青岛版八年级数学下册期中试卷

合集下载

2022-2023学年全国初中八年级下数学青岛版期中考试(含答案解析考点)150333

2022-2023学年全国初中八年级下数学青岛版期中考试(含答案解析考点)150333

2022-2023学年全国初中八年级下数学青岛版期中考试学校:____________ 班级:____________ 姓名:____________ 考号:____________考试总分:120 分考试时间: 120 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息;2.请将答案正确填写在答题卡上;卷I(选择题)一、选择题(本题共计 8 小题,每题 5 分,共计40分)1. 在平行四边形ABCD中,∠A+∠C=200∘,则∠B的度数是( )A.100∘B.160∘C.80∘D.60∘2. 下列命题,其中是真命题的为( )A.对角线互相垂直的四边形是菱形B.对角线互相平分的四边形是平行四边形C.对角线相等的四边形是矩形D.对角线互相垂直平分的四边形是正方形3. 物体自由下落时,下落距离h(单位:米)可用公式h=5t2来估算,其中t(t>0,单位:秒)表示物体下落的时间.若一个篮球掉入80米深的山谷中,下落过程看作成物体自由下落,篮球落人谷底前不与其他物体接触,则篮球掉落到谷底需要的时间为( )A.2秒B.4秒C.16秒D.20秒4. 比较2.5,−3,√7的大小,正确的是()A.−3<2.5<√7B.2.5<−3<√7C.−3<√7<2.5D.√7<2.5<−35. 下列二次根式,不能与√2合并的是( )A.√12B.√8C.√12D.−√186. 已知a>b,下列关系式中一定正确的是( )A.a2<b2B.2a<2bC.a+2<b+2D.−a<−b7. 不等式2x+1>−3的解集在数轴上表示正确的是( ) A.B.C.D.8. 当0<a<1时,√(a−1a)2−1a=( ) A.aB.−aC.a −2aD.2a −a卷II (非选择题)二、 填空题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )9. 假期到了,17名女教师外出培训,住宿时2人间和3人间可供租住,每个房间都要住满,她们有________种租住方案.10. ①|2−√5|=________.②√8×√12=________.③写出−√5和√10之间的所有整数________.11. 如图:点E 、F 、G 、H 分别是四边形ABCD 各边的中点.当四边形ABCD 满足条件________时,四边形EFGH 是菱形.12. 如图,在△ABC 中,点M 是BC 边上的中点,AN 平分∠BAC ,BN ⊥AN 于点N ,若BN =3,AN =4,MN =1,则AC的长是________.13. 如图,以数轴的单位长度线段为边作一个正方形,以表示数1的点为圆心,正方形对角线长为半径画弧,交数轴于点A ,则点A 表示的数是________.14. 不等式组{x −2(x −1)<3,3−12x ≥x 的解集为________ .三、 解答题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )15. 计算: (12)−2+|2−√12|−4cos30∘+(π−3.14)0.16. 解下列不等式(组):(1)5(x +2)4>2x −2;(2){5x −2>3(x −2);x −103≤1−32x.17. 已知不等式3x −2<5x +1 的最小正整数解是方程4x −32ax =7的解,求a 的值.18. 如图,平行四边形ABCD ,E ,F 是直线DB 上两点,且DF =BE .求证:四边形AECF 是平行四边形.19. 已知b 是最小的正整数,且a ,b 满足(c −5)2+|a +b |=0,请回答问题:(1)请直接写出a ,b ,c 的值;(2)数轴上a ,b ,c 所对应的点分别为点A ,B ,C ,点M 是A ,B 之间的一个动点,其对应的数为m ,请化简|2m|(请写出化简过程);(3)在(1),(2)的条件下,点A ,B ,C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动. 同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t 秒钟过后,点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB .请问:BC −AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值;20. 已知平行四边形ABCD 中,对角线AC ,BD 相交于点O , AB ⊥AC ,AB =3,BD =2√10,求AD 的长.21. 如图所示,将长方形ABCD 沿直线BD 折叠,使点C 落在点C ′处,BC ′交AD 于E ,AD =8,AB =4,求△BED 的面积.22. 如图,在5×5的网格中,每个小正方形的边长都是1,四边形ABCD 的顶点都在格点上(格点:小正方形的顶点).(1)求四边形ABCD 的边AB 的长;(2)连接BD ,试判断△BCD 的形状.23. 某商店计划购进一批A ,B 两种型号的计算器共50只,两型号计算器的进价和利润如表所示,商店所获利润不少于购进总成本的25%.问该商店至少要采购B 型计算器多少只?型号A B进价元/只4060利润元/只918 24. 观察下列等式:第一个等式:1√2−1=2−1√2−1=(√2−1)(√2+1)√2−1=√2+1第二个等式:1√3−√2=3−2√3−√2=(√3−√2)(√3+√2)√3−√2=√3+√2第三个等式:12−√3=4−32−√3=(2−√3)(2+√3)2−√3=2+√3…请回答下列问题:(1)则第四个等式为________.(2)用含n(n为正整数)的式子表示出第n个等式为________.参考答案与试题解析学校:____________ 班级:____________ 姓名:____________ 考号:____________一、选择题(本题共计 8 小题,每题 5 分,共计40分)1.【答案】C【考点】平行四边形的性质【解析】【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,AD//BC.∵∠A+∠C=200∘,∴∠A=100∘,∴∠B=180∘−∠A=80∘.故选C.2.【答案】B【考点】正方形的判定矩形的判定菱形的判定平行四边形的判定【解析】根据矩形的定义作出判断;根据菱形的性质作出判断;根据平行四边形的判定定理作出判断;根据正方形的判定定理作出判断.解:A,对角线互相垂直的平行四边形是菱形,故本选项错误;B,对角线互相平分的四边形是平行四边形,故本选项正确;C,两条对角线相等且相互平分的四边形为矩形,故本选项错误;D,对角线互相垂直平分且相等的四边形是正方形,故本选项错误.故选B.3.【答案】B【考点】算术平方根【解析】根据h=5t 2,把公式变形成用h表示t的形式即可.【解答】解:把h=80代入h=5t 2得5t2=80,即t2=16,∵t>0,∴t=4.故选B.4.【答案】A【考点】实数大小比较【解析】先求得它们的平方,然后再比较即可.【解答】解:∵ 2.52=6.25,(√7)2=7,∴ 2.5<√7,∴ −3<2.5<√7.故选A.5.【答案】C同类二次根式【解析】根据二次根式的性质把各个二次根式化简,根据同类二次根式的定义判断即可.【解答】解:A 、√12=√22,能与√2合并;B 、√8=2√2,能与√2合并;C 、√12=2√3,不能与√2合并;D 、−√18=−3√2,能与√2合并,故选:C .6.【答案】D【考点】不等式的性质【解析】本题考查了不等式的性质.【解答】解:一个数的绝对值越大,则其平方越大.当a ,b 为正数时,|a |>|b |,∴a 2>b 2,故选项A 错误;由不等式的基本性质可得2a >2b ,a +2>b +2,−a <−b,故选项B,C 错误,D 正确.故选D .7.【答案】C【考点】在数轴上表示不等式的解集【解析】此题暂无解析解:不等式两边减1,得2x>−4,再两边同时除以2,得x>−2,即为该不等式的解集,故其在数轴上表示为:故选C.8.【答案】B【考点】二次根式的性质与化简【解析】首先根据已知确定a<1a,再利用绝对值以及二次根式的性质化简求出即可.【解答】解:∵0<a<1,∴a<1a,即a−1a<0,∴√(a−1a)2−1a=1a−a−1a=−a.故选B.二、填空题(本题共计 6 小题,每题 5 分,共计30分)9.【答案】3【考点】二次根式的化简求值【解析】设住3人间的需要x间,住2人间的需要y间,根据总人数是17人,列出不定方程,解答即可.【解答】解:设住3人间的需要有x间,住2人间的需要有y间,3x+2y=17,因为,2y是偶数,17是奇数,所以,3x只能是奇数,即x必须是奇数,当x=1时,y=7,当x=3时,y=4,当x=5时,y=1,综合以上得知,第一种是:1间住3人的,7间住2人的,第二种是:3间住3人的,4间住2人的,第三种是:5间住3人的,1间住2人的,所以有3种不同的安排.故答案为:3.10.【答案】√5−2,2,−2,−1,0,1,2,3【考点】估算无理数的大小【解析】①先估算出√5的取值范围,再去绝对值符号即可;②利用二次根式的运算法则计算即可;③先估算出−√5、√10的取值范围,再找出符合条件的整数即可.【解答】√12=√8×12=√4=2(2)故答案为:2(3)③因故答案为:√5−2(1)②√8×为−3<−√5、√10<4,所以−√5和√10之间的所有整数:−2,−1,0,1,2,3.故答案为:2,−1,0,1,2,3.11.【答案】AC=BD【考点】三角形中位线定理菱形的判定【解析】本题主要考查三角形的中位线定理及菱形的判定.【解答】解:连接AC,BD,∵E,F,G,H分别是边AB,BC,CD,AD的中点,∴EF//=12AC,GH//=12AC,∴四边形EFGH是平行四边形,当AC=BD时,EF=EH,四边形EFGH为菱形,故答案为:AC=BD.12.【答案】7【考点】等腰三角形的性质:三线合一三角形中位线定理【解析】本题目考查了等腰三角形的性质,三角形的中位线定理,解题关键是掌握等腰三角形的性质和三角形的中位线定理,根据这两个定理来解答即可.【解答】解:如图:延长BN交AC于D,∵AN平分∠BAC,BN⊥AN于点N,∴BN=ND,AB=AD,∵BN=3,AN=4,∴AB=AD=5.∵点M是BC边上的中点,BN=ND,∴MN//CD,MN=12CD.∵MN=1,∴CD=2,∴AC=AD+CD=5+2=7.故答案为:7.13.【答案】1−√2【考点】在数轴上表示实数勾股定理【解析】先根据勾股定理求出AC的长,再根据数轴上两点间的距离公式求出点A表示的数即可.【解答】解:如图所示,∵正方形的边长为1,∴BC=√12+12=√2,∴AC=√2,即|A−1|=√2,∴点A表示的数是1−√2.故答案为:1−√2.14.【答案】−1<x≤2【考点】解一元一次不等式组【解析】此题暂无解析【解答】{x−2(x−1)<3①,3−12x≥x②,解:解①得x>−1,解②得x≤2,∴不等式组的解集为−1<x≤2.故答案为:−1<x≤2.三、解答题(本题共计 10 小题,每题 5 分,共计50分)15.【答案】解:(12)−2+|2−√12|−4cos30∘+(π−3.14)0=22+|2−2√3|−4×√32+1=4+2√3−2−2√3+1=3.【考点】特殊角的三角函数值零指数幂、负整数指数幂绝对值实数的运算【解析】利用零指数幂,绝对值,特殊角的三角函数,负整数指数幂的运算求解即可.【解答】解:(12)−2+|2−√12|−4cos30∘+(π−3.14)0=22+|2−2√3|−4×√32+1=4+2√3−2−2√3+1=3.16.【答案】解:(1)5(x+2)4>2x−2,不等式两边同乘以4,得:5(x+2)>4(2x−2),化简得x<6.{5x−2>3(x−2)①,x−103≤1−32x②,(2)由①得,x>−2,由②得,x≤2611,故不等式组的解集为:−2<x≤2611.【考点】解一元一次不等式解一元一次不等式组【解析】无无【解答】解:(1)5(x+2)4>2x−2,不等式两边同乘以4,得:5(x+2)>4(2x−2),化简得x<6.{5x−2>3(x−2)①,x−103≤1−32x②, (2)由①得,x>−2,由②得,x≤2611,故不等式组的解集为:−2<x≤2611.17.【答案】解:解不等式3x−2<5x+1得x>−32,所以最小正整数解是x=1.把x=1代入4x−32ax=7,得4×1−32a×1=7,所以a=−2.【考点】一元一次方程的解一元一次不等式的整数解【解析】暂无【解答】解:解不等式3x−2<5x+1得x>−32,所以最小正整数解是x=1.把x=1代入4x−32ax=7,得4×1−32a×1=7,所以a=−2.18.【答案】证明:如图,连接AC ,交BD 于点O ,∵四边形ABCD 是平行四边形,∴AO =CO ,DO =BO ,∵DF =BE ,FO =FD +DO ,EO =EB +BO ,∴FO =EO ,∵FO =EO ,AO =CO ,∴四边形AECF 是平行四边形.【考点】平行四边形的应用平行四边形的判定平行四边形的性质与判定【解析】暂无【解答】证明:如图,连接AC ,交BD 于点O ,∵四边形ABCD 是平行四边形,∴AO =CO ,DO =BO ,∵DF =BE ,FO =FD +DO ,EO =EB +BO ,∴FO =EO ,∵FO =EO ,AO =CO ,∴四边形AECF 是平行四边形.19.【答案】解:(1)∵b 是最小的正整数,∴b =1.∵(c −5)2+|a +b |=0,∴a =−1,c =5.(2)由(1)知,a =−1,b =1,a ,b 在数轴上所对应的点分别为A ,B ,①当m <0时,|2m|=−2m ;②当m ≥0时,|2m|=2m .(3)BC −AB 的值不随着时间t 的变化而改变,其值是2,理由如下:∵点A 都以每秒1个单位的速度向左运动,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动,∴BC =3t +4,AB =3t +2,∴BC −AB =(3t +4)−(3t +2)=2.【考点】有理数的概念及分类非负数的性质:偶次方非负数的性质:绝对值数轴【解析】(1)先根据b 是最小的正整数,求出b ,再根据c 2+|a +b |=0,即可求出a 、c ;(2)先得出点A 、C 之间(不包括A 点)的数是负数或0,得出m ≤0,再化简|2m|即可;(3)先求出BC =3t +4,AB =3t +2,从而得出BC −AB =2.【解答】解:(1)∵b 是最小的正整数,∴b =1.∵(c −5)2+|a +b |=0,∴a =−1,c =5.(2)由(1)知,a =−1,b =1,a ,b 在数轴上所对应的点分别为A ,B ,①当m <0时,|2m|=−2m ;②当m ≥0时,|2m|=2m .(3)BC −AB 的值不随着时间t 的变化而改变,其值是2,理由如下:∵点A 都以每秒1个单位的速度向左运动,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动,∴BC =3t +4,AB =3t +2,∴BC −AB =(3t +4)−(3t +2)=2.20.【答案】解:∵四边形ABCD 是平行四边形,∴BO =DO ,AO =OC ,AD =BC ,又∵BD =2√10,∴BO =√10,∵AB ⊥AC ,AB =3,∴AO =√10−9=1,∴AC =2,∴BC =√32+22=√13,∴AD =√13.【考点】平行四边形的性质勾股定理【解析】此题暂无解析【解答】解:∵四边形ABCD 是平行四边形,∴BO =DO ,AO =OC ,AD =BC ,又∵BD =2√10,∴BO =√10,∵AB ⊥AC ,AB =3,∴AO =√10−9=1,∴AC =2,∴BC =√32+22=√13,∴AD =√13.21.【答案】解:∵四边形ABCD 是长方形,∴AD//BC ,∴∠2=∠3,由折叠性质得,∠1=∠2,∴∠1=∠3,∴BE =DE .设BE =x ,则DE =x ,∴AE =AD −DE =8−x ,在Rt △ABE 中,AB 2+AE 2=BE 2,∴42+(8−x)2=x 2,解得:x =5,∴DE =5,∴S △BED =12DE ⋅AB=12×5×4=10.【考点】勾股定理三角形的面积矩形的性质翻折变换(折叠问题)【解析】左侧图片未给出解析【解答】解:∵四边形ABCD 是长方形,∴AD//BC ,∴∠2=∠3,由折叠性质得,∠1=∠2,∴∠1=∠3,∴BE =DE .设BE =x ,则DE =x ,∴AE =AD −DE =8−x ,在Rt △ABE 中,AB 2+AE 2=BE 2,∴42+(8−x)2=x 2,解得:x =5,∴DE =5,∴S △BED =12DE ⋅AB=12×5×4=10.22.【答案】解:(1)AB =√52+12=√26.(2)如图,连接BD ,则BC 2=22+42=20,CD 2=12+22=5,BD 2=32+42=25,∴BC 2+CD 2=BD 2,∴△BCD 是直角三角形.【考点】勾股定理勾股定理的逆定理【解析】(1)借助网格,根据勾股定理直角计算即可;(2)首先利用勾股定理计算各边的平方,然后根据勾股定理的逆定理判定即可.【解答】解:(1)AB =√52+12=√26.(2)如图,连接BD ,则BC 2=22+42=20,CD 2=12+22=5,BD 2=32+42=25,∴BC 2+CD 2=BD 2,∴△BCD 是直角三角形.23.【答案】解:设要采购B 型计算器x 只,根据题意可得18x +9(50−x)≥[60x +40(50−x)]×25%,解得x ≥12.5.答:该商店至少要采购B 型计算器13只.【考点】一元一次不等式的实际应用【解析】此题暂无解析【解答】解:设要采购B 型计算器x 只,根据题意可得18x +9(50−x)≥[60x +40(50−x)]×25%,解得x ≥12.5.答:该商店至少要采购B 型计算器13只.24.【答案】1√5−2=5−4√5−2=(√5−2)(√5+2)√5−2=√5+2.1√n +1−√n =n +1−n √n +1−√n =(√n +1−√n )(√n +1+√n )√n +1−√n =√n +1+√n.【考点】规律型:数字的变化类二次根式的性质与化简【解析】此题暂无解析【解答】√5−2=5−4√5−2解:(1)根据题中式子规律可得1=(√5−2)(√5+2)√5−2=√5+2.√5−2=5−4√5−2=(√5−2)(√5+2)√5−2=√5+2.故答案为:1(2)根据题意得1√n+1−√n=n+1−n√n+1−√n=(√n+1−√n)(√n+1+√n)√n+1−√n=√n+1+√n.√n+1−√n=n+1−n√n+1−√n故答案为:1=(√n+1−√n)(√n+1+√n)√n+1−√n=√n+1+√n.。

