失,但以完全非弹性碰撞损失为最大,则动能损失存在范围0≤△E k ≤△E km;一般系统总动能增加或损失量大于△E km是不可能的.当然,所分析的问题必须符合实际情况,否则,如在一条直线上运动的两个物体,碰后前面物体的速度小于后面物体的速度(同向)是不可能的.说明:1.上述各类碰撞均指作用前后在一条直线上运动的对心正碰.2.把握作用过程所遵守的规律,根据碰撞模型类比解题,非常快捷(各类资料均有此类题目,此处例略).应用举例:例1、A、B两球在光滑水平面上沿一直线同向运动,动量大小分别为5kg.m/s和7kg.m/s.当A球追上B球相碰后,A、B 两球的动量可能是:A. 4kg.m/s 10kg.m/sB. –5kg.m/s 17kg.m/sC. 3kg.m/s 9kg.m/sD. 6kg.m/s 6kg.m/s解析:由动量守恒定律可知,A项错;对于B选项,根据E k=P2/2m知,A球的动能不变,B球的动能增大,B项中系统的总动能增大,则B错;因A球追上B球发生碰撞,相互作用后A球的动量(同向)应减小,B球的动量应增大,则D错;故本题答案为C.例2. A、B两球在光滑水平面上,A球以2m/s的速度与静止的B球发生弹性正碰,则B球碰后的速度可能为:A. 0.5m/sB. 2m/sC. 3.5m/sD. 5m/s解析:由于A、B两球发生弹性正碰,且质量未知,根据完全弹性碰撞的结论可知,当m B>>m A时,v B≈0;当m A>>m B时,v B≈2v1=4m/s;这表明B球碰后的速度在0至4m/s之间.故答案为A、B、C.巩固练习:1.(97年上海高考题)在光滑水平面上,两球沿球心连线以相等速率相向而行,并发生碰撞,下列现象可能的是:()A. 若两球质量相同,碰后以某一相等速率相互分开.B. 若两球质量相同,碰后以某一相等速率同向而行.C. 若两球质量不同,碰后以某一相等速率相互分开.D. 若两球质量不同,碰后以某一相等速率同向而行.2.(98年全国高考题)在光滑的水平面上,动能为E0,动量大小为P0的小钢球1与静止小钢球2发生碰撞,碰撞前后球1的运动方向相反.将碰撞后球1的动能和动量的大小分别记为E1、P1,球2的动能和动量大小分别记为E2、P2,则必有A. E1﹤E0B. P1﹤P0C. E2﹥E0D. P2﹥P0参考答案:1.(A.D)2.(ABD)。
习题课 “三种碰撞类”模型问题 教学设计

习题课“三种碰撞类”模型问题类型一“滑块—弹簧”碰撞模型1.模型图如图所示.2.模型特点(1)两个或两个以上的物体与弹簧相互作用的过程中,若系统所受外力的矢量和为零,则系统动量守恒.(2)在能量方面,由于弹簧形变会使弹性势能发生变化,系统的总动能将发生变化;若系统所受的外力和除弹簧弹力以外的内力不做功,系统机械能守恒.(3)弹簧处于最长(最短)状态时两物体速度相等,弹性势能最大,系统动能通常最小(完全非弹性碰撞拓展模型).(4)弹簧恢复原长时,弹性势能为零,系统动能最大(完全弹性碰撞拓展模型,相当于碰撞结束时).【例1】两物块A、B用轻弹簧相连,质量均为2 kg,初始时弹簧处于原长,A、B两物块都以v=6 m/s的速度在光滑的水平地面上运动,质量为4 kg的物块C静止在前方,如图所示.已知B 与C碰撞后会粘在一起运动.在以后的运动中:(1)当弹簧的弹性势能最大时,物块A的速度为多大?(2)系统中弹性势能的最大值是多少?[解析](1)弹簧压缩至最短时,弹性势能最大,由动量守恒定律得:(m A+m B)v=(m A+m B+m C)v A解得v A=3 m/s.(2)B、C碰撞过程系统动量守恒m B v=(m B+m C)v C故v C =2 m/s碰后弹簧压缩到最短时弹性势能最大,故E p =12m A v 2+12(m B +m C )v 2C-12(m A +m B +m C )v 2A =12 J.[答案] (1)3 m/s (2)12 J[针对训练1] 如图所示,一轻质弹簧两端连着物体A 和B ,放在光滑的水平面上,物体A 被水平速度为v 0的子弹击中,子弹嵌在其中,已知物体A 的质量是B 的质量的34,子弹的质量是B 的质量的14.求:(1)A 物体获得的最大速度;(2)弹簧压缩量最大时B 物体的速度; (3)运动过程中B 的最大速度.解析:(1)当子弹射入并留在A 中时,A 获得的速度最大,设B 的质量为m ,A 的质量为34m ,子弹质量为14m ,据动量守恒定律可得14m v 0=⎝ ⎛⎭⎪⎫14m +34m v 1解得v 1=14v 0.(2)当A(含子弹)与B 速度相等时,弹簧压缩量最大,据动量守恒定律可得⎝ ⎛⎭⎪⎫14m +34m v 1=⎝ ⎛⎭⎪⎫14m +34m +m v 2,解得v 2=18v 0即弹簧压缩量最大时B 物体的速度为18v 0.(3)当弹簧再次恢复原长时B 的速度最大,设此时A(含子弹)与B 的速度分别为v 3、v 4,从子弹射入A 后到弹簧恢复原长过程,据动量守恒定律、机械能守恒定律可得⎝ ⎛⎭⎪⎫14m +34m v 1=⎝ ⎛⎭⎪⎫14m +34m v 3+m v 412⎝ ⎛⎭⎪⎫14m +34m v 21=12⎝ ⎛⎭⎪⎫14m +34m v 23+12m v 24 联立解得v 3=0,v 4=14v 0即运动过程中B 的最大速度为14v0.答案:(1)14v0(2)18v0(3)14v0类型二“滑块—斜面(弧面)”碰撞模型模型图示模型特点(1)最高点:m与M具有共同水平速度v共,m不会从此处或提前偏离轨道,系统水平方向动量守恒,m v0=(M+m)v共;系统机械能守恒,12m v2=12(M+m)v2共+mgh,其中h为滑块上升的最大高度,不一定等于圆弧轨道的高度(完全非弹性碰撞拓展模型)(2)最低点:m与M分离点,水平方向动量守恒,m v0=m v1+M v2;系统机械能守恒,12m v2=12m v21+12M v22(完全弹性碰撞拓展模型)【例2】如图所示,在水平面上依次放置小物块A、C以及曲面劈B,其中A与C的质量相等均为m,曲面劈B的质量M=3m,曲面劈B的曲面光滑.