快速成型工艺比较
四种常见快速成型技术

四种常见快速成型技术第一种常见快速成型技术:数控加工技术。
数控加工技术是一种机器控制加工技术,利用计算机及其相应的程序控制生产设备,进行机械加工,使得一次处理能完成的で一台以上的机器工具构成的加工中心,部件在台面上面固定,四个或以上的自动工具装在滑轨上, 根据电脑程序指定的加工参数,自动更换、安装选择夹具,分别做加工工作,从而完成制件定位、撬开、冲孔、攻丝、开槽、铰榫等复杂加工工作。
数控加工技术主要采用机械加工加工,适用于大批量生产或多种多样零件快速、高效率、低成本加工,且图纸精度高、表面光洁度高等。
第二种常见快速成型技术:熔融塑料成型技术。
熔融塑料成型技术首先将原料加工成模板,然后将模板放入机器中,当原料温度到达要求时,机器自动把原料按照设定的温度、时间及力度压入模具内,形成冷却后的成型物体。
这种技术利用塑料的特性,具有效率高,成型精度高,成型时根据原料的特性可以做出不同的加工处理,并且具有强度大,防水,耐高低温的特点,适用于各种塑料制品的快速成型。
第三种常见快速成型技术:射出成型技术。
射出成型技术指在机械压力下将原料熔融输送到射出模具成型模块中,随后由冷却系统冷却,完成制件的快速成型。
这种技术主要用于金属铸件、塑料件等的制造,具有造件精度高,尺寸稳定性好,表面光洁,强度高,厚度一致,成型快,节省材料等优点。
第四种常见快速成型技术:热压成型技术。
热压成型技术是把金属或塑料原料置于型模具内,用压力和热量同时共同作用,使金属和塑料原料发生塑性变形而成型的一种快速成型技术。
该技术采用型模具可以实现造型精度高、制件造型美观,制造完后制件可以免去热处理步骤;并且利用该技术进行多余的金属屑的再生,形成复合制件,极大的降低了制件的生产成本。
四大快速成型工艺和优缺点

.
的粘结在前一层上,如此重复不已,直到整个产品成型完毕。最后升降台升出液体树脂表面,即可取出工 件,进行清洗和表面光洁处理。 光敏树脂选择性固化快速成型技术适合于制作中小形工件,能直接得到塑料产品。主要用于概念模型的原 型制作,或用来做装配检验和工艺规划。它还能代替腊模制作浇铸模具,以及作为金属喷涂模、环氧树脂 模和其他软模的母模,使目前较为成熟的快速原型工艺。 SLA 快速原型技术的优点是: 1、 系统工作稳定。系统一旦开始工作,构建零件的全过程完全自动运行,无需专人看管,直到整个工艺 过程结束。 2、 尺寸精度较高,可确保工件的尺寸精度在 0.1mm 以内。 3、 表面质量较好,工件的最上层表面很光滑,侧面可能有台阶不平及不同层面间的曲面不平。 4、 系统分辨率较高,因此能构建复杂结构的工件。 SLA 快速原型的技术缺点: 1、 随着时间推移,树脂会吸收空气中的水分,导致软薄部分的弯曲和卷翅。 2、 氦-镉激光管的寿命仅 3000 小时,价格较昂贵。同时需对整个截面进行扫描固化,成型时间较长,因 此制作成本相对较高。 3、 可选择的材料种类有限,必须是光敏树脂。由这类树脂制成的工件在大多数情况下都不能进行耐久性 和热性能试验,且光敏树脂对环境有污染,使皮肤过敏。 4、 需要设计工件的支撑结构,以便确保在成型过程中制作的每一个结构部位都能可靠定位。
粉末材料选择性烧结快速成型工艺适合于产品设计的可视化表现和制作功能测试零件。由于它可采用各种 不同成分的金属粉末进行烧结、进行渗铜等后处理,因而其制成的产品可具有与金属零件相近的机械性能, 故可用于制作 EDM 电极、直接制造金属模以及进行小批量零件生产。 SLS 快速成型技术的优点是:
;..
.