山东省青岛市八年级下学期数学期中考试试卷

山东省青岛市八年级下学期数学期中考试试卷

山东省青岛市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)使有意义的x的取值范围是()A . x>B . x>-C . xD . x-2. (2分)下列二次根式中,是最简二次根式的是()A .B .C .D .3. (2分)(2016·南京) 下列长度的三条线段能组成钝角三角形的是()A . 3,4,4B . 3,4,5C . 3,4,6D . 3,4,74. (2分) (2019八下·宣州期中) 下列各式运算正确是()A .B .C .D .5. (2分) (2017八下·东城期中) 如图,矩形中,对角线,交于点,若 ,,则的长为().A .B .C .D .6. (2分) (2019·鄞州模拟) 如图,在平面直角坐标系中,一个含有45〫角的三角板的其中一个锐角顶点置于点A(﹣3,﹣3)处,将其绕点A旋转,这个45〫角的两边所在的直线分别交x轴,y轴的正半轴于点B,C,连结BC,函数y=(x>0)的图象经过BC的中点D,则()A .B .C .D .7. (2分)如图,在平面直角坐标系中,菱形OACB的顶点O在原点,点C的坐标为(4,0),点B的纵坐标是−1,则顶点A坐标是()A . (2,−1)B . (1,−2)C . (1,2)D . (2,1)8. (2分) (2020九下·汉中月考) 如图,在三边互不相等的△ABC中, D,E,F分别是AB,AC,BC边的中点.连接DE,过点C作CM∥AB交DE的延长线于点M,连接CD、EF交于点N,则图中全等三角形共有()A . 3对B . 4对C . 5对D . 6对9. (2分)如图所示,在正方形ABCD中,E为CD上一点,延长BC至F,使CF=CE,连接DF,BE与DF相交于点G,则下面结论错误的是()A . BE=DFB . BG⊥DFC . ∠F+∠CEB=90°D . ∠FDC+∠ABG=90°10. (2分) (2019八下·南浔期末) 在数学课拓展课上,小明发现:若一条直线经过平行四边形对角线的交点,则这条直线平分该平行四边形的面积.如图是由5个边长是1,且一个内角是60°的小菱形拼成的图形,P是其中4个小菱形的公共顶点,小新在小明的启发下,将该图形沿着过点P的某条直线剪一刀,把它剪成了面积相等的两部分,则剪痕的长度是()A . 2B . 3C .D .二、填空题 (共5题;共7分)11. (1分) (2018七上·武威期末) 如果a、b互为倒数,c、d互为相反数,且m=-1,则代数式2ab-(c+d)+m2=________;12. (2分)(2016·广安) 如图,直线l1∥l2 ,若∠1=130°,∠2=60°,则∠3=________.13. (2分)菱形两条对角线长分别是4和6,则这个菱形的面积为________ .14. (1分) (2019八下·交城期中) 如图,在菱形ABCD中,对角线AC=6,AB=5,则菱形ABCD的面积为________.15. (1分) (2019九上·九龙坡期末) 如图,正方形ABCD中,AD=4,E在AB上且AB=4BE,连接CE,作BF⊥CE于F,正方形对角线交于O点,连接OF,将△COF沿CE翻折得△CGF,连接BG,则BG的长为________.三、解答题 (共8题;共83分)16. (10分)计算:(1)÷ ﹣× + ;(2).17. (6分) (2015八下·鄂城期中) 计算:(1) 3 ﹣9 +3(2)( + )(2﹣2 )﹣(﹣)2.18. (5分)有一个小朋友拿着一根竹竿要通过一个长方形的门,如果把竹竿竖放就比门高出1尺,斜放就恰好等于门的对角线,已知门宽4尺,求竹竿高与门高.19. (15分) (2017八下·广州期中) 台风是一种自然灾害,它以台风中心为圆心在周围上千米的范围内形成极端气候,有极强的破坏力。