现让小物块C以水平速度v0向右运动,与A发生碰撞,碰撞后两个小物块粘在一起滑上曲面劈B.求:(1)碰撞过程中系统损失的机械能;(2)碰后物块A与C在曲面劈B上能够达到的最大高度.[解析](1)小物块C与物块A发生碰撞粘在一起,以v0的方向为正方向由动量守恒定律得:m v 0=2m v 解得v =12v 0;碰撞过程中系统损失的机械能:E 损=12m v 20-12×2m v 2解得E 损=14m v 20.(2)当小物块A 、C 上升到最大高度时,A 、B 、C 系统的速度相等,根据动量守恒定律:m v 0=(m +m +3m )v 1解得v 1=15v 0 根据机械能守恒得2mgh =12×2m ⎝ ⎛⎭⎪⎫12v 02-12×5m ⎝ ⎛⎭⎪⎫15v 02解得h =3v 2040g .[答案] (1)14m v 20 (2)3v 2040g[针对训练2] 在光滑水平地面上放有一质量M =3 kg 带四分之一光滑圆弧形槽的小车,质量为m =2 kg 的小球以速度v 0=5 m/s 沿水平槽口滑上圆弧形槽槽口距地面的高度h =0.8 m ,重力加速度g 取10 m/s 2.求:(1)小球从槽口开始运动到最高点(未离开小车)的过程中,小球对小车做的功W ;(2)小球落地瞬间,小车与小球间的水平间距L .解析:(1)小球上升至最高点时,两物体速度水平且相等,小车和小球水平方向动量守恒,得:m v 0=(m +M )v ①对小车由动能定理得:W=12M v2②联立①②式解得:W=6 J.(2)小球回到槽口时,小球和小车水平方向动量守恒,得:m v0=m v1+M v2③小球和小车由功能关系得:12m v 20=12m v21+12M v22④联立③④式可解得:v1=-1 m/s⑤v2=4 m/s⑥小球离开小车后,向右做平抛运动,小车向左做匀速运动h=12gt2⑦L=(v2-v1)t⑧联立⑤⑥⑦⑧式可得:L=2 m.答案:(1)6 J(2)2 m类型三“滑块—木板”碰撞模型模型图示模型特点(1)若子弹未射穿木块或滑块未从木板上滑下,当两者速度相等时木块或木板的速度最大,两者的相对位移(子弹为射入木块的深度)取得极值(完全非弹性碰撞拓展模型)(2)系统的动量守恒,但机械能不守恒,摩擦力与两者相对位移的乘积等于系统减少的机械能(3)根据能量守恒,系统损失的动能ΔE k=Mm+ME k0,可以看出,子弹(或滑块)的质量越小,木块(或木板)的质量越大,动能损失越多(4)该类问题既可以从动量、能量角度求解,相当于非弹性碰撞拓展模型,也可以从力和运动的角度借助图示求解【例3】如图所示,质量M=1.0 kg的木板静止在光滑水平面上,质量m =0.495 kg的物块(可视为质点)放在木板的左端,物块与木板间的动摩擦因数μ=0.4.质量m0=0.005 kg的子弹以速度v0=300 m/s 沿水平方向射入物块并留在其中(子弹与物块作用时间极短),木板足够长,g取10 m/s2.求:(1)物块的最大速度v1;(2)木板的最大速度v2;(3)物块在木板上滑动的时间t.[解析](1)子弹射入物块后一起向右滑行的初速度即为物块的最大速度,取向右为正方向,根据子弹和物块组成的系统动量守恒得:m0v0=(m+m0)v1解得v1=3 m/s.(2)当子弹、物块和木板三者速度相同时,木板的速度最大,根据三者组成的系统动量守恒得:(m+m0)v1=(M+m+m0)v2解得:v2=1 m/s.(3)对木板,根据动量定理得:μ(m+m0)gt=M v2-0解得:t=0.5 s.[答案](1)3 m/s(2)1 m/s(3)0.5 s[针对训练3](2022·天津南开期末)如图所示,一质量M=0.5 kg的平板小车,车的右端放一质量m=0.1 kg 的小物体,小物体可视为质点,与车板之间的动摩擦因数μ=0.2,小车静止在光滑水平面上.现给小车一个水平向右的初速度v0=1.2 m/s,若小物体最终没有从平板车上滑落,g取10 m/s2.求:(1)小物体与车的共同速度v的大小;(2)小车的最小长度L;(3)小物体在小车上滑行的时间t.解析:(1)根据系统动量守恒,有M v0=(m+M)v,代入数据,解得v=1 m/s.(2)根据系统能量守恒,则有μmgL=12M v2-12(m+M)v2,代入数据,得L=0.3 m.(3)对小物体在小车上相对滑动的整个过程,根据动量定理,有μmgt=m v代入数据,得t=0.5 s.答案:(1)1 m/s(2)0.3 m(3)0.5 s(建议用时:35分钟)[基础巩固练]1.(2022·重庆渝北期末)如图所示,位于光滑水平桌面上的小滑块P和Q都可视作质点,P的质量为m,Q的质量为3m,Q与轻质弹簧相连.Q原来静止,P以一定初动能E向Q运动并与弹簧发生碰撞.在整个过程中,弹簧具有的最大弹性势能等于()A.34E B.38EC.316E D.E解析:选A.设P物体的初速度为v0,由已知可得12m v2=E,P与Q碰撞过程,两物体速度相等时,弹簧压缩量最大,此时弹性势能最大,整个过程,满足动量守恒,设共同速度为v1,则m v0=(m+3m)v1,此时最大弹性势能E p=12m v 2-12×(m+3m)v21,解得E p=38m v 20=34E.2.(多选)如图所示,小车的上面固定一个光滑弯曲圆管道,整个小车(含管道)的质量为2m,原来静止在光滑的水平面上,今有一个质量为m、半径略小于管道半径、可以看作质点的小球以水平速度v从左端滑上小车,小球恰好能达管道的最高点,然后从管道左端滑离小车.关于这个过程,下列说法正确的是(重力加速度为g )( )A .小球滑离小车时,小车回到原来位置B .小球滑离小车时相对小车的速度大小为vC .车上管道中心线最高点的高度为v 23gD .