1、 与其他工艺相比,能生产最硬的模具。 2、 可以采用多种原料,例如绝大多数工程用塑料、蜡、金属、陶瓷等。 3、 零件的构建时间短,可达到 1in/h 高度。 4、 无需对零件进行后矫正。 5、 无需设计和构造支撑。 选择性烧结的最大优点是可选用多种材料,适合不同的用途、所制作的原型产品具有较高的硬度,可进行 功能试验。 SLS 快速原型技术缺点是: 1、 在加工前,要花近 2 小时的时间将粉末加热到熔点以下,当零件构建之后,还要花 5-10 小时冷却, 然 后才能将零件从粉末缸中取出。 2、 表面的粗糙度受到粉末颗粒大小及激光点的限制。 3、 零件的表面一般是多孔性的,为了使表面光滑必须进行后处理。 4、 需要对加工室不断充氮气以确保烧结过程的安全性,加工的成本高。 5、 该工艺产生有毒气体,污染环境。
常见快速成型工艺优缺点比较

FDM
1、制造系统可用于办公环境,没有毒气或化学物质的危险。
2、工艺干净、简单、易于材作且不产生垃圾。
3、可快速构建瓶状或中空零件。
4、原材料以卷轴丝的形式提供,易于搬运和快速更换。
5、原材料费用低,一般零件均低于20美元。
6、可选用多种材料,如可染色的ABS和医用ABS、浇铸用蜡和人造橡胶。
2、成型件需要后处理,二次固化,防潮处理等工序。
2、光敏树脂固化后较脆,易断裂,可加工性不好;工作温度不能超过100℃,成形件易吸湿膨胀,抗腐蚀能力不强。
3、氦-镉激光管的寿命仅3000小时,价格较昂贵。同时需对整个截面进行扫描固化,成型时间较长,因此制作成本相对较高。
4、且光敏树脂对环境有污染,使皮肤过敏。
5、由于难以(虽然并非不可能)去除里面的废料,该工艺不宜构建内部结构复杂的零件。
6、当加工室的温度过高时常有火灾发生。因此,工作过程中需要专职人员职守
SLS
1、与其他工艺相比,能生产最硬的模具。
2、可以采用多种原料,例如绝大多数工程用塑料、蜡、金属、陶瓷等。
3、零件的构建时间短,可达到1in/h高度。
1、精度较低,难以构建结构复杂的零件。
2、垂直方向强度小。
3、速度较慢,不适合构建大型零件。
常见快速成型工艺优缺点比较
优点
缺点
SLA
1、系统工作稳定。系统一旦开始工作,构建零件的全过程完全自动运行。
2、尺寸精度较高,可确保工件的尺寸精度在0.1mm以内。
3、表面质量较好,工件的最上层表面很光滑,侧面可能有台阶不平及不同层面间的曲面不平。
4、系统分辨率较高,因此能构建复杂结构的工件。
1、需要专门实验室环境,维护费用高昂。
快速成形技术重点知识

快速成形重点知识2011.05.031.快速成型的原理:叠加原理。
2.快速成型建立的理论基础:新材料技术、计算机技术、数控技术、激光技术。
3.四种快速成型工艺的比较如下:4.四种成型工艺的介绍。
(1)液态光敏聚合物选择性固化,光固化成型工艺(SLA).①原理:叠加原理。
②成型系统组成及作用:a激光器→产生激光;b液槽→盛放光敏树脂;c刮刀→保证每层厚度均匀,使新的一层树脂迅速、均匀的涂覆在已固化的层上。
④支撑的作用:a支撑原型件的悬臂或中空结构;b使原型件坚固地黏在底座。
⑤成型所用的材料:液态光敏树脂(由齐聚物、光引发剂、稀释剂组成)(2)薄形材料选择性切割,叠加实体成型工艺(LOM)①原理:叠加原理。
②实质:采用激光束和薄层材料生成任意形状三维物体的方法。
③成型系统组成及作用:a激光器→切割作用;b热压辊→给胶提供能量和施加压力;c可升降工作台→控制成形工件的升降。
④成形的原材料:纸和胶。
⑤对纸的要求:a抗湿性好,保证不会因时间过长而吸水,进而保证在热压过程中不会因水分的损失而变形;b良好的浸润性,保证良好的涂胶能力;c抗拉强度好,保证在加工过程不被拉断;d收缩率小,保证在热压过程不会因水分的损失而变形,剥离性好,稳定性好。
⑥对胶的要求:a良好的热熔稳定性;b在反复的热熔-固化条件下,有好的物理和化学稳定性;c熔融状态下对纸有好的涂挂性和黏结性;d与纸具有足够的黏结强度;e良好的废料剥离分离性能。
⑦涂布工艺:包括涂布形状和涂布厚度。
⑧原型的制作过程主要的两个变形是:热变形和湿变形。