青岛版2021-2022学年度第二学期八年级期中质量检测数学试卷

青岛版2021-2022学年度第二学期八年级期中质量检测数学试卷

青岛版2021-2022学年度第二学期八年级期中质量检测数学试卷一、选择题题(共30分)1.(本题3分)用下列几组边长构成的三角形中哪一组不是直角三角形( )A .8,15,17B .6,8,10C D .1,2.(本题3分)下列等式中正确的是( )A 3B ±3C 3D 33.(本题3分)已知菱形两条对角线的长分别为8和10,则这个菱形的面积是( ) A .20B .40C .60D .804.(本题3分)下列各数中:π0.12、0.2121121112…(相邻两个2之间的1的个数依次加1),无理数的个数是( ) A .2个B .3个C .4个D .5个5.(本题3分)不等式3442(2)x x -+-的最小整数解是( ) A .4-B .3C .4D .56.(本题3分)矩形ABCD 的对角线交于点O ,∠AOD =120°,AO =3,则BC 的长度是( )A .3B .C .D .67.(本题3分)如果不等式组1x x a >-⎧⎨>⎩的解集是1x >-,那么a 的值可能是( )A .-2B .0C .-0.7D .358.(本题3分)如图,直角三角形纸片ABC 中,∠ACB =90°,∠A =50°,将其沿边AB 上的中线CE 折叠,使点A 落在点A '处,则∠A 'EB 的度数为( )A .10°B .15°C .20°D .40°9.(本题3分)一只纸箱质量为1kg ,放入一些苹果后,纸箱和苹果的总质量不能超过9kg .若每个苹果的质量为0.3kg ,则这只纸箱内能装苹果( ) A .最多27个B .最少27个C .最多26个D .最少26个10.(本题3分)将一张长方形纸片按如图所示的方式折叠,BD 、BE 为折痕,则∠EBD 的度数( )A .80°B .90°C .100°D .110°评卷人 得分二、填空题(共32分) 11.(本题4分)在不等式组2029x x -≥⎧⎨≤⎩的解集中,最大的整数解是______.12.(本题4分)已知51n -是整数,写出一个自然数n ____.13.(本题4分)一个实数的平方根为33x +与1x -,则这个实数是________. 14.(本题4分)如果三角形的三条边长分别为26x 、、,那么x 的取值范围是______. 15.(本题4分)如图,在矩形ABCD 中,对角线AC 、BD 相较于O ,DE ⊥AC 于E ,∠EDC :∠EDA=1:2,且AC=10,则DE 的长度是_____16.(本题4分)一件商品的成本价是30元,若按标价的八八折销售,至少可获得10%的利润;若按标价的九折销售,可获得不足20%的利润,设这件商品的标价为x 元,则x 的取值范围是______________17.(本题4分)如图,海中有一个小岛A ,一艘轮船由西向东航行,在点B 处测得小岛A 在它的北偏东60︒方向上,航行12海里到达点C 处,测得小岛A 在它的北偏东30方向上,那么小岛A 到航线BC 的距离等于____________海里.18.(本题4分)如图,正方形ABCD 的边长为4,P 为对角线AC 上一点,且CP = 32,PE ⊥PB 交CD 于点E ,则PE =_____评卷人 得分三、解答题(共58分) 19.(本题8分)(1)计算:()2031820222π-⎛⎫--- ⎪⎝⎭;(2)已知()21160x +-=,求x 的值.20.(本题8分)解不等式(组),并把解集在数轴上表示出来. (1)()3428x x -->- (2)()3241213x x x x ⎧+-≥⎪⎨+>-⎪⎩21.(本题10分)已知:菱形ABCD的对角线AC,BD交于点O,CE∥OD,DE∥OC.求证:四边形OCED是矩形.22.(本题10分)如图,在▱ABCD中,对角线AC,BD交于点O,E是BD延长线上一点,且△ACE是等边三角形.(1)求证:四边形ABCD是菱形;(2)若∠AED=2∠EAD,AB=a,求四边形ABCD的面积.23.(本题10分)如图,学校操场有一个垂直于地面的旗杆,爱动脑筋的小明利用足够长的升旗绳子和卷尺测算旗杆高度,测量方法如下:将升旗的绳子拉直到旗杆底端C,并在绳子与旗杆底端C重合处做一个记号D,然后将绳子拉直到离旗杆底端5米B处,发现此时绳子B处距离记号D处1米.请你帮小明算出旗杆AC的高度.24.(本题12分)某学校初二年级党支部组织“品读经典,锤炼党性”活动,需要购买不同类型的书籍给党员老师阅读.已知购买1本A类书和2本B类书共需82元;购买2本A类书和1本B类书共需74元.(1)求A,B两类书的单价;(2)学校准备购买A,B两类书共34本,且A类书的数量不高于B类书的数量.购买书籍的花费不得高于900元,则该学校有哪几种购买方案?参考答案:1.解:A 、∵82+152=172,∴此三角形为直角三角形,故选项错误; B 、∵2226810+=,∴此三角形是直角三角形,故选项错误; C 、∵()()222325+≠,∴此三角形不是直角三角形,故选项正确;D 、∵222)12(5+=,∴此三角形为直角三角形,故选项错误.故选:C .2.解:A 、9-,负数没有算术平方根,故此选项错误;、B 、9=3,故此选项错误; C 、2(3)-=3,故此选项正确;D 、2(3)-=3,故此选项错误;故选:C . 3.解:这个菱形的面积=12×10×8=40.故选:B .4.解:9=3,是整数,属于有理数;0.12••是循环小数,属于有理数;无理数有π,3,0.2121121112…(相邻两个2之间的1的个数依次加1),共3个. 故选:B . 5.C6.解:如下图所示:∵四边形ABCD 是矩形,∴∠ABC =90°,OA =12AC ,OB =12BD ,AC=BD ,∴OA=OB ,∵∠AOD =120°,∴∠AOB =60°,∴△AOB 是等边三角形,∴OA=AB =2,∴AC =2OA =4,∴BC 2=AC 2-AB 2=36-9=27, ∴BC =33D .7.∵不等式组1x x a >-⎧⎨>⎩的解集是1x >-,∴a≤-1,只有-2满足条件,故选A .8.解:∵△ABC 是直角三角形,CE 是中线,∴AE CE BE ==,有折叠的性质,则 AE A E '=,AEC A EC '∠=∠,∴AE CE BE A E '===,∵∠A =50°,∴∠ACE =50°, ∴180505080AEC A EC '∠=∠=︒-︒-︒=︒,∵5050100BEC ∠=︒+︒=︒,∴1008020A EB '∠=︒-︒=︒; 故选:C .9.设这只纸箱内能装苹果x 个,由题意可得:1+0.3x ≤9解不等式得:2263x ≤由于x 只能取正整数所以x 为不超过26的正整数时,均满足纸箱和苹果的总质量不能超过9kg 即这只纸箱内最多能装苹果26个故选:C10.解:根据翻折的性质可知,∠ABE =∠A ′BE ,∠DBC =∠DBC ′,又∵∠ABE +∠A ′BE +∠DBC +∠DBC ′=180°,∴∠EBD =∠A ′BE +∠DBC ′=180°×12=90°. 故选B .11.解:2029x x -≥⎧⎨≤⎩①② ,解不等式①得,x ≥2,解不等式②得,92x ≤ ,∴不等式组的解集为922x ≤≤,∴不等式组的最大整数解为4.故答案为:4. 12.解:当n =1时,原式5114=⨯-==2,是整数.故答案为:1(答案不唯一). 13.解:根据题意得:①这个实数为正数时:3x +3+x -1=0,∴x =-12,∴(x -1)2=94,②这个实数为0时:3x +3=x -1,∴x =-2,∵x -1=-3≠0,∴这个实数不为0.故答案为:94.14.解:根据题意得:6262x -<<+,即48x .故答案为:48x.15.∵四边形ABCD 是矩形,∴∠ADC=90°,AC=BD=10,OA=OC=12AC=5 OB=OD=12BD=5,∴OC=OD ,∴∠ODC=∠OCD ,∵∠EDC :∠EDA=1:2,∠EDC+∠EDA=90°,∴∠EDC=30°,∠EDA=60°,∵DE ⊥AC ,∴∠DEC=90°,∴∠DCE=90°-∠EDC=60°,∴∠ODC=∠OCD=60°,∴∠ODC+∠OCD+∠DOC=180°,∴∠COD=60°,∴△OCD 是等边三角形,DE=sin60°•OD=32×5=53216.解:根据题意,得:0.88303010%0.9303020%x x -≥⨯⎧⎨-<⨯⎩解得:37.5≤x <40,故答案为:37.5≤x <40.17.如图,过点A 作AD ⊥BC 于D ,根据题意可知∠EBA =60°,∠FCA =30°,EB ⊥BC ,FC ⊥BC ,BC =12,∴∠ABD =30°,∠ACD =60°,∠CAD =30°,∴∠BAC =∠ACD -∠ABD =30°, ∴AC =BC =12,∴CD =12AC =6,∴AD =22AC CD -=22126-=63.故答案为:318.连接BE ,设CE 的长为x ∵AC 为正方形ABCD 的对角线,正方形边长为4,2 ∴∠BAP=∠PCE=45°,222∴BP 2=AB 2+AP 2-2AB×AP×cos ∠BAP=42+22-2×4×2×2PE 2=CE 2+CP 2-2CE×CP×cos ∠PCE=(32)2+x 2-2x×32×22=x 2-6x+18 BE 2=BC 2+CE 2=16+x 2 在Rt △PBE 中,BP 2+PE 2=BE 2,即:10+x 2-6x+18=16+x 2,解得:x=2∴PE 2=22-6×2+18=10 ∴PE=10.19.解:(1)原式212112=-+-⎛⎫⎪⎝⎭2411=-+-=.(2)由题意可知,两边开平方运算,得到:14x +=±,∴3x =或5-,∴x 的值为3或5-. 20.(1)原式为()3428x x -->-去括号得31228x x -->-合并同类项、移向得4x > 故不等式的解集为4x >数轴上解集范围如图所示(2)原式为3(2)41213x x x x +-≥⎧⎪⎨+>-⎪⎩①②①式为3(2)4x x +-≥去括号得364x x +-≥合并同类项、移向得410x ≥化系数为1得52x ≥②式为1213xx +>-去分母得1233x x +>-合并同类项、移向得4x ->-化系数为1得4x < 故方程组的解集为542x ≤<数轴上解集范围如图所示21.证明:∵CE ∥OD ,DE ∥OC ,∴四边形OCED 是平行四边形,∵四边形ABCD 是菱形, ∴AC ⊥BD ,∴∠DOC =90°,∴平行四边形OCED 是矩形.22.(1)证明:∵四边形ABCD 是平行四边形,∴AO =OC ,∵△ACE 是等边三角形, ∴EO ⊥AC (三线合一),即BD ⊥AC ,∴▱ABCD 是菱形;(2)解:∵△ACE 是等边三角形,∴∠EAC =60°由(1)知,EO ⊥AC ,AO =OC ∴∠AEO =∠OEC =30°,△AOE 是直角三角形,∵∠AED =2∠EAD ,∴∠EAD =15°, ∴∠DAO =∠EAO ﹣∠EAD =45°,∵▱ABCD 是菱形,∴∠BAD =2∠DAO =90°, ∴菱形ABCD 是正方形,∴正方形ABCD 的面积=AB 2=a 2.23.设旗杆AC 的高度为x 米,则(1)AB x =+米.∵在ABC 中,AC BC ⊥,∴222AC BC AB +=,即2225(1)x x +=+,解得:12x =.故旗杆AC 的高度为12米. 24.(1)解:设A 类书的单价为x 元,B 类书的单价为y 元,依题意得:282274x y x y +=⎧⎨+=⎩,解得:2230x y =⎧⎨=⎩.答:A 类书的单价为22元,B 类书的单价为30元. (2)解:设购买A 类书m 本,则购买B 类书()34m -本,依题意得:342230(34)900≤-⎧⎨+-≤⎩m mm m ,解得:1517m ≤≤.又∵m 为正整数, ∴m 可以为15,16,17,∴该学校共有3种购买方案,分别如下所示: 方案1:购买A 类书15本,B 类书19本; 方案2:购买A 类书16本,B 类书18本; 方案3:购买A 类书17本,B 类书17本. 【点睛】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.。

八年级下册数学期中试卷(青岛版)

八年级下册数学期中试卷(青岛版)

