八年级上十二章轴对称知识点总结(最全最新)

合集下载

八年级上数学轴对称知识点

八年级上数学轴对称知识点

八年级上数学轴对称知识点数学中的轴对称是一个重要的概念,它在几何学中有着特殊的地位。

轴对称是一种在几何上对称性的表示,就是说经过此类对称变换后,物体会维持原来的形状。

轴对称广泛应用于数学的各个领域,从简单的平面图形到三维几何图形,都可以应用轴对称进行变形。

而在八年级上数学的学习中,轴对称是数学中一个重要的知识点。

接下来,本文将为大家详细介绍八年级上数学轴对称的知识点。

一、轴对称的定义及性质1.定义:平面上的轴对称是指当一个点绕着轴旋转180度后,仍能落在原来的位置上的变换。

2.性质:若点P和点P'在轴对称的图形上位于同一位置,则它们在轴上的距离相等,且轴垂直于P和P'之间的连线。

二、轴对称的应用1.轴对称可以应用于平面图形的构造,如圆,矩形,三角形等。

2.轴对称可以帮助我们求出平面图形的对称中心,并用这个对称中心得到一些图形的性质。

3.轴对称可以用于解题,如对称图形的面积、图形重心的求解等。

三、轴对称与对称中心的求解1.对称中心的定义:一个平面图形可以有很多对称中心,但每个对称中心都必须满足:通过这个对称中心,将图形分为对称的两部分,且分割的两部分的对应点在图形轴对称的位置上。

2.求解对称中心的方法:通过找到轴对称图形上的对称关系,确定对称直线的位置,然后在对称直线上作垂线,交点即为对称中心。

四、轴对称的练习1.练习一:如图,在平面直角坐标系中,直线l是x轴的正半轴,正方形ABCD经过轴对称后,变为图形A'B'C'D',点C、C'、E在同一直线上,且EE'的坐标为(7,4),求正方形ABCD的边长。

解:通过图形的观察,我们可以得出以下结论:1)正方形ABCD在x轴上的对称点是A’B’C’D’,因为它们的横坐标相等,纵坐标互为相反数。

2)点C、C’、E在同一直线上,因此点E的坐标应该是在点C和C’连线上的,可以算出点C(x,y)的坐标后,求出点C’的坐标,再连通C’E’的直线,求出其上与x轴交点的坐标即可求出正方形的边长。

八年级上册轴对称的知识点

八年级上册轴对称的知识点

八年级上册轴对称的知识点轴对称是几何中常见的概念,也是初中数学中必须掌握的一个知识点。

在此,我们将对八年级上册轴对称的相关知识进行详细介绍,以便同学们更好地掌握。

一、轴对称的定义
轴对称,指平面上存在一条直线,将图形对称折叠后,两边完全重合,那么这条直线就叫做轴对称线,这种图形就是轴对称图形。

二、轴对称的性质
1.轴对称线是图形的对称轴,对称轴上任意一点到图形两边的距离相等。

2.轴对称图形中,如果一条线段与对称轴垂直,那么它与对称轴的交点一定在对称轴的中点。

3.轴对称图形中,如果一条线段与对称轴平行,那么它对称后
的线段与原线段的距离相等。

三、轴对称的判定方法
1.对称中心法:将图形折叠后,查看两边是否完全重合,确定
对称中心及轴对称线。

2.寻找轴对称点法:通过寻找具有对称性的点,确定轴对称线。

四、轴对称的常见图形
1.正方形:正方形具有4条对称轴,分别是4个边的中垂线和
2条对称线。

2.矩形:矩形具有2条对称轴,分别是2条相邻边的中垂线。

3.等边三角形:等边三角形具有3条对称轴,分别是3条中线。

4.等腰三角形:等腰三角形具有1条对称轴,即过顶点与底边中点的中线。

5.圆:圆具有无数条对称轴,都是其直径。

五、轴对称的应用
轴对称不仅在几何学中有广泛的应用,而且在现实生活中也有很多应用。

比如对称艺术品、镜像照片等。

六、总结
轴对称作为初中几何中的基础知识,是我们往后学习更高级几何学知识的基础。

通过本篇文章的介绍和总结,相信同学们已经对轴对称有了更深入的理解和掌握。

八年级上册数学轴对称知识点总结

八年级上册数学轴对称知识点总结

八年级上册数学轴对称知识点总结
八年级上册数学轴对称的知识点总结如下:
1. 轴对称图形:如果一个图形可以折叠成两半,使得两半完全重合在一起,则这个图形是轴对称的。