⑨成型所用材料:薄形材料(纸、塑料)、粘结剂(胶)、涂布工艺。
(3)丝状材料选择性熔覆,熔融沉积造型(FDM)①原理:叠加原理。
②成型系统:硬件系统、软件系统、供料系统。
其中供料系统主要有主动辊、从动辊和导向套、压板等。
③支撑结构包括水溶性支撑和易剥离性支撑。
④成型所用材料:低熔点的丝状材料。
(4)粉末材料选择性激光烧结(SLS)①原理:叠加原理。
几种常见快速成型工艺的比较

几种快速成型方式的比较几种常见快速成型工艺的比较在快速领域里一直站主导地位快速成型工艺主要包括:FDM, SLA, SLS, LOM等工艺,而这几种工艺又各有千秋,下面我们在主要看一下这几种工艺的优缺点比较:FDM(fused deposition Modeling)丝状材料选择性熔覆快速原型工艺是一种不依靠激光作为成型能源、而将各种丝材(如工程塑料、聚碳酸酯)加热熔化进而堆积成型方法,简称丝状材料选择性熔覆.原理如下:加热喷头在计算机的控制下,根据产品零件的截面轮廓信息,作平面运动,热塑性丝状材料由供丝机构送至热熔喷头,并在喷头中加热和熔化成半液态,然后被挤压出来,有选择性的涂覆在工作台上,快速冷却后形成一层大约厚的薄片轮廓。
一层截面成型完成后工作台下降一定高度,再进行下一层的熔覆,好像一层层画出截面轮廓,如此循环,最终形成三维产品零件。
这种工艺方法同样有多种材料可供选用,如工程塑料;聚碳酸酯、工程塑料PPSF: 以及ABS 与PC的混合料等。
这种工艺干净,易于操作,不产生垃圾,并可安全地用于办公环境,没有产生毒气和化学污染的危险。
适合于产品设计的概念建模以及产品的形状及功能测试。
专门开发的针对医用的材料ABS-i: 因为其具有良好的化学稳定性,可采用伽码射线及其他医用方式消毒,特别适合于医用。
FDM快速原型技术的优点是:制造系统可用于办公环境,没有毒气或化学物质的污染;1次成型、易于操作且不产生垃圾;独有的水溶性支撑技术,使得去除支撑结构简单易行,可快速构建瓶状或中空零件以及一次成型的装配结构件;原材料以材料卷的形式提供,易于搬运和快速更换。
可选用多种材料,如各种色彩的工程塑料以及医用ABS等快速原型技术的缺点是:成型精度相对国外先进的SLA工艺较低,最高精度、成型表面光洁度不如国外SLA:成型速度相对较慢光敏树脂选择性固化是采用立体雕刻(Stereolithography)原理的一种工艺的简称,是最早出现的一种快速成型技术。
典型RP第章光固化快速成型SLA工艺

典型RP第章光固化快速成型SLA工艺快速成型技术(Rapid Prototyping Technology, RP)是指通过计算机辅助设计(CAD)系统对实体物体进行实时建模,并将模型信息传输至快速成型机,通过多种加工工艺制造出具有相应物理属性的实体模型,通常用于产品设计原型开发。
光固化快速成型技术(Stereolithography Apparatus, SLA)是快速成型技术中的一种,它首先通过计算机模型生成薄切片图像,然后将这些图像逐层投影到液化光敏树脂上,并利用紫外线光束再次照射树脂,使树脂分子之间发生化学反应,固化成具有形状和特定性质的固态物体。
SLA工艺是快速成型技术中的一种高精度加工工艺,能够制造出繁琐的空间精细构形,具有许多优越的特性,例如精度高、速度快、制造出的模型表面光滑、具有复杂的内部空腔结构等。
SLA工艺的基本流程SLA工艺的基本流程可以分为以下几个步骤:1.制作CAD模型:首先,需要利用计算机辅助设计(CAD)软件,制作出需要制造的实体模型。
2.制作STL文件:需要将CAD模型转化成为STL文件,STL文件实质上是将CAD模型切割成为不同的图层,在SLA加工时可以依次加工每个图层从而形成最终模型。
3.对STL文件进行切片处理:依据预设的SLA加工参数,将STL文件进行切片处理。
4.进行SLA加工:将切片后的图像逐层投影到液化光敏树脂上,并利用紫外线光束固化树脂,得到最终的实体模型。
需要注意的问题SLA工艺在加工时需要注意以下几个问题:1.液化光敏树脂的选择:树脂的选择对于模型的性能具有很大的影响,需要选择与实际需求相符合的树脂。