小球从滑进管道到滑到最高点的过程中,小车的动量变化量大小是m v3 解析:选BC.小球恰好到达管道的最高点,说明在最高点时小球和小车之间相对速度为0,小球从滑进管道到滑到最高点的过程中,由动量守恒定律得m v =(m +2m )v ′,解得v ′=v 3,小车的动量变化量大小Δp 车=2m ·v 3=23m v ,D 错误.小球从滑进管道到滑到最高点的过程中,由机械能守恒定律得mgH =12m v 2-12(m +2m )v ′2,解得H =v 23g ,C 正确.小球从滑上小车到滑离小车的过程,由动量守恒定律得m v =m v 1+2m v 2,由机械能守恒定律得12m v 2=12m v 21+12×2m v 22,解得v 1=-v 3,v 2=23v ,则小球滑离小车时相对小车的速度大小为23v +13v =v ,B 正确.由以上分析可知,在整个过程中小车一直向右运动,A 错误.3.如图所示,在光滑水平面上放置一个质量为M 的滑块,滑块的一侧是一个14圆弧形凹槽OAB ,凹槽半径为R ,A 点切线水平.另有一个质量为m 的小球以速度v 0从A 点冲上凹槽,重力加速度大小为g ,不计摩擦.下列说法中正确的是( )A .当v 0=2gR 时,小球能到达B 点B .如果小球的速度足够大,则小球将从滑块的左侧离开滑块后落到水平面上C .当v 0=2gR 时,小球在弧形凹槽上运动的过程中,滑块的动能一直增大D .如果滑块固定,则小球返回A 点时对滑块的压力为m v 20R解析:选C.若滑块不固定,当v 0=2gR 时,设小球沿槽上升的高度为h ,则有m v 0=(m +M )v ,12m v 20=12(M +m )v 2+mgh ,解得h =M M +m R <R ,A 错误;因小球对弧形槽的压力始终对滑块做正功,故滑块的动能一直增大,C 正确;如果小球速度足够大,则可从B 点离开滑块,由于B 点处的切线竖直,所以在B 点时小球与滑块的水平速度相同,离开B 点后将再次从B 点落回,不会从滑块的左侧离开滑块后落到水平面上,B 错误;如果滑块固定,则小球返回A 点时速度仍为v 0,方向向右,此时对滑块的压力为mg +m v 20R ,D 错误.[综合提升练]4.(2022·安徽六安一中期末)如图所示,静止在光滑水平地面上的三个小物块A 、B 、C ,质量相等都为m =1.0 kg ,物块C 左端固定一轻质弹簧,某时刻给物块A 一水平向右的速度v 0=2 m/s ,物块A 和物块B 碰撞后粘在一起,A 、B 整体运动一段时间后压缩弹簧,求:(1)物块A 和物块B 碰撞后的速度v 1;(2)物块A 、B 压缩弹簧过程中,弹簧的最大弹性势能.解析:(1)由题意可知,物块A 和物块B 发生碰撞过程动量守恒,规定向右为正方向,则m v 0=2m v 1解得v 1=1 m/s.(2)物块A 、B 压缩弹簧过程中,速度相等时弹簧的弹性势能最大,根据动量守恒定律有2m v 1=3m v 2根据机械能守恒定律有12×2m v 21=E p+12×3m v22解得E p=13J.答案:(1)1 m/s(2)13J5.如图所示,光滑水平面上叠放着长木板A和可视为质点的滑块B,木板A上表面粗糙,B置于A的最左端.一不可伸长的轻绳将物块C悬挂于O点(距地面高0.8 m 且位于木板A右端正上方),现将物块C向右拉至水平位置后由静止释放,当物块C下摆至最低点时,与木板A发生弹性碰撞(碰撞时间极短),碰后长木板A立刻向左运动,物块C恰好静止,最终滑块B恰好停在木板A的最右端.已知滑块B的质量m B=1 kg,物块C的质量m C=2 kg,轻绳长l OC=0.8m,A、B间的动摩擦因数μ=13,重力加速度大小g取10 m/s2.求:(1)长木板A的质量m A;(2)A、B相对静止时的速度大小v;(3)长木板A的长度L.解析:(1)因C、A为弹性碰撞,碰后物块C恰好静止,设碰撞前物块C的速度大小为v C,碰撞后木板A的速度大小为v A,所以有m C v C=m A v A12m C v 2C=12m A v2A解得v C=v A m A=2 kg.(2)由动能定理及动量守恒定律得12m C v2C=m C gl OCm A v A=()m A+m B v解得v=83m/s.(3)A 、B 相对滑动的过程中,损失的机械能转化为内能,所以有μm B gL =12m A v 2A -12()m A +m B v 2 解得L =1.6 m.答案:(1)2 kg (2)83 m/s (3)1.6 m6.(2022·湖南衡阳八中期末)在光滑水平面上静置有质量均为m 的木板AB和滑块CD ,木板AB 上表面粗糙,滑块CD 上表面是光滑的14圆弧,其始端D 点切线水平且在木板AB 上表面内,它们紧靠在一起,如图所示.一可视为质点的物块P ,质量也为m ,从木板AB 的右端以初速度v 0滑上木板AB ,过B 点时速度为v 02,又滑上滑块CD ,最终恰好能滑到滑块CD 圆弧的最高点C 处.已知物块P 与木板AB 间的动摩擦因数为μ.求:(1)物块滑到B 处时木板的速度v AB 的大小;(2)木板的长度L ;(3)滑块CD 圆弧的半径R .解析:(1)物块由A 到B 过程,取向左为正方向,对木板AB 、滑块CD 及物块P 整体,由动量守恒定律得m v 0=m v B +2m ·v AB又v B =v 02解得v AB =v 04.(2)物块由A 到B 过程,根据能量守恒定律得12m v 20-12×2m ⎝ ⎛⎭⎪⎫v 042-12m ⎝ ⎛⎭⎪⎫v 022=μmgL解得木板的长度为L =5v 2016μg .(3)物块由D 到C 过程,滑块CD 与物块P 组成的系统水平方向动量守恒、机械能守恒,得m ·v 02+m ·v 04=2m v 共mgR =12m ⎝ ⎛⎭⎪⎫v 022+12m ⎝ ⎛⎭⎪⎫v 042-12×2m v 2共 联立解得滑块CD 圆弧的半径为R =v 2064g .答案:(1)v 04 (2)5v 2016μg (3)v 2064g。