轴对称图形具有轴对称轴,也称为镜像轴。

2. 轴对称图形的性质:
- 图形的每个点关于轴对称轴对应有另一个点。

- 图形的每一对对称点与轴对称轴的距离相等。

- 图形的任意两点关于轴对称轴的连线垂直于轴对称轴。

3. 轴对称图形的判断方法:
- 观察图形是否可以折叠成两半,使得两半完全重合。

- 观察图形是否和它自己的镜像一样。

4. 轴对称图形的绘制方法:
- 给出轴对称轴,沿着轴对称轴将图形折叠。

- 给定部分图形的对称点,通过连接对称点来绘制完整的轴对称图形。

5. 轴对称图形的性质的应用:
- 可以通过找到轴对称图形的对称点来绘制完整的图形。

- 可以通过轴对称图形的性质来解决有关对称点的问题,如求解距离、面积等。

这些都是八年级上册数学轴对称的知识点的总结,希望对你有所帮助!。

八年级上册数学轴对称知识点总结

八年级上册数学轴对称知识点总结

八年级上册数学轴对称知识点总结篇1:八年级上册数学轴对称知识点总结八年级上册数学轴对称知识点总结1.对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

2.性质:(1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

(2)角平分线上的点到角两边距离相等。

(3)线段垂直平分线上的任意一点到线段两个端点的距离相等。

(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

(5)轴对称图形上对应线段相等、对应角相等。

3.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)4.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。

5.等腰三角形的判定:等角对等边。

6.等边三角形角的特点:三个内角相等,等于60°,7.等边三角形的判定:三个角都相等的三角形是等腰三角形。

有一个角是60°的.等腰三角形是等边三角形有两个角是60°的三角形是等边三角形。

8.直角三角形中,30°角所对的直角边等于斜边的一半。

9.直角三角形斜边上的中线等于斜边的一半。

数学学习方法诀窍1细心地发掘概念和公式很多同学对概念和公式不够重视,这类问题反映在三个方面:一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。

例如,在代数式的概念(用字母或数字表示的式子是代数式)中,很多同学忽略了“单个字母或数字也是代数式”。

二是,对概念和公式一味的死记硬背,缺乏与实际题目的联系。

这样就不能很好的将学到的知识点与解题联系起来。

三是,一部分同学不重视对数学公式的记忆。

记忆是理解的基础。

如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢?我们的建议是:更细心一点(观察特例),更深入一点(了解它在题目中的常见考点),更熟练一点(无论它以什么面目出现,我们都能够应用自如)。

2养成良好的解题习惯要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。

八年级上册数学轴对称知识点

八年级上册数学轴对称知识点

八年级上册数学轴对称知识点在初中数学中,轴对称是一个非常重要的知识点。

轴对称是指在一个平面上,如果有一条直线,把这个平面分成两个对称的部分,那么我们就说这个平面是轴对称的。

八年级上册的数学课程中,轴对称被涉及到了,下面我们来详细地探讨一下轴对称的相关知识点。

一、轴对称的定义和性质轴对称的定义如上所述,即沿着一条直线进行对称,这条直线就称为轴线或者对称轴。

在轴对称的情况下,通过轴对称得到的镜像图形和原图形完全重合,这也就是轴对称的性质。

轴对称有如下的性质:(1)轴对称图形共有或自成一类轴对称得到的镜像图形和原图形完全重合,因此当把某个图形做轴对称后,得到的图形和原图形形状相同,只是位置不同。

所以,轴对称得到的镜像图形和原图形共有或自成一类。

(2)轴对称的两个对称图形的距离等于轴到这两个图形的距离我们知道,轴对称的求法是以轴线为轴进行对称,而轴线到对称位置不同的点的距离不同,因此,轴对称的两个对称图形的距离等于轴到这两个图形的距离。