2.切片厚度的选择:切片厚度对于模型表面质量和制造时间都具有一定的影响,需要根据实际需求进行选择。
3.加工参数的设置:加工参数包括光敏树脂的固化时间、灯管功率、投影方式等,需要根据所使用的材料进行参数调整,以获取最佳的加工效果。
SLA工艺的应用SLA工艺在产品开发和生产领域有着广泛的应用,主要包括以下几个方面:1.原型制作:SLA工艺可以制造出高精度、具有内部空腔结构的实体模型,用于验证设计的可行性和准确性,可以大大缩短开发周期。
快速成型的技术ppt课件

• 该工艺的特点是成形速度快,成形材料价格低,适合做 桌面型的快速成形设备。并且可以在粘结剂中添加颜料, 可以制作彩色原型,这是该工艺最具竞争力的特点之一, 有限元分析模型和多部件装配体非常适合用该工艺制造。 缺点是成形件的强度较低,只能做概念型使用,而不能做 功能性试验。
• 三维印刷(3DP)--高速多彩的快速成型工艺
料(ABS等)、陶瓷粉、金属粉、砂等,可以在航空,机 械,家电,建筑,医疗等各个领域应用。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
• 主要工艺:
•
RP技术结合了众多当代高新技术:计算机辅助设计、
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 )-制作大型铸件的快速成型工艺
快速成型制造的几种典型工艺与后处理

应用
汽车、建筑等领域。
选择性激光烧结(SLS)工艺
原理
01
选择性激光烧结技术采用粉末材料作为原料,通过计算机控制
激光束对材料进行选择性烧结,最终得到三维实体。
特点
02
选择性激光烧结技术适合制作金属零件,具有较高的强度和硬
度。
应用
03
航空航天、汽车等领域。
三维打印(3DP)工艺
原理
三维打印技术采用粉末或液体材料作为原料,通过计算机控制喷嘴 将材料逐层喷射到成型区,最终得到三维实体。
用于制造轻量化结构件和复杂 零部件。
新产品开发
用于制造产品原型,方便进行 设计验证和功能测试。
医疗器械制造
用于制造医疗设备和器械,如 手术器械、假肢等。
教育领域
用于教学和实验,让学生更好 地理解产品设计、制造和材料 科学等方面的知识。
02
几种典型的快速成型工艺
立体光刻(SL)工艺
原理
立体光刻技术采用光敏树脂作为 原料,通过计算机控制紫外激光 束照射到光敏树脂表面,逐层固
在汽车制造领域,快速成型制造技术可以用于生产汽车设计原型,这些原型可以用于测试、修改等。
应用案例四:文化创意领域
艺术品
快速成型制造技术可以用于生产艺术品,如雕塑、装置艺术等。
玩具
在文化创意领域,快速成型制造技术可以用于生产玩具,这些玩具可以用于娱乐、教育等。
THANKS。
应用案例二:医疗领域
医疗器械
快速成型制造技术可以用于生产医疗器械,如手术器械、牙 科器械等。
人体模型
在医疗领域,快速成型制造技术可以用于生产人体模型,这 些模型可以用于手术模拟、康复训练等。
应用案例三:汽车制造领域
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
快速成形典型工艺比较
关键词及简称
光固化成形(简称:SLA或AURO)光敏树脂为原料
熔融挤压成形(简称:FDM或MEM)ABS丝为原料
分层实体成形(简称:LOM或SSM)纸为原料
粉末烧结成形(简称:SLS或SLS)蜡粉为原料
光固化成形
光固化成形是最早出现的快速成形工艺。
其原理是基于液态光敏树脂的光聚合原理工作的。
这种液态材料在一定波长(x=325nm)和强度(w=30mw)的紫外光的照射下能迅速发生光聚合反应, 分子量急剧增大, 材料也就从液态转变成固态。
图1光固化工艺原理图
图1
工艺过程为:液槽中盛满液态光固化树脂,激光束在偏转镜作用下, 能在液体表面上扫描, 扫描的轨迹及激光的有无均由计算机控制, 光点扫描到的地方, 液体就固化。
成型开始时,工作平台在液面下一个确定的深度,液面始终处于激光的焦平面,聚焦后的光斑在液