八年级下册数学期中试卷(青岛版)的长等于内槽宽AB, 那么判定△OAB≌△OAB的理由是( )A. 边角边B. 角边角C. 边边边D. 角角边7、在下列各组的条件中, 不能判定△ABC和△DEF全等的是( )A. AB=DE, E, FB. AC=DF, BC=DE, DC. AB=EF, E, FD. F, E, AC=DE8、下列各组三角形中,两个三角形能够相似的是( )A.△ABC中,A=42 o,B=118 o,△ABC中,A=118 o,B=15 oB.△ABC中,AB=8,AC=4, A=105 o,△ABC中,AB=16,BC=8,A=100oC.△ABC中,AB=18,BC=20,CA=35,△A`B`C`中,A`B`=36,B`C`=40,C`A`=70D.△ABC和△ABC中,有,C9、如图在△ABC,P为AB上一点,连结CP,以下各条件中不能判定△ACP∽△ABC的是( )A.ACP=B B.APC=ACB C. ACAP=ABAC D.ACAB=CPBC10、下列代数式中,x能取一切实数的是( )A. B. C. D.11、在同一时刻,身高1.6米的小强在阳光下的影长为0.8米,一棵大树的影长为4.8米,则树的高度为( )A 4.8米 B 6.4米 C 9.6米 D 10米12、如图,在△ABC中,D、E、F分别在AB、AC、BC上,DE∥BC, EF∥AB, 且AD:AB=1:2, S四边形BFED:S△ABC=( )A、1:2B、1:3C、4:9D、5:9二、填空题:13、如右图所示为农村一古老的捣碎器,已知支撑柱的高为0.3米,踏板长为1.6米,支撑点到踏脚的距离为0.6米,现在踏脚着地,则捣头点上升了米.14、如图, 已知:2 , 4 , 要证BD=CD , 需先证△AEB≌△A EC , 根据是_____ ____再证△BDE≌△__ ____ ,根据是___ _______.15、式子成立的条件是。

【八年级】八年级下册数学期中检测试题(青岛版含答案)

【八年级】八年级下册数学期中检测试题(青岛版含答案)

【八年级】八年级下册数学期中检测试题(青岛版含答案)八年级下学期数学试卷一、:(每题3分,共30分)1若为二次根式,则m的取值为()上午≤3b、m<3c、m≥3d、m>32、计算:18÷(3d6)的结果是():a、 6d3;b、3;c、d6d23;d、d333、在△abc和△a’b’c’中,ab=a’b’,∠b=∠b’,补充条件后仍不一如果△ 基础知识≌ △ a'b'c'可以保证,补充条件是()a、bc=b’c’b、∠a=∠a’c、ac=a’c’d、∠c=∠c’4.如果两个三角形的两侧对应于一侧的相同高度,则两个三角形第三侧的角度之间的关系为()a、相等b、不相等c、互余或相等d、互补或相等5.如果α是锐角,sinα=Cos 50°,那么α的值是()a、20°b、30°c、40°d、50°6.已知:如图所示,小明打网球时,球拍球的高度应为()a、2.7mb、1.8mc、0.9md、6m7.如图所示,正方形ABCD的边BC位于等腰直角三角形PQR的底边QR上,其他两个顶点a和D位于PQ和PR上,则PA:PQ=()a、b、1:2c、1:3d、2:38.如果平行四边形的两个相邻边的长度分别为10和15,且其夹角为60°,则平行四边形的面积为()m2a、150;b、75;c、9;d、79.如图所示,在RT中△ ABC,CD是斜边AB上的高度,角平分线AE在H和ef中与CD相交⊥ AB在F中,那么以下结论是不正确的()a、∠acd=∠bb、ch=ce=efc、 ac=afd、ch=hd10、在正方形网格中,的位置如右图所示,则的值为()a、 b、c、d、二、题:(每小题3分,共30分)1.当x_____________________2、化简-÷=____________.3.如果a=3+22,B=3-22,那么a2b-ab2=。

2023—2024学年山东省青岛市城阳区八年级下学期期中数学试卷

2023—2024学年山东省青岛市城阳区八年级下学期期中数学试卷

2023—2024学年山东省青岛市城阳区八年级下学期期中数学试卷一、单选题(★★) 1. 下列四个图形中是中心对称图形的是()A.B.C.D.(★★) 2. 如图,屋顶钢架外框是等腰三角形,其中,工人师傅在焊接立柱时,只用找到的中点D,就可以说明竖梁垂直于横梁了,工人师傅这种操作方法的依据是()A.等边对等角B.等角对等边C.垂线段最短D.等腰三角形“三线合一”(★★) 3. 交通法规人人遵守,文明城市处处安全在通过桥洞时,我们往往会看到如图所示的标志,这是限制车高的标志.则通过该桥洞的车高x(m)的范围在数轴上可表示为()A.B.C.D.(★★) 4. 如图,的顶点坐标分别为,,,如果将先向左平移3个单位,再向上平移1个单位得到,那么点B的对应点的坐标是()A.B.C.D.(★) 5. 若,则下列不等式一定成立的是()A.B.C.D.(★★) 6. 用反证法证明命题“三角形中必有一个内角小于或等于60 °”时,首先应假设这个三角形中()A.每一个内角都大于B.每一个内角都小于C.有一个内角大于D.有一个内角小于(★★) 7. 已知点在第二象限,则a的取值范围是()A.或B.C.D.(★★★) 8. 如图,把绕点顺时针旋转,得到,交于点,若,则的度数()A.B.C.D.(★) 9. 如果不等式的解集为,则a必须满足()A.B.C.D.(★★★) 10. 如图,在中,,以点为圆心,适当长为半径作弧,分别交于点,分别以点为圆心,大于的长为半径作弧,两弧在的内部相交于点,作射线,交于点,则的长为()A.B.C.D.二、填空题(★★) 11. 如图是环岛行驶的交通标志,表示在环形交叉路口中,车辆按逆时针方向绕行.将这个图案绕着它的中心旋转一定角度后与自身重合,则旋转的角度至少为 _________ .(★★) 12. 某校举行“学以致用,数你最行”数学知识抢答赛,共有20道题,规定答对一道题得10分,答错或放弃扣4分,在这次抢答赛中,八年级1班代表队被评为优秀(88分或88分以上),则这个队至少答对 ________ 道题.(★★★)13. 如图,在中,的平分线与的垂直平分线交于点P,连接.若,则的度数为 _______ .(★★) 14. 若不等式组的解集为x>3,则m的取值范围 ___ .(★★★) 15. 如图,已知在四边形中,,平分交于点,于点,于点,,,则的面积为 _______ .(★★★) 16. 如图,函数(k,b为常数,)的图象经过点,与函数的图象交于点A,下列结论:①点A的横坐标为2 ;②关于x的不等式的解集为;③关于x的方程的解为;④关于x的不等式组的解集为.其中正确的是_______ (只填写序号).三、解答题(★★★) 17. 已知:如图,四边形;求作:点,使点在四边形内部,,且点到两边的距离相等.(★★) 18. 计算:(1)解不等式;(2)解不等式,并把解集表示在数轴上;(3)求不等式的非负整数解;(4)解不等式组:;(5)解不等式组:.(★★★) 19. 如图,,是的高,且.(1)求证:是等腰三角形;(2)若,,求的高.(★★★) 20. 的各顶点坐标分别为,将先向下平移2个单位长度,再向左平移4个单位长度,得到.(1)如果将看成是由经过一次平移得到的,则平移的距离是个单位长度;(2)在y轴上有点D,则的最小值为个单位长度;(3)作出绕点O顺时针旋转后的.(★★★) 21. 如图,已知,以为边构造等边,连接,在上取一点,使,在上取一点,使,连接.(1)求证:;(2) ,,三条线段长度之和与图中哪条线段的长度相等?请说明理由.(★★★) 22. 两个家庭暑假结伴自驾到某景区旅游,该景区售出的门票分为成人票和儿童票,小鹏家购买张成人票和张儿童票共需元,小波家购买张成人票和张儿童票共需元.(1)求成人票和儿童票的单价;(2)售票处规定:一次性购票数量达到张,可购买团体票,即每张票均按成人票价的八折出售.若干个家庭组团到该景区旅游,导游收到通知该团成人和儿童共人,估计儿童至人.导游选择哪种购票方式花费较少?(★★) 23. 【问题情境】如图①,的内角,的平分线交于点D.【建立模型】如图①,的内角,的平分线,交于点.【建立模型】(1)如图②,过点作的平行线分别交,于点,.请你写出与,的数量关系并证明.(2)如图③,在图①的基础上,过点作直线,延长和,分别交于点,,若,,请你直接写出的长度(不需要证明).【类比探究】如图④,的内角的平分线,与它的外角的平分线交于点,过点作的平行线分别交,于点,.请你写出与,的数量关系并证明.(★★★) 24. 如图,在长方形中,,,延长至点E,使,连接.点P从点A出发,沿方向匀速运动,速度为;同时,点Q从点C出发,沿方向匀速运动,速度为;连接、.当点Q停止运动时,点P也停止运动.设运动时间为,解答下列问题:(1) 当t为何值时,使点Q在的平分线上?(2) 当t为何值时,为等腰三角形?(3) 设四边形的面积为,求y与t之间的关系式及四边形面积的最大值.。