2021-2022高二物理人教版选修3-5学案:第十六章 4 碰 撞 Word版含答案

4碰撞[目标定位] 1.理解弹性碰撞、非弹性碰撞和完全非弹性碰撞,正碰(对心碰撞)和斜碰(非对心碰撞).2.会应用动量、能量的观点综合分析、解决一维碰撞问题.3.知道散射和中子的发觉过程,体会理论对实践的指导作用,进一步了解动量守恒定律的普适性.一、弹性碰撞和非弹性碰撞1.弹性碰撞:碰撞过程中机械能守恒.2.非弹性碰撞:碰撞过程中机械能不守恒.3.完全非弹性碰撞:碰撞后合为一体或碰后具有共同速度,这种碰撞动能损失最大.二、对心碰撞和非对心碰撞1.正碰:(对心碰撞)两个球发生碰撞,假如碰撞之前球的速度方向与两球心的连线在同一条直线上,碰撞之后两个球的速度方向仍会沿着这条直线的方向而运动.2.斜碰:(非对心碰撞)两个球发生碰撞,假如碰撞之前球的运动速度方向与两球心的连线不在同一条直线上,碰撞之后两球的速度都会偏离原来两球心的连线而运动.想一想质量相等的两个物体发生正碰时,肯定交换速度吗?答案不肯定.只有质量相等的两个物体发生弹性正碰时,同时满足动量守恒和机械能守恒的状况下,两物体才会交换速度.三、散射1.定义:微观粒子碰撞时,微观粒子相互接近时并不像宏观物体那样“接触”而发生的碰撞.2.散射方向:由于粒子与物质微粒发生对心碰撞的概率很小,所以多数粒子碰撞后飞向四周八方.一、对碰撞问题的理解1.碰撞(1)碰撞时间格外短,可以忽视不计.(2)碰撞过程中内力往往远大于外力,系统所受外力可以忽视不计,所以系统的动量守恒.2.三种碰撞类型(1)弹性碰撞动量守恒:m1v1+m2v2=m1v1′+m2v2′机械能守恒:12m1v21+12m2v22=12m1v1′2+12m2v2′2当v2=0时,有v1′=m1-m2m1+m2v1,v2′=2m1m1+m2v1即v1′=0,v2′=v1推论:质量相等,大小、材料完全相同的弹性小球发生弹性碰撞,碰后交换速度.即v1′=v2,v2′=v1 (2)非弹性碰撞动量守恒:m1v1+m2v2=m1v1′+m2v2′机械能削减,损失的机械能转化为内能|ΔE k|=E k初-E k末=Q(3)完全非弹性碰撞动量守恒:m1v1+m2v2=(m1+m2)v共碰撞中机械能损失最多|ΔE k|=12m1v21+12m2v22-12(m1+m2)v2共例1质量分别为300 g和200 g的两个物体在无摩擦的水平面上相向运动,速度分别为50 cm/s和100 cm/s.(1)假如两物体碰撞并粘合在一起,求它们共同的速度大小;(2)求碰撞后损失的动能;(3)假如碰撞是弹性碰撞,求两物体碰撞后的速度大小.答案(1)0.1 m/s(2)0.135 J(3)0.7 m/s0.8 m/s解析(1)令v1=50 cm/s=0.5 m/s,v2=-100 cm/s=-1 m/s,设两物体碰撞后粘合在一起的共同速度为v,由动量守恒定律得m1v1+m2v2=(m1+m2)v,代入数据解得v=-0.1 m/s,负号表示方向与v1的方向相反.(2)碰撞后两物体损失的动能为ΔE k =12m 1v 21+12m 2v 22-12(m 1+m 2)v 2=[12×0.3×0.52+12×0.2×(-1)2-12×(0.3+0.2)×(-0.1)2] J =0.135 J. (3)假如碰撞是弹性碰撞,设碰后两物体的速度分别为v 1′、v 2′,由动量守恒定律得m 1v 1+m 2v 2=m 1v 1′+m 2v 2′, 由机械能守恒定律得12m 1v 21+12m 2v 22=12m 1v 1′2+ 12m 2v 2′2,代入数据得v 1′=-0.7 m/s ,v 2′=0.8 m/s. 二、弹性正碰模型及拓展应用1.两质量分别为m 1、m 2的小球发生弹性正碰,v 1≠0,v 2=0,则碰后两球速度分别为v 1′=m 1-m 2m 1+m 2v 1,v 2′=2m 1m 1+m 2v 1.(1)若m 1=m 2的两球发生弹性正碰,v 1≠0,v 2=0,则碰后v 1′=0,v 2′=v 1,即二者碰后交换速度. (2)若m 1≫m 2,v 1≠0,v 2=0,则二者弹性正碰后, v 1′=v 1,v 2′=2v 1.表明m 1的速度不变,m 2以2v 1的速度被撞出去.(3)若m 1≪m 2,v 1≠0,v 2=0,则二者弹性正碰后,v 1′=-v 1,v 2′=0.表明m 1被反向以原速率弹回,而m 2仍静止.2.假如两个相互作用的物体,满足动量守恒的条件,且相互作用过程初、末状态的总机械能不变,广义上也可以看成是弹性碰撞.例2 如图16-4-1所示,ABC 为一固定在竖直平面内的光滑轨道,BC 段水平,AB 段与BC 段平滑连接,质量为m 1的小球从高为h 处由静止开头沿轨道下滑,与静止在轨道BC 段上质量为m 2的小球发生碰撞,碰撞后两球的运动方向处于同一水平线上,且在碰撞过程中无机械能损失.求碰撞后小球m 2的速度大小v 2.图16-4-1 答案2m 12ghm 1+m 2解析 设m 1碰撞前的速度为v 10,依据机械能守恒定律有m 1gh =12m 1v 210 解得v 10=2gh ①设碰撞后m 1与m 2的速度分别为v 1和v 2,依据动量守恒定律有m 1v 10=m 1v 1+m 2v 2②由于碰撞过程中无机械能损失 12m 1v 210=12m 1v 21+12m 2v 22③ 联立②③式解得v 2=2m 1v 10m 1+m 2④将①代入④得v 2=2m 12ghm 1+m 2借题发挥 对于物理过程较简单的问题,应留意将简单过程分解为若干简洁的过程(或阶段),推断在哪个过程中系统动量守恒,哪一个过程机械能守恒或不守恒,但能量守恒定律却对每一过程都适用. 例3图16-4-2如图16-4-2所示,在光滑水平面上停放质量为m 装有弧形槽的小车.