(3)轴对称保持长度、角度不变轴对称能够保持长度和角度不变的原因是,轴对称的两个对称图形都是完全重合的,所以它们的长度和角度是相同的。

二、轴对称的基本步骤下面我们来看轴对称的基本步骤:(1)确定轴对称的轴线首先,要确定轴对称的轴线,它必须是平面内的一条直线。

(2)确定轴对称的中心点确定轴对称的中心点,这个点一般都在轴线上,它是轴线的中点。

(3)确定轴对称的象限确定轴对称的象限,即确定轴对称得到的镜像图形和原图形的位置关系。

(4)确定轴对称的顺序确定轴对称的顺序,从哪一端开始进行对称。

一般情况下,我们可以从离中心点近的位置开始对称。

三、轴对称的应用轴对称的应用十分广泛,下面我们来看一下轴对称在实际生活中的应用:(1)轮子的轴对称自行车、汽车等车辆的轮子都采用了轴对称的原理。

(2)建筑物的轴对称建筑物在建造过程中也采用了轴对称的方法,比如古希腊罗马建筑中的神殿、半圆形壳体建筑等。

八年级轴对称知识点总结

八年级轴对称知识点总结

八年级轴对称知识点总结在初中数学中,轴对称是一个十分重要的知识点,它不仅在数学中有很重要的应用,也在其他学科中有着广泛的应用。

在八年级阶段,轴对称的学习已经比较深入了,下面我们来总结一下八年级轴对称的知识点。

一、轴对称的定义轴对称是指图形中存在一条直线,使得图形关于这条直线对称。

我们把这条直线称为轴对称线。

轴对称图形可以分为两类:对称中心在轴对称线上的固定图形和对称中心不在轴对称线上的任意图形。

二、轴对称的性质轴对称有一些很特殊的性质:1.轴对称图形中,对于任意一点P,它的对称点P'在轴对称线上。

2.轴对称图形中,对于任意两点P、Q,它们的中点M在轴对称线上。

3.轴对称图形中,对于任意两线段AB、A'B',它们的交点M 在轴对称线上。

三、构造轴对称图形构造轴对称图形有以下几种方法:1.已知轴对称线和对称中心,先作出对称中心到轴对称线的垂线,然后将这条垂线翻折到轴对称线下方,就得到了对称图形。

2.已知轴对称线和对称中心,可以通过将每个点关于对称中心旋转180°后,再平移一定距离得到对称图形。

3.对于规则图形如正方形、正三角形等,可以通过旋转、平移等方式得到轴对称图形。

四、轴对称图形的性质应用轴对称图形的性质可以应用到很多场景中:1.在制作对称的艺术品、标志等方面,轴对称是常用的设计方法。

2.在建筑、船舶、汽车等领域,轴对称可以帮助工程师设计更加稳定、均衡的结构。

3.在生物学中,我们也可以看到很多轴对称的生物,例如海星、蟹、蝎子等。

以上就是八年级轴对称知识点的总结了。

但是轴对称的应用远不止于此,我们需要在实践中不断探索和应用它。

(完整版)八年级上十二章轴对称知识点总结(最全最新)

(完整版)八年级上十二章轴对称知识点总结(最全最新)

(完整版)⼋年级上⼗⼆章轴对称知识点总结(最全最新)轴对称知识点(⼀)轴对称和轴对称图形1、有⼀个图形沿着某⼀条直线折叠,如果它能够与另⼀个图形重合,?那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称.2、轴对称图形:如果⼀个图形沿⼀条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。