2022-2023学年山东省青岛市市南区八年级第二学期期中数学试卷

2022-2023学年山东省青岛市市南区八年级第二学期期中数学试卷

青岛市市南区2022-2023学年度第二学期期中学业水平质量检测八年级数学试题(考试时间:120分钟;满分:120分)第Ⅰ卷(共24分)一、选择:(本题满分24分,共有8道小题,每小题3分)1.以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图形的是( )A .B .C .D .2.已知a b >,则下列各式中一定成立的是( )A .0a b -<B .2121a b -<-C .22ac bc >D .33a b > 3.用公式法分解因式:①22x+y x xy y ++=2();②22x y 2x xy y =--+-2(-);③2269x y x xy y +-=2(-3);④2111x x 422x -+=(+)(-)其中,正确的有( )个 A .1 B .2 C .3 D .44.用反证法证明“直角三角形中至少有一个锐角不大于45°”,应先假设( )A .直角三角形中两个锐角都大于45°B .直角三角形中两个锐角都不大于45°C .直角三角形中有一个锐角大于45°D .直角三角形中有一个锐角不大于45°5.若关于x 的不等式()13a x ->的解集为31x a <-,则a 的取值范围是( ) A .1a <B .1a >C .1a ≠D .1a <-6.在元旦联欢会上,3名小朋友分别站在三角形三个顶点的位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先坐到凳子上谁获胜,为使游戏公平,则凳子应放在三角形的( )A .三条角平分线的交点B .三条中线的交点C .三条高的交点D .三条边的垂直平分线的交点 7.不等式组6154x x x m+⎧+⎪⎨⎪⎩><的解集是x <4,则m 的取值范围是 A .<m 4 B .m >4 C .m ≤4 D .m ≥48.如图,在△ABC 中,PD ,PE 分别是AC ,BC 边的垂直平分线,且分别与AB 交于点M ,N 连接CM ,CN .有下列四个结论:①P A B ∠=∠+∠;②ACB MCN P ∠=∠+∠;③∠ACB 与∠B 是互为补角;④△MCN 的周长与AB 边长相等.其中正确结论的个数是( )A .1 B .2 C .3 D . 4校密第Ⅱ卷(共96分)二、填空:(本题满分21分,共有7道小题,每小题3分)9.因式分解x 4﹣4x 2= 。

2022-2023学年全国初中八年级下数学青岛版期中试卷(含解析)

2022-2023学年全国初中八年级下数学青岛版期中试卷(含解析)