现有一质量也为m 的小球以v 0的水平速度沿切线水平的槽口向小车滑去(不计摩擦),到达某一高度后,小球又返回小车右端,则( )A .小球在小车上到达最高点时的速度大小为v 02B .小球离车后,对地将向右做平抛运动C .小球离车后,对地将做自由落体运动D .此过程中小球对车做的功为12m v 2答案 ACD解析 小球到达最高点时,小车和小球相对静止,且水平方向总动量守恒,小球离开车时类似完全弹性碰撞,两者速度完成互换,故选项A 、C 、D 都是正确的. 三、碰撞需满足的三个条件1.动量守恒,即p 1+p 2=p 1′+p 2′.2.动能不增加,即E k1+E k2≥E k1′+E k2′或p 212m 1+p 222m 2≥p 1′22m 1+p 2′22m 2.3.速度要符合情景:碰撞后,原来在前面的物体的速度肯定增大,且原来在前面的物体的速度大于或等于原来在后面的物体的速度,即v 前′≥v 后′,否则碰撞不会结束.。
高三力学复习十五讲--碰撞、反冲

力学复习十一、 动量守恒定律应用——碰撞、反冲【知识点析】1、碰撞:相互作用的几个物体,在极短的时间内它们的运动状态发生显著变化,这个过程就可称为碰撞。
(1)特点:一是碰撞的物体之间的作用时间短;二是碰撞物体之间的作用力大,物体的运动状态改变显著。
(2)规律:动量守恒定律。
(3)种类。
①按碰撞前后的速度方向可分为:正碰:碰撞前后的速度方向在一条直线上.斜碰:碰撞前后的速度方向不在一条直线上.②按能量变化情况可分为:弹性碰撞:碰撞后系统的总动能没有损失.非弹性碰撞:碰撞后系统的总动能有损失.(4)原则原则一:系统动量守恒的原则三种类型碰撞的共同特点:碰撞中的相互作用的内力远大于系统外力,所以碰撞问题的解应首先满足系统动量守恒的原则,其数学表式为:m 1v 1+m 2v 2=m 1′v 1′+m 2′v 2′, 或△p 1+△p 2=0。
原则二:物理情景可行性原则碰撞过程中相互作用的内力对其中一个物体是外力,应遵守牛顿第三定律,同时要满足动量定理。
不同的碰撞有各自的特点。
例如,相向碰撞和追赶碰撞,碰撞前后的v, p, E K 都有各自的规律,其情况比较复杂,一定要根据具体情况认真分析其过程,确定物理情景是否可行。
原则三:不违背能量守恒的原则三种碰撞,除完全弹性碰撞中系统的机械能不损失外,其它碰撞中系统均有机械能的损失,而完全非弹性碰撞中系统机械能损失最多,所以系统必须满足:2221212221212222112222112222,21212121m p m p m p m p v m v m v m v m '+'≥+'+'≥+或 其可能的合理解应介于完全弹性碰撞和完全非弹性碰撞的解之中。
2、反冲:当物体的一部分以一定的速度离开物体时,剩余部分将获得一个反向冲量,这种现象叫反冲运动.(1)实例:发射炮弹,爆竹爆炸,发射火箭.(2)特点:系统相互作用的内力远大于系统受到的外力.(3)规律:系统总动量守恒[例题思析][例题1] 两只小船逆向航行,航线邻近,在两船首尾相齐时,由每只船上各自向对方放置一质量为m=50kg 的麻袋,结果载重较小的船停了下来,另一船则以v=8.5m/s 的速度沿原方向航行.设两只小船及船上载重量分别为m 1=500kg,m 2=1000kg,问交换麻袋前各小船的速率多大?(水的阻力不计)[解析] 在水的阻力(外力)不计的情况下,系统动量守恒.分别以各小船原航行方向为正方向,则对抛出麻袋后的小船和 m 2上麻袋组成的系统有(m 1-m)v 1-mv 2=0 …………………………………①对抛出麻袋后的小船和m 1 上的麻袋组成的系统有(m 2-m)v 2-mv 1=(m 2-m+m)v …………………………………②代入数据得(500-50)v 1-50v 2=0 …………………………………①’(1000-50)v 2-50v 1=1000×8.5 ………………………………②’解之可得 v 1=1m/s,v 2=9m/s.[注意] 本题也可选取两船及其麻袋组成一个系统,设m 2船原航行方向为正方向,可列如下方程m 2v 2-m 1v 1=(m 2-m+m)v+(m 1-m+m)×0 ………………………③③结合①或②式求解。
第六章 微专题46 “广义碰撞”的三种模型

广义碰撞的三种模型1.“弹簧—滑块”模型:(1)系统动量守恒,机械能守恒,但系统的总动能会与弹性势能发生转化.(2)弹簧处于最长(最短)状态时两物体速度相等,相当于完全非弹性碰撞,此时动能最小、弹性势能最大;弹簧恢复原长时相当于完全弹性碰撞,此时系统的总动能守恒.2.“板—块”模型:系统的动量守恒,当两者的速度相等时,相当于完全非弹性碰撞,系统机械能损失最大,损失的机械能转化为系统内能.3.“斜面模型”:系统只在水平方向动量守恒,当小球滑至斜面最大高度时两物体具有共同速度,此时相当于完全非弹性碰撞,系统损失的动能转化为小球增加的势能.对小球从冲上斜面又滑离斜面的全过程,相当于弹性碰撞,全过程系统机械能守恒.1.(多选)(2019·吉林省“五地六校”合作体联考)如图1所示,在光滑水平地面上,A 、B 两物体质量都为m ,A 以速度v 向右运动,B 左端有一轻弹簧且初速度为0,在A 与弹簧接触以后的过程中(A 与弹簧不粘连),下列说法正确的是( )A .轻弹簧被压缩到最短时,A 、B 系统总动量仍然为m v B .轻弹簧被压缩到最短时,A 的动能为14m v 2 C .弹簧恢复原长时,A 的动量一定为零 D .A 、B 两物体组成的系统机械能守恒2.(多选)(2019·河南驻马店市第一学期期终)如图2所示,光滑水平直轨道上有三个质量均为m =3 kg 的物块A 、B 、C ,物块B 的左侧固定一轻弹簧(弹簧左侧的挡板质量不计).设A 以v 0=4 m/s 的速度朝B 开始运动,压缩弹簧;当A 、B 速度相等时,B 与C 恰好相碰并粘接在一起,然后继续运动.