面上按计算机的指令逐点扫描即逐点固化。
当一层扫描完成后,未被照射的地方仍是液态树脂。
然后升降台带动平台下降一层高度,已成型的层面上又布满一层树脂,刮平器将粘度较大的树脂液面刮平,然后再进行下一层的扫描,新固化的一层牢固地粘在前一层上,如此重复直到整个零件制造完毕, 得到一个三维实体原型。
光固化工艺的设备做出的零件其优点是精度较高、表面效果好,零件制作完成后需要少量打磨,将层层的堆积痕迹去除。
光固化工艺制作的零件打磨工作量相对其他工艺设备制作的零件的打磨量是最小的;其缺点是强度低无弹性,无法进行装配。
光固化工艺设备的原材料很贵,种类不多。
光固化设备的零件制作完成后,还需要在紫外光的固化箱中二次固化,用以保证零件的强度。
液漕内的光敏树脂经过半年到一年的时间就要过期,所以要有大量的原型服务以保证液漕内的树脂被及时用完,否则新旧树脂混在一起会导致零件的强度下降、外形变形。
如需要更换不同牌号的材料就需要将一个液漕的光敏树脂全部更换,工作量大树脂浪费很多。
三十几万的紫外激光器只能用1万小时,使用一年后激光器更换需要二次投入三十几万的费用。
熔融挤压成形
熔融挤压成形工艺是利用热塑性材料的热熔性、粘结性,在计算机控制下层层堆积成型。
熔融挤压成形工艺原理是材料先抽成丝状,通过送丝机构送进喷头,在喷头内被加热熔化,喷头沿零件截面轮廓和填充轨迹运动,同时将熔化的材料挤出,材料迅速固化,并与周围的材料粘结,层层堆积成型。
图2熔融挤压工艺原理图
图2
熔融挤压成形设备的优点是运行费用极低,此种工艺的设备无需激光器,省掉二次投入的大量费用;而且原材料的品种多,原材料的更换只需要将丝轮更换既可,操作方便,利于用户根据不同的零件选择不同的材料,如耐高温、可消失模铸造等。
用ABS 制造的原型因具有较高强度而在产品设计、测试与评估等方面得到广泛应用。
由于以FDM工艺为代表的熔融材料堆积成形工艺具有一些显著优点,该工艺发展极为迅速。
熔融挤压成形的零件成形样件强度好,易于装配。
熔融挤压工艺的设备的缺点是造型速度较光固化设备低。
零件制作后同样需要打磨,以去掉层层堆积的痕迹,打磨工作量较光固化的零件多些。
分层实体成形
分层实体成形工艺采用薄片材料,如纸、塑料薄膜等。
片材表面事先涂覆上一层热熔胶。
加工时,用CO2激光器(或刀)在计算机控制下切割片材,然后通过热压辊热压,使之当前层与下面已成形的工
件粘接,从而堆积成型。
图3 分层实体成形工艺原理图
图3
用CO2激光器在刚粘接的新层上切割出零件截面轮廓和工件外框,并在截面轮廓与外框之间多余的区域内切割出上下对齐的网格;激光切割完成后,工作台带动已成形的工件下降,与带状片材(料带)分离;供料机构转动收料轴和供料轴,带动料带移动,使新层移到加工区域;工作台上升到加工平面;热压辊热压,工件的层数增加一层,高度增加一个料厚;再在新层上切割截面轮廓。
如此反复直至零件的所有截面切割、粘接完,得到三维的实体零件。
分层实体成形工艺的设备优点:成形精度较高,适合做大型实体件,适合铸造行业;其缺点:材料品种单一,只有纸材。
不适宜做薄壁原型,受湿度影响容易变形,强度差,运行成本较高,材料利用率很低,CO2激光器的使用寿命为1万小时,也有二次投入采购激光器的需要。
零件同样需要后期打磨,工作量很大。
粉末烧结成形
粉末烧结成形工艺是利用粉末材料在激光照射下烧结的原理,在计算机控制下堆积成形。
图4 粉末烧结成形工艺原理图
图4
粉末烧结成形工艺设备的工作过程是将材料粉末均匀铺洒并刮平;用高强度的CO2激光器在刚铺的新层上扫描出零件截面;材料粉末在高强度的激光照射下被烧结在一起,得到零件的截面,并与下面已成形的部分粘接;当一层截面烧结完后,铺上新的一层材料粉末,选择地烧结下层截面。
优点:材料利用率接近95%,造型速度较快,适合铸造行业;缺点:材料单一,原型强度差,无法装配,表面质量差,精度低,后处理工艺复杂,样件变型大。
同样有激光器的损耗问题。
国外设备可以做到装配,表面质量与精度都不错,材料品种多,但设备与材料价位高,使得运行成本太高。
以每小时计算运行成本:
典型工艺运行成本对比。