2022-2023学年全国八年级下数学期中试卷考试总分:120 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 已知▱中,,则的度数是( )A.B.C.D.2. 在下列命题中,是假命题的是( )A.两组对边分别相等的四边形是平行四边形B.两条对角线垂直且平分的四边形是正方形C.四条边都相等的四边形是菱形D.四个内角都相等的四边形是矩形3. 下列各数中,算术平方根等于它本身的是( )A.B.C.D.4. 下列实数中,在和之间的是( )A.B.C.ABCD ∠A +∠C =260∘∠B 110∘160∘70∘50∘1671−1237–√15−−√πD.5. 下列二次根式与不是同类二次根式的是( )A.B.C.D.6. 若,且为实数,有下列各式:①;②;③;④;⑤其中,正确的有( )A.个B.个C.个D.个7. 将不等式的解集在数轴上表示出来,正确的是( )A.B.C.D.8. 与根式的值相等的是( )A.B.π+12–√2–√12−−√0.2−−−√72−−√a >b c ac >bc ac <bc a >b c 2c 2a ≥b c 2c 2>a c bc1234 x +8<4x −1,x ≤8−x1232x −1x −−−√−x −−−√x−√−−−−√C.D.卷II (非选择题)二、 填空题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )9. 化简:________.10. 实数,是连续整数,如果,那么的值是________.11. 如图:点、、、分别是四边形各边的中点.当四边形满足条件________时,四边形是菱形.12. 如图,中,,点,点在第一象限,,分别为,的中点,且,则点坐标为________.13. 已知实数,,在数轴上的对应点如图所示,则________(填“”“”或“=”)14. 关于的不等式组的解集中至少有个整数解,则正数的最小值是________.三、 解答题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )15. 市体育局为组织校园足球联赛准备购进一批足球,红星体育用品公司通过公开招标接到这项业务,而比赛用的足球质量有严格规定,其中质量误差符合要求,现质检员从中抽取个足球进行检查,检查结果如下表:(单位:)①②③ ④ ⑤ ⑥有几个足球符合质量要求?−−x−−−√−x−√=−12−−√18−−√3–√n m n <<m 26−−√m +n E F G H ABCD ABCD EFGH △ABO AO =AB B(10,0)A C D OB OA CD =6.5A a b a +b −10><x {x −a ≤0,2x −3a ≥05a ±5g 6g +3−2+4−6+1−3(1)(2)其中质量最接近标准的是几号球?为什么?16. 解不等式组,并把不等式组的解集表示在数轴上.;.17. 已知不等式的最小正整数解是方程的解,试求的值. 18. 如图,在▱中,,以为直径的交于点,过点作的切线交于点.求证:;填空:①当________时,四边形为正方形;②当________时,四边形为菱形.19. 先化简,再求值:,其中=.20. 已知平行四边形中,对角线,相交于点, ,,,求的长.21. 如图,在矩形中,,,对角线相交于,为上一点,交于点,若,求:的长;的面积.22. 如图,一条伸直的橡皮筋的两端被固定在水平桌面上,是上的一点,,,将橡皮筋从点向上垂直拉升到点.求的长;(2)(1) 4x >2x −6≤x −13x +19(2) 5x −1<3(x +1)−≤12x −135x +125x −2<6x −13x −1.5ax =6a ABCD AC =BC =4AC ⊙O CD E E ⊙O AD F (1)EF ⊥AD (2)∠B =∘AOEF AF =ABCD 2−2−3−3+3+x 2y 2x 2y 2x 2x 2y 2y 23|x +1|+2(y −2)40ABCD AC BD O AB ⊥AC AB =3BD =210−−√AD ABCD AB =2BC =4O E BC DE AC F ∠EDC =∠ADB (1)BE (2)△CEF AB C AB AB =5cm AC =4cm C 2cm D (1)AD (2)△ABD判断的形状,并说明理由.23. 某公司有、两种型号的客车,它们的载客量、每天的租金如表所示:型号客车型号客车载客量(人/辆)租金(元/辆)已知某中学计划租用、两种型号的客车共辆,同时送七年级师生到沙家参加社会实践活动,已知该中学租车的总费用不超过元.(1)求最多能租用多少辆型号客车?(2)若七年级的师生共有人,请写出所有可能的租车方案.24. 计算: .(2)△ABD A B A B 4530600450A B 105600A 380+−−(−)(−)3–√2(1−)2–√2−−−−−−−−√()2–√2−12–√2–√3–√参考答案与试题解析2022-2023学年全国八年级下数学期中试卷一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.【答案】D【考点】平行四边形的性质【解析】由平行四边形的性质得出,,求出,即可得出答案.【解答】解:∵四边形是平行四边形,∴,,∵,∴,∴.故选.2.【答案】B【考点】正方形的判定矩形的判定菱形的判定平行四边形的判定【解析】根据平行四边形的判定、矩形的判定,菱形的判定以及正方形的判定对各选项分析判断即可得解.【解答】解:两组对边分别相等的四边形是平行四边形,正确,故不符合题意;∠A =∠C ∠B +∠C =180∘∠C =130∘ABCD ∠A =∠C ∠B +∠C =180∘∠A +∠C =260∘∠C =130∘∠B =−=180∘130∘50∘D A两条对角线垂直且平分的四边形是正方形,错误,应该是菱形,故符合题意;四条边都相等的四边形是菱形,正确,故不符合题意;四个内角都相等的四边形是矩形,正确,故不符合题意.故选.3.【答案】C【考点】算术平方根【解析】根据算术平方根的定义对各个选项分析判断后进行解答即可.【解答】解:算术平方根是;算术平方根是;算术平方根是,没有算术平方根.所以算术平方根等于它本身的是.故选.4.【答案】A【考点】实数大小比较【解析】本题主要考查了实数的大小比较.【解答】解:.,符合题意;.,不符合题意;.,不符合题意;.,不符合题意.故选.5.【答案】CB C D B 16477–√11−11C A 2<<37–√B >315−−√C π>3D π+1>3A【考点】同类二次根式【解析】根据同类二次根式的定义求解即可.【解答】解:,,与是同类二次根式,与不是同类二次根式,故选:.6.【答案】A【考点】不等式的性质【解析】根据不等式的性质对选项进行分析、判断.【解答】解:①当时,不等式不成立,故错误;②当时,不等式不成立,故错误;③当时,不等式不成立,故错误;④当时,;当时,;综上所述,故正确;⑤当时,不等式不成立,故错误;综上所述,正确的不等式有个.故选:.7.【答案】C【考点】在数轴上表示不等式的解集【解析】2–√12−−√72−−√2–√=0.2−−−√5–√52–√C c =0ac >bc c =0ac <bc c =0a >b c 2c 2c =0a =b c 2c 2c ≠0a >b c 2c 2a ≥b c 2c 2c ≤0>a c b c 1A解不等式组,观察数轴即可求解.【解答】解:由①得,由②得,不等式组的解集为:.不等式组的解集在数轴上表示为:故选.8.【答案】C【考点】二次根式的性质与化简【解析】考查了二次根式的性质与化简和二次根式有意义的条件.【解答】解:∵ 有意义,∴,∴,∴.故选.二、 填空题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )9.【答案】【考点】二次根式的化简求值【解析】x +8<4x −1①,x ≤8−x ②,1232x >3x ≤4∴3<x ≤4C −1x−−−√x <0x <0−1x −−−√x =x ⋅=−−1x −−−√−x −−−√−x−x −−−√C 2−6–√此题暂无解析【解答】解:,.10.【答案】【考点】估算无理数的大小【解析】根据题意结合即可得出,的值,进而求出答案.【解答】解:∵,是连续整数,,∴,,∴.故答案为:.11.【答案】【考点】三角形中位线定理菱形的判定【解析】本题主要考查三角形的中位线定理及菱形的判定.【解答】解:连接,,=−=2−−12−−√18−−√3–√4–√6–√6–√2−6–√115<<626−−√m n n m n <<m 26−−√n =5m =6m +n =1111AC =BDAC BD E,F,G,H AB,BC,CD,AD分别是边的中点,,, 四边形是平行四边形,当时,,四边形为菱形,故答案为:.12.【答案】【考点】勾股定理直角三角形斜边上的中线等腰三角形的性质:三线合一【解析】连接,根据等腰三角形三线合一的性质可得,根据线段中点的定义求出,再根据直角三角形斜边上的中线等于斜边的一半求出,利用勾股定理列式求出,然后写出点的坐标即可.【解答】解:如图,连接,∵,点是的中点,∴,,∵点是的中点,∴,由勾股定理,得,∴点的坐标为.故答案为:.13.【答案】【考点】实数大小比较在数轴上表示实数∵E,F,G,H AB,BC,CD,AD ∴EF AC =//12GH AC =//12∴EFGH AC =BD EF =EH EFGH AC =BD (5,12)AC AC ⊥BC OC AO AC A AC AO =AB C OB AC ⊥BC OC =OB =×10=51212D AO AO =2CD =2×6.5=13AC ===12A −O O 2C 2−−−−−−−−−−√−13252−−−−−−−√A (5,12)(5,12)<数轴实数【解析】直接利用数轴上,的位置得出的取值范围进而得出答案.【解答】由数轴可得:,故,则,14.【答案】【考点】解一元一次不等式组【解析】利用整数解个数,确定不等式组解集的左右界点,即可解答.