假设B 和C 碰撞过程时间极短,则以下说法正确的是( )A .从开始到弹簧最短时物块C 受到的冲量大小为1 N·sB .从开始到弹簧最短时物块C 受到的冲量大小为4 N·sC .从开始到A 与弹簧分离的过程中整个系统损失的机械能为3 JD .从开始到A 与弹簧分离的过程中整个系统损失的机械能为9 J3.(2020·福建三明市质检)如图3甲所示,一轻弹簧的两端与质量分别为m 1、m 2的两物块A 、B 相连接,并静止在光滑水平面上.现使A 获得水平向右、大小为3 m/s 的瞬时速度,从此刻开始计时,两物块的速度随时间变化的规律如图乙所示,从图像提供的信息可得( )A .在t 1和t 3时刻两物块达到共同速度1 m/s ,且弹簧都处于压缩状态B .在t 1~t 2时间内A 、B 的距离逐渐增大,t 2时刻弹簧的弹性势能最大C .两物块的质量之比为m 1∶m 2=2∶1D .在t 2时刻A 、B 两物块的动能之比为E k1∶E k2=1∶84.(2019·山东日照市上学期期末)如图4所示,光滑的水平桌面上放置一质量M =4 kg 、长L =0.6 m 的长木板B ,质量m =1 kg 的小木块A (可看成质点)放在长木板的左端,开始A 、B 均处于静止状态.现有一个与A 完全相同的小木块C 从长木板右侧以v 0=6 m/s 的初速度冲向长木板,碰后以v 1=2 m/s 的速度被反向弹回(碰撞时间极短),最终小木块A恰好不滑落长木板.重力加速度g=10 m/s2.求:(1)碰后瞬间长木板B的速度;(2)小木块A与长木板间的动摩擦因数.5.(2019·河南平顶山市一轮复习质检)如图5所示,质量为m的物块A在光滑的水平面上以一定的速度向右滑行,质量为2m的圆弧体静止在光滑水平面上,光滑圆弧面最低点与水平面相切,圆弧的半径为R,圆弧所对的圆心角θ=53°,物块滑上圆弧体后,刚好能滑到圆弧体的最高点,重力加速度为g,sin 53°=0.8,cos 53°=0.6.求:(1)物块在水平面上滑行的速度大小;(2)若将圆弧体锁定,物块仍以原来的速度向右滑行并滑上圆弧体,则物块从圆弧面上滑出后上升到最高点的速度大小及最高点离地面的高度.6.(2019·北京市东城区二模)能量守恒定律和动量守恒定律是自然界最普遍、最基本的规律,它为我们解决许多实际问题提供了依据.如图6所示,在光滑的水平面上,静止放置质量为2m的滑块B,其左侧面固定一轻质弹簧,现有一质量为m的滑块A,以初速度v0正对B向右运动,在此后的运动过程中,A、B始终在同一直线上运动.(1)求弹簧压缩量最大时B的速率v;(2)求滑块B的最大速率v B;(3)若在滑块B的右侧某处固定一弹性挡板C,挡板的位置不同,B与C相碰时的速度不同.已知B滑块与C碰撞时间极短,B与C碰后速度立刻等大反向,B与C碰撞的过程中,可认为A的速度保持不变.B与挡板相碰后立即撤去挡板C.此后运动过程中,A、B系统的弹性势能的最大值为E pm,挡板位置不同,E pm 的数值不同,求E pm的最小值.7.(2020·河南省顶级名校联测)如图7所示,放在光滑水平面上的小车可以在两个固定障碍物A、B之间往返运动.小车最左端放有一个小木块,初始小车紧挨障碍物A静止.某时刻,一粒子弹以速度v0射中木块并嵌入其中.小车向右运动到与障碍物B 相碰时,木块恰好运动到了小车的最右端,且小车与木块恰好达到共速.小车和它上面的木块同时与障碍物B 相碰,碰后小车速度立即减为零,而木块以碰撞之前的速度反弹,过一段时间,小车左端又与障碍物A 相碰,碰后小车速度立即减为零,木块继续在小车上向左滑动,速度逐渐减为零而停在小车上.已知小车的质量为m ,长度为L ,小木块质量为25m ,子弹质量为110m ,重力加速度为g .子弹和小木块都可以看做质点.求:(1)小木块运动过程中的最大速度;(2)小车从左到右运动的最大距离以及小木块与小车间的动摩擦因数;(3)小木块最终停止运动后,木块在小车上的位置与小车右端的距离.答案精析1.AC [A 和B 及轻弹簧组成的系统所受的合外力为零,动量守恒,初状态总动量为m v ,则弹簧压缩至最短时,系统总动量仍然为m v ,故A 正确;轻弹簧被压缩到最短时,A 和B 的速度相等,由动量守恒有m v=2m v 共,可得v 共=v 2,则此时A 的动能为E k A =12m v 共2=18m v 2,故B 错误;A 和B 在相对靠近压缩弹簧和相对远离弹簧恢复原长的过程中,满足A 、B 与轻弹簧组成的系统的动量守恒和机械能守恒有:m v =m v A +m v B ,12m v 2=12m v A 2+12m v B 2,可得v A =0,v B =v ,故C 正确;A 、B 两物体组成的系统的机械能有一部分转化为弹簧的弹性势能,机械能不守恒,而A 和B 及弹簧组成的系统没有其他能参与转化,机械能守恒,故D 错误.]2.BC [设当A 、B 速度相等且B 与C 碰撞之前A 、B 的速度为v 1,以v 0的方向为正方向,根据动量守恒定律有m v 0=2mv 1,解得v 1=2 m/s; 从开始到弹簧最短时,对A 、B 、C 系统有:m v 0=3m v 2,解得v 2=43m/s ;从开始到弹簧最短时,对物块C ,由动量定理:I =m v 2=4 N·s ,选项B 正确,A 错误;B 与C 相碰的过程:m v 1=2m v 3,解得v 3=1 m/s ;则从开始到A 与弹簧分离的过程中整个系统损失的机械能为ΔE =12m v 12-12·2m v 32=3 J ,选项C 正确,D 错误.] 3.D [在t 1和t 3时刻两物块达到共同速度1 m/s ,且t 1时刻弹簧处于压缩状态,t 3时刻弹簧处于伸长状态,两个时刻弹簧的弹性势能最大;由图像的面积可知,在t 1~t 2时间内A 、B 的距离逐渐增大,选项A 、B 错误;根据动量守恒,从0~t 1时刻:m 1v 0=(m 1+m 2)v 1,即3m 1=(m 1+m 2)×1,解得2m 1=m 2,选项C 错误;在t 2时刻A 、B 两物块的速度分别为-1 m/s 和2 m/s ,根据E k =12m v 2,可知动能之比为E k1∶E k2=1∶8,选项D 正确.]4.