这条直线就是它的对称轴。

(对称轴必须是直线)3、对称点:折叠后重合的点是对应点,叫做对称点。

4、轴对称图形的性质:如果两个图形关于某条直线对称,那么对称轴是任何⼀对对应点所连线段的垂直平分线。

类似的,轴对称图形的对称轴,是任何⼀对对应点所连线段的垂直平分线。

连接任意⼀对对应点的线段被对称轴垂直平分.轴对称图形上对应线段相等、对应⾓相等。

5.画⼀图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。

(⼆)、轴对称与轴对称图形的区别和联系区别:轴对称是指两个图形之间的形状与位置关系,?成轴对称的两个图形是全等形;轴对称图形是⼀个具有特殊形状的图形,把⼀个轴对称图形沿对称轴分成两个图形,这两个图形是全等形,并且成轴对称.联系:1:都是折叠重合2;如果把成轴对称的两个图形看成⼀个图形那么他就是轴对称图形,反之亦然。

(三)线段的垂直平分线(1)经过线段的中点并且垂直于这条线段的直线,?叫做这条线段的垂直平分线(或线段的中垂线).(2)线段的垂直平分线上的点与这条线段两个端点的距离相等;反过来,?与⼀条线段两个端点距离相等的点在这条线段的垂直平分线上.(证明是必须有两个点)因此线段的垂直平分线可以看成与线段两个端点距离相等的所有点的集合.(四)⽤坐标表⽰轴对称1、点(x,y)关于x轴对称的点的坐标为(-x,y);2、点(x,y)关于y轴对称的点的坐标为(x,-y);3、点(x,y)关于原点对称的点的坐标为(-x,-y)。

初二数学知识点详解之轴对称

初二数学知识点详解之轴对称

初二数学知识点详解之轴对称一、轴对称图形1.把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。

这条直线就是它的对称轴。

这时我们也说这个图形关于这条直线(成轴)对称。

2.把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。

这条直线叫做对称轴。

折叠后重合的点是对应点,叫做对称点3、轴对称图形和轴对称的区别与联系4.轴对称与轴对称图形的性质①关于某直线对称的两个图形是全等形。

②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。

⑤两个图形关于某条直线成轴对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。

二、线段的垂直平分线1.定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。

2.性质:线段垂直平分线上的点与这条线段的两个端点的距离相等3.判定:与一条线段两个端点距离相等的点,在线段的垂直平分线上三、用坐标表示轴对称小结:1.在平面直角坐标系中①关于x轴对称的点横坐标相等,纵坐标互为相反数;②关于y轴对称的点横坐标互为相反数,纵坐标相等;③关于原点对称的点横坐标和纵坐标互为相反数;④与X轴或Y轴平行的'直线的两个点横(纵)坐标的关系;⑤关于与直线X=C或Y=C对称的坐标点(x,y)关于x轴对称的点的坐标为_(x,-y)_____.点(x,y)关于y轴对称的点的坐标为___(-x,y)___.2.三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等四、(等腰三角形)知识点回顾1.等腰三角形的性质①.等腰三角形的两个底角相等。

(等边对等角)②.等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。

(三线合一)理解:已知等腰三角形的一线就可以推知另两线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

轴对称知识点
(一)轴对称和轴对称图形
1、有一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,•那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称.
2、轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。

这条直线就是它的对称轴。

(对称轴必须是直线)
3、对称点:折叠后重合的点是对应点,叫做对称点。

4、轴对称图形的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

类似的,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

连接任意一对对应点的线段被对称轴垂直平分.轴对称图形上对应线段相等、对应角相等。

5.画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。

(二)、轴对称与轴对称图形的区别和联系
区别:轴对称是指两个图形之间的形状与位置关系,•成轴对称的两个图形是全等形;轴对称图形是一个具有特殊形状的图形,把一个轴对称图形沿对称轴分成两个图形,这两个图形是全等形,并且成轴对称.
联系:1:都是折叠重合2;如果把成轴对称的两个图形看成一个图形那么他就是轴对称图形,反之亦然。