【解答】解: 解得,解得由题,不等式组至少有个整数解,则不等式组的解集是.因为不等式组至少有个整数解,所以,所以.当时,由已知可得,则,矛盾;当,经检验,符合题意;故的范围是,所以的最小值是.故答案为:.三、 解答题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )15.【答案】a b a +b 1<b <2−2<a <−1−1<a +b <1a +b −1<02{x −a ≤0(1),2x +3a >0(2),(1)x ≤a (2)x >−a,325−a <x ≤a 325a −(−a)>432a >85<a <285−a <−332a >2a ≥2a a ≥2a 22(1)|+3|=3|−2|=2|+4|=4|−6|=6|+1|=1|−3|=3解:,,,,,;只有第④个足球的质量绝对值大于,不符合质量要求,其它的都符合,所以有个足球符合质量要求.因在个球中,质量绝对值最小,所以⑤号球最接近标准质量.【考点】绝对值正数和负数的识别【解析】(1)根据题意,只要每个篮球的质量标记的正负数的绝对值不大于的,即符合质量要求;(2)篮球的质量标记的正负数的绝对值越小的越接近标准.【解答】解:,,,,,;只有第④个足球的质量绝对值大于,不符合质量要求,其它的都符合,所以有个足球符合质量要求.因在个球中,质量绝对值最小,所以⑤号球最接近标准质量.16.【答案】解:(1),在数轴上表示为:(2).在数轴上表示为:【考点】解一元一次不等式组解一元一次不等式【解析】此题暂无解析【解答】此题暂无解答17.【答案】(1)|+3|=3|−2|=2|+4|=4|−6|=6|+1|=1|−3|=355(2)|+1|=165(1)|+3|=3|−2|=2|+4|=4|−6|=6|+1|=1|−3|=355(2)|+1|=16−3<x ≤2−1≤x <2解:∵,∴,∴不等式的最小正整数解为,∵是方程的解,则,∴.【考点】一元一次不等式的整数解一元一次方程的解【解析】本题是关于的不等式,应先只把看成未知数,求得的解集,然后根据不等式最小整数解是方程的解,进而求得.【解答】解:∵,∴,∴不等式的最小正整数解为,∵是方程的解,则,∴.18.【答案】证明:如图,连接,∵为的直径,∴,∵四边形是平行四边形,∴,,,∴为的中点.∵为的中点,∴,与相切于点,∴,∴.,【考点】切线的性质平行四边形的性质与判定5x −2<6x −1x >−15x −2<6x −1x =1x =13x −1.5ax =63×1−1.5a =6a =−2x x x a 5x −2<6x −1x >−15x −2<6x −1x =1x =13x −1.5ax =63×1−1.5a =6a =−2(1)OE AC ⊙O AE ⊥CD ABCD AD =BC ∵AC =BC ∴AD =AC E CD O AC AD//OE ∵EF ⊙O E EF ⊥OE EF ⊥AD 453正方形的判定菱形的判定【解析】无无【解答】证明:如图,连接,∵为的直径,∴,∵四边形是平行四边形,∴,,,∴为的中点.∵为的中点,∴,与相切于点,∴,∴.解:①∵,,∴,,,,四边形为矩形.,∴四边形为正方形.②∵,,∴,由,得,,,,,是等边三角形,∴,▱是菱形.故答案为:;.19.【答案】原式=(1)OE AC ⊙O AE ⊥CD ABCD AD =BC ∵AC =BC ∴AD =AC E CD O AC AD//OE ∵EF ⊙O E EF ⊥OE EF ⊥AD AC =BC ∠B =45∘AC ⊥BC ∵AD//BC ∴AC ⊥AD ∵EF ⊥OE ,EF ⊥AD ∴AOEF ∵AO =OE AOEF AF =3AD =4DF =1△AEF ∽△EDF E =AF ⋅DF F 2∴EF =3–√∴tan D ==EF DF 3–√∴∠D =60∘∵AC =AD ∴△ACD AD =CD ∴ABCD 4532−4−2+−3+3x 2x 2y 4y 2x 8y 2x 8y 2−−25=,由题意可知:=或=.原式==.【考点】整式的加减——化简求值非负数的性质:偶次方绝对值【解析】此题暂无解析【解答】此题暂无解答20.【答案】解:∵四边形是平行四边形,∴,,,又∵,∴,∵,,∴,∴,∴,∴.【考点】平行四边形的性质勾股定理【解析】此题暂无解析【解答】解:∵四边形是平行四边形,∴,,,又∵,∴,∵,,∴,∴,∴,∴.21.【答案】解:∵四边形是矩形,,,−−x 2y 5x −1y 2−5−4−5ABCD BO =DO AO =OC AD =BC BD =210−−√BO =10−−√AB ⊥AC AB =3AO ==110−9−−−−−√AC =2BC ==+3222−−−−−−√13−−√AD =13−−√ABCD BO =DO AO =OC AD =BC BD =210−−√BO =10−−√AB ⊥AC AB =3AO ==110−9−−−−−√AC =2BC ==+3222−−−−−−√13−−√AD =13−−√(1)ABCD AB =2BC =4AD//BC CD =AB =2∴,,∴.∵,∴.∵,∴,∴,∴,解得:,∴.,∴,∴,∴.∵, .【考点】矩形的性质相似三角形的性质与判定【解析】由在矩形中,,易证得,然后由相似三角形的对应边成比例,求得答案;首先求得的面积,然后证得,即可得:,由等高三角形的面积比等于对应底的比,求得答案.【解答】解:∵四边形是矩形,,,∴,,∴.∵,∴.∵,∴,∴,∴,解得:,∴.,∴,∴,∴.∵, .22.AD//BC CD =AB =2∠ADB =∠CBD ∠EDC =∠ADB ∠EDC =∠CBD ∠ECD =∠DCB △CDE ∼△CBD CE :CD =CD :CB CE :2=2:4CE =1BE =BC −CE =4−1=3(2)∵AD//BC △ADF ∼△CEF DF :EF =AD :CE =4:1EF :DE =1:5=CE ⋅CD =1S △CDE 12∴==S △CEF 15S △CDE 15(1)ABCD ∠EDC =∠ADB △CDE ∽△CBD (2)△CDE △ADF ∼△CEF EF :DE =1:5(1)ABCD AB =2BC =4AD//BC CD =AB =2∠ADB =∠CBD ∠EDC =∠ADB ∠EDC =∠CBD ∠ECD =∠DCB △CDE ∼△CBD CE :CD =CD :CB CE :2=2:4CE =1BE =BC −CE =4−1=3(2)∵AD//BC △ADF ∼△CEF DF :EF =AD :CE =4:1EF :DE =1:5=CE ⋅CD =1S △CDE 12∴==S △CEF15S △CDE 15【答案】解:∵,,,由勾股定理得, .由勾股定理得,,∵,,∴,∴是直角三角形.【考点】勾股定理勾股定理的逆定理【解析】暂无暂无【解答】解:∵,,,由勾股定理得, .由勾股定理得,,∵,,∴,∴是直角三角形.23.【答案】设租用型号客车辆,则租用型号客车辆,依题意,得:,解得:.又∵为整数,∴的最大值为.答:最多能租用辆型号客车.设租用型号客车辆,则租用型号客车辆,依题意,得:,,解得:.又∵为整数,且,∴=,.∴有两种租车方案,方案一:组型号客车辆、型号客车辆;方案二:组型号客车辆、型号客车辆.【考点】一元一次不等式的实际应用【解析】(1)AB =5cm AC =4cm CD =2cm AD =A +C C 2D 2−−−−−−−−−−√=+4222−−−−−−√=2(cm)5–√(2)DB =C +C D 2B 2−−−−−−−−−−√=+2212−−−−−−√=(cm)5–√A ==25B 252A +D =D 2B 2+(2)5–√2()5–√2=20+5=25A =A +D B 2D 2B 2△ABD (1)AB =5cm AC =4cm CD =2cm AD =A +C C 2D 2−−−−−−−−−−√=+4222−−−−−−√=2(cm)5–√(2)DB =C +C D 2B 2−−−−−−−−−−√=+2212−−−−−−√=(cm)5–√A ==25B 252A +D =D 2B 2+(2)5–√2()5–√2=20+5=25A =A +D B 2D 2B 2△ABD A x B (10−x)600x +450(10−x)≤5600x ≤713x x 77A A x B (10−x)45x +30(10−x)≥380x ≥513x x ≤713x 67A 6B 4A 7B 3A (10−x)A(1)设租用型号客车辆,则租用型号客车辆,根据总租金=租用型号客车的辆数租用型号客车的辆数结合租车的总费用不超过元,即可得出关于的一元一次不等式,解之即可得出的取值范围,再取其中的最大整数值即可得出结论;(2)设租用型号客车辆,则租用型号客车辆,根据座位数=租用型号客车的辆数租用型号客车的辆数结合师生共有人,即可得出关于的一元一次不等式,解之即可得出的取值范围,再结合(1)的结论及为整数,即可得出各租车方案.【解答】设租用型号客车辆,则租用型号客车辆,依题意,得:,解得:.又∵为整数,∴的最大值为.答:最多能租用辆型号客车.设租用型号客车辆,则租用型号客车辆,依题意,得:,,解得:.又∵为整数,且,∴=,.∴有两种租车方案,方案一:组型号客车辆、型号客车辆;方案二:组型号客车辆、型号客车辆.24.【答案】解:原式 .【考点】零指数幂、负整数指数幂二次根式的性质与化简二次根式的混合运算【解析】此题暂无解析【解答】解:原式 . A x B (10−x)600×A +450×B 5600x x A x B (10−x)45×A +30×B 380x x x A x B (10−x)600x +450(10−x)≤5600x ≤713x x 77A A x B (10−x)45x +30(10−x)≥380x ≥513x x ≤713x 67A 6B 4A 7B 3=3+−1−−2+2–√2–√6–√=6–√=3+−1−−2+2–√2–√6–√=6–√。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