(1) 2 m/s ,方向向左 (2)0.27解析 (1)规定向左为正方向,对B 、C 系统,由动量守恒定律有:m v 0=M v -m v 1代入数据解得:v =2 m/s ,方向向左;(2)A 与B 作用过程,由动量守恒定律有:M v =(M +m )v 共代入数据解得:v 共=1.6 m/s由能量守恒定律有:μmgL =12M v 2-12(m +M ) v 共2 代入数据解得:μ≈0.27.5.(1) 65gR (2)3525gR 66125R 解析 (1)物块与圆弧体组成的系统在水平方向动量守恒,物块到达最高点时两者速度相等,以向右为正方向,由动量守恒定律有:m v 0=(m +2m )v ,由机械能守恒定律有:12m v 02=12(m +2m )v 2+mgR (1-cos θ), 联立解得:v 0=65gR ; (2)对物块,由机械能守恒定律有:12m v 02=12m v 12+mgR (1-cos θ), 解得: v 1=25gR 物块从圆弧最高点抛出后,在水平方向做匀速直线运动,竖直方向做竖直上抛运动,物块到达最高点时,物块的速度:v 2=v 1cos θ=3525gR , 由机械能守恒定律有:12m v 02=mgh +12m v 22, 联立解得:h =66125R . 6.(1)13v 0 (2)23v 0 (3)127m v 02 解析 (1)A 、B 速度相同时,弹簧压缩量最大即弹性势能最大,以初速度v 0的方向为正方向,由动量守恒有:m v 0=3m v解得v =13v 0; (2)弹簧恢复原长时,滑块B 的速度最大,由动量守恒有:m v 0=m v A +2m v B由能量关系有:12m v 02=12m v A 2+12·2m v B 2 解得v A =13v 0,v B =2m 2m +mv 0=23v 0; (3)B 与挡板碰撞后,当A 、B 共速时弹性势能最大,整个过程中机械能守恒,则有:E pm =12m v 02-32m v 共′2 当v 共′最大时,E pm 最小;设B 、C 碰前瞬间,A 、B 的速度分别为v A ′、v B ′,由动量守恒:m v 0=m v A ′+2m v B ′B 、C 碰后至A 、B 再次共速的过程,对系统:m v A ′-2m v B ′=3m v 共′当B 与C 碰撞前弹簧恢复原长时,A 的速度向左最大,B 的速度向右最大,且B 的动量:p m =2m v B >m v 0 在这种情况下,B 与挡板碰撞后,A 、B 速度均向左,总动量向左最大;由(2)可知:v A ′=-13v 0,v B ′=23v 0 再由:m v A ′-2m v B ′=3m v 共′可得v 共′=-59v 0, 则(E pm )min =12m v 02-32m v 共′2=127m v 02. 7.(1)15v 0 (2)L 3 v 0275Lg (3)754L 解析 (1)设子弹和小木块的共同速度为v 1,以v 0的方向为正方向,根据动量守恒定律有:110m v 0=⎝⎛⎭⎫110m +25m v 1解得:v 1=15v 0; (2)内嵌子弹的小木块与小车作用过程,子弹、小木块和小车组成的系统动量守恒,设共同速度为v 2,则有:⎝⎛⎭⎫110m +25m v 1=⎝⎛⎭⎫110m +25m +m v 2 解得:v 2=115v 0 小木块与小车之间的摩擦力大小为f ,木块从A 运动到B 的路程为s ,对小木块有:-fs =12×⎝⎛⎭⎫110m +25m v 22-12⎝⎛⎭⎫110m +25m v 12 对小车有:f (s -L )=12m v 22 解得:s =43L ,f =m v 02150L小车从A 运动到B 的路程为:s -L =L 3动摩擦因数:μ =v 0275gL; (3)内嵌子弹的小木块反弹后与小车达到相对静止状态,共同速度为v 3,相对小车滑行的距离为s 1,小车停后小木块做匀减速运动,相对小车滑行距离为s 2根据动量守恒有:⎝⎛⎭⎫110m +25m v 2=⎝⎛⎭⎫110m +25m +m v 3 解得:v 3=13v 2=145v 0 根据能量守恒:fs 1=12×⎝⎛⎭⎫110m +25m v 22-12⎝⎛⎭⎫110m +25m +m v 32 对内嵌子弹的小木块,根据动能定理有fs 2=12×⎝⎛⎭⎫110m +25m v 32 解得:s 1=L 9,s 2=154L 内嵌子弹的小木块在小车上的位置与小车右端的距离:x =s 1+s 2=754L .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【三种碰撞模拟试题】(答题时间:45分钟)
1. 如图所示,三个小球a 、b 、c 的质量都是m ,都放于光滑的水平面上,b 、c 与轻弹簧相连,都静止,a
以速度0v 冲向b ,碰后与b 一起运动,在整个运动过程中( )
A. 三球与弹簧的总动量守恒,总机械能不守桓
B. 三球与弹簧的总动量守恒,总机械能也守恒
C. 当b 、c 球速度相等时,弹簧的势能最大
D. 当弹簧恢复原长时,c 球的动能一定最大,b 球的动能一定为零
2. 如图所示,在光滑的水平面上放着一辆小车C ,车上有A 、B 两物体,两物体跟车面之间的动摩擦因数相
同,A 、B 用一轻弹簧相连接,从A 、B 两侧压缩弹簧然后由静止释放,则( ) A. 以A 、B 为系统动量守恒,机械能守恒
B. 以A 、B 为系统动量不守恒,机械能守恒
C. 以A 、B 、C 为系统动量守恒,机械能守恒
D. 以A 、B 、C 为系统动量守恒,机械能不守恒
3. 甲、乙两球在光滑的水平面上,在同一直线同一方向上运动,它们的动量分别为甲P =5kgm/s ,乙P =7kgm