(三)线段的垂直平分线
(1)经过线段的中点并且垂直于这条线段的直线,•叫做这条线段的垂直平分线(或线段的中垂线).
(2)线段的垂直平分线上的点与这条线段两个端点的距离相等;反过来,•与一条线段两个端点距离相等的点在这条线段的垂直平分线上.(证明是必须有两个点)因此线段的垂直平分线可以看成与线段两个端点距离相等的所有点的集合.
(四)用坐标表示轴对称
1、点(x,y)关于x轴对称的点的坐标为(-x,y);
2、点(x,y)关于y轴对称的点的坐标为(x,-y);
3、点(x,y)关于原点对称的点的坐标为(-x,-y)。

关于谁谁不变,关于原点都相反
(五)关于坐标轴夹角平分线对称
点P(x,y)关于第一、三象限坐标轴夹角平分线y=x对称的点的坐标是(y,x)
点P(x,y)关于第二、四象限坐标轴夹角平分线y=-x对称的点的坐标是(-y,-x)(六)关于平行于坐标轴的直线对称
(七)点P(x,y)关于直线x=m对称的点的坐标是(2m-x,y);
点P(x,y)关于直线y=n对称的点的坐标是(x,2n-y);
(七)等腰三角形
1、等腰三角形性质:
性质1:等腰三角形的两个底角相等(简写成“等边对等角”)
性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。

(三线合一)2、等腰三角形的判定:
如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”)(八)等边三角形
(九)定义:三条边都相等的三角形,叫等边三角形。

它是特殊的等腰三角形。

1、性质和判定:
(1)等边三角形的三个内角都相等,并且每一个角都等于60º。

(2)三个角都相等的三角形是等边三角形。

(3)有一个角是60º的等腰三角形是等边三角形。

(4)在直角三角形中,如果一个锐角等于30º,那么它所对的直角边等于斜边的一半。

(九)其他结论
(1)三角形三个内角的平分线交于一点,并且这一点到三边的距离相等。

(.2.).三角形三个边的中垂线交于一点,并且这一点到三个顶点的距离相等。

...............................
作图题专练
1.如图:已知∠AOB 和C 、D 两点,求作一点P ,使PC=PD ,且P 到∠AOB 两边的距离相等.
2..已知:....A .、.B .两点在直线.....l .的同侧,试分别画出符合条件的点...............M ...
(.1.)如图...,在..l .上求作一点.....M .,使得|.... AM ..-.BM .. |最小;....
作法:...
(.2.)如图,在.....l .上求作一点.....M .,使得|....AM ..-.BM ..|最大...
作法:...
(.3.)如图,在.....l .上求作一点.....M .,使得...AM ..+.BM ..最小....
(4)如果两点位于直线异侧,请你去解决上述问题
A C · ·D O B
变式练习....
1、如图,已知直线MN 与MN 同侧两点A 、B 求作:点P ,使点P 在MN 上,且∠APM=∠BPN
2..如图点....A .、.B .、.C .在直线...l .的同侧,在直线.......l .上,求作一点......P .,使得四边形......APBC ....的周长最小;......
3...如图已知线段......a .,点..A .、.B .在直线...l .的同侧,在直线.......l .上,求作两点......P .、.Q . (点..P .在点..Q .的左侧)且.....PQ ..=.a .,四边...形.APQB ....的周长最小.......
4.、.已知:如图点......M .在锐角∠....AOB ...的内部,在.....OA ..边上求作一点......P .,在..OB ..边上求作一点......Q .,使得Δ....PMQ ...的周长最....小;..
5.、.已知..:如图...3.-.14..,点..M .在锐角∠....AOB ...的内部,在.....OB ..边上求作一点......P .,使得点....P .到点..M .的距离与点.....P .到.OA ..边的距离之和最小..........
6、一条河两岸有A 、B 两地,要设计一条道路,并在河上垂直于河岸架一座桥,用来连接A 、B 两地,问路线怎样走,桥应架在什么地方,才能使从A 到B 所走的路线最短?。

相关文档
最新文档