/s ,已知甲的速度大于乙的速度,当甲球与乙球碰撞后乙球的动量变为10kgm /s ,则甲、乙两球质量m 甲、m 乙的关系可能是下面哪几种( ) A. m 甲=m 乙 B. m 甲=
2
1m 乙 C. m 甲=5
1m 乙 D. m 甲=10
1m 乙
4. 放在光滑水平面上的甲、乙两物体,系在同一根绳的两端,开始时绳是松驰的,今使甲、乙沿平面反向
运动并将绳拉断,那么在绳拉断后,甲、乙可能的运动情况是( ) A. 甲和乙同时都停下来
B. 甲和乙仍按各自原来的运动方向运动
C. 其中一个停下来,另一个反向运动
D. 其中一个停下来,另一个仍按原方向运动
5. 如图所示,一轻弹簧左端固定在长木块M 的左端,右端与小木块m 连接,且m 、M 及M 与地面间接触
光滑,开始时,m 和M 均静止,现同时对m 、M 施加等大反向的水平恒力F 1和F 2,从两物体开始运动
以后的整个运动过程中,对m 、M 和弹簧组成的系统(整个过程中弹簧形变不超过其弹性限度),正确的说法是( )
A. 由于F 1、F 2等大反向,故系统机械能守恒
B. 由于F 1、F 2分别对m 、M 做正功,故系统动量不断增加
C. 由于F 1、F 2分别对m 、M 做正功,故系统机械能不断增加
D. 当弹簧弹力大小与F 1、F 2大小相等时,m 、M 的动能最大 6. 在光滑的水平冰面上,有一个小孩坐着冰车同时推着一木箱一起滑行,他突然把木箱迅速推出,则( )
A. 这一过程中系统的总机械能守恒
B. 这一过程中系统的总动量守恒
C. 小孩对木箱做的功等于小孩和冰车动能的减少量
D. 小孩对木箱做的功等于木箱动能的增量
7. 如图所示,斜面上除AB 段粗糙外,其余部分均是光滑的,且物体与AB 段动摩擦因数处处相同,今使该
物体(视为质点)由斜面顶端O 处由静止开始下滑,经过A 点时的速度与经过C 点时速度相等,已知 AB=BC ,则下述说法正确的是( )
A. 物体在AB 段与BC 段的加速度大小相等
B. 物体在AB 段与BC 段的运动时间相等
C. 重力在这两段中所做功相同
D. 物体在AB 段与BC 段的动量变化相同
8. 如图所示,某人身系弹性绳自高空P 点自由下落,图中a 点是弹性绳的原长位置,c 是人所到达的最低点,b 是人静止时悬吊着的平衡位置,不计空气阻力,下列说法中正确的是( )
A. 从P 至c 过程中重力的冲量大于弹性绳弹力的冲量
B. 从P 至c 过程中重力做的功等于人克服弹力做的功
C. 从P 至b 过程中人的速度不断增大
D. 从a 至c 过程中加速度方向保持不变
9. 如图所示,环K 和球的质量相等,它们分别系在一根长为L 的轻杆两端,环套在光滑的水平金属棍上,
杆与环用一质量不计的光滑轴相连,将轻杆L 拉至水平状态,然后小球由静止释放,不计空气阻力,站在地上的人观察( ) A. 小球将做圆周运动
B. 小球将做自由落体运动
C. 小球在下落h <L 的过程中,环做加速运动
D. 小球下落至h =L 时,环和小球的速率均达到最大
10. 如图所示,在倾角为θ的斜面上,以速度0v 水平抛出一个质量为m 的小球(斜面足够长,重力加速度
为g )在小球从开始运动到小球离开斜面的距离最大过程中,下列说法正确的是( ) A. 运动时间:g v t 0= B. 动量的变化量:θtg mv p 0=∆
C. 重力做功:2/2
20θtg mv W = D. 平均功率:2/0θtg mgv P =
11. 一个质量为m=1kg ,沿水平方向飞行的炮弹具有动能J E K 800=,突然爆炸成质量相等的两块。
若其中一块沿原方向飞行,其动能为J E K 6251=,则另一块碎片的动能和飞行方向为( )
A. 625J ,向前
B. 175J ,向后
C. 175J ,向前
D. 225J ,向前
12. 如图所示,质量均为M 的铝板A 和铁板B 分别放在光滑水平地面上。
质量为m (m <M )的同一木块C ,先后以相同的初速度0v 从左端滑上A 和B ,最终C 相对于A 和B 都保持相对静止。
在这两种情况下( )
A. C 的最终速度相等
B. C 相对于A 和B 滑行的距离相等 ”
C. A 和B 相对于地面滑行的距离相等
D. 两种情况下产生的热量相等
13. 质量为M 的木块放在光滑水平面上,一质量为m 的子弹以水平速度v 射入木块,但未穿出,在此过程中( )
A. 子弹的末动能与木块的末动能之和等于子弹的初动能
B. 子弹的末动量与木块的末动量之和等于子弹的初动量
C. 子弹与木块受的摩擦力,一个是阻力,一个是动力,两者作功的绝对值相等
D. 子弹克服摩擦力所做的功等于木块的末动能与系统内能增加之和
14. 如图所示,木块静止在光滑的水平桌面上,以子弹水平射入木块的深度为d时,子弹与木块相对静止,在木块射入的过程中,木块沿桌面移动的距离为L,木块对子弹的平均阻力为f,那么在这一过程中()
A. 木块的机械能的增量为f·L
B. 子弹的机械能的减少量为f(L+d)
C. 系统机械能的减少量为f·d
D. 系统机械能的减少量为f(L+d)
15. 如图所示,质量为M的“L”形物体,静止在光滑的水平面上。
物体的AB部分是半径为R的四分之一光滑圆弧,BC部分是水平面,将质量为m的小滑块从物体的A点静止释放,沿圆弧面滑下并最终停在物体的水平部分BC之间的D点。
则()
A. 滑块m从A滑到B的过程,物体与滑块组成的系统动量守恒、机械能守恒
B. 滑块滑到B点时,速度大小等于gR
2
C. 滑块从B运动到D的过程,系统的动量和机械能都不守恒
D. 滑块滑到D点时,物体的速度等于0
【试题答案】
1. AC
2. D
3. C
4. ABD
5. D
6. BD
7. ABC
8. BC
9. CD
10. BCD 11. D 12. AD 13. BD 14. ABC 15. D。