期中数学试卷一、选择题1.有下列说法:(1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数;(3)无理数包括正无理数、零、负无理数;(4)无理数都可以用数轴上的点来表示.其中正确的说法的个数是()A.1B.2C.3D.42.下列各组数中,能构成直角三角形的一组是()A.6,8,12B.1,4,C.3,4,5D.2,2,3.若顺次连接四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD一定是()A.矩形B.菱形C.对角线互相垂直的四边形D.对角线相等的四边形4.()2的平方根是x,64的立方根是y,则x+y的值为()A.3B.7C.3或7D.1或75.若不等式的解集是x>a,则a的取值范围是()A.a<3B.a=3C.a>3D.a≥36.不等式组的解集在数轴上表示正确的是()A.B.C.D.7.已知点P(2﹣4m,m﹣4)在第三象限,且满足横、纵坐标均为整数的点P 有()A.1个B.2个C.3个D.4个8.如图所示,四边形OABC是正方形,边长为4,点A、C分别在x轴、y轴的正半轴上,点P在OA上,且P点的坐标为(3,0),Q是OB上一动点,则PQ+AQ的最小值为()A.5B.C.4D.6二、填空题9.计算:+(π﹣2)0﹣()﹣1=.10.的算术平方根等于.11.一个正数x的平方根为2a﹣3和5﹣a,则x=.12.如果关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是.13.如图,在菱形ABCD中,M、N分别是边BC、CD上的点,且AM=AN=MN=AB,则∠C的度数为.14.如图,是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A、B、C、D的边长分别是3、5、2、3,则最大正方形E的面积是.三、解答题15.解不等式(或不等式组)并在数轴上表示解集:(1)2(x+5)<3(x﹣5)(2)解不等式组.16.求x的值:(1)(x+3)3=﹣27(2)16(x﹣1)2﹣25=0.17.如果A=是a+3b的算术平方根,B=的1﹣a2的立方根.试求:A﹣B的平方根.18.如图,在高为3米,斜坡长为5米的楼梯表面铺地毯,则地毯的长度至少需要多少米?若楼梯宽2米,地毯每平方米30元,那么这块地毯需花多少元?19.已知关于x、y的方程组的解都是非正数,求a的取值范围.20.自学下面材料后,解答问题.分母中含有未知数的不等式叫分式不等式.如:<0等.那么如何求出它们的解集呢?根据我们学过的有理数除法法则可知:两数相除,同号得正,异号得负.其字母表达式为:(1)若a>0,b>0,则>0;若a<0,b<0,则>0;(2)若a>0,b<0,则<0;若a<0,b>0,则<0.反之:(1)若>0,则或(2)若<0,则或.根据上述规律,求不等式>0的解集.21.如图,四边形ABCD是矩形,∠EDC=∠CAB,∠DEC=90°.(1)求证:AC∥DE;(2)过点B作BF⊥AC于点F,连接EF,试判别四边形BCEF的形状,并说明理由.22.为建设“秀美幸福之市”,长沙市绿化提质改造工程正如火如荼地进行,某施工队计划购买甲、乙两种树苗共400棵对芙蓉路的某标段道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元.(1)若购买两种树苗的总金额为90000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不少于购买乙种树苗的金额,至少应购买甲种树苗多少棵?23.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC 的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.24.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,若E,F是AC 上两动点,分别从A,C两点以相同的速度向C、A运动,其速度为1cm/s.(1)当E与F不重合时,四边形DEBF是平行四边形吗?说明理由;(2)若BD=12cm,AC=16cm,当运动时间t为何值时,以D、E、B、F为顶点的四边形是矩形?参考答案一、选择题1.【解答】解:(1)π是无理数,而不是开方开不尽的数,则命题错误;(2)无理数就是无限不循环小数,则命题正确;(3)0是有理数,不是无理数,则命题错误;(4)正确;故选:B.2.【解答】解:A、∵82+62≠122,∴不能够成直角三角形,故本选项错误;B、∵12+()2≠42,∴不能够成直角三角形,故本选项错误;C、∵32+42=52,∴能够成直角三角形,故本选项正确;D、∵22+22≠()2,∴不能够成直角三角形,故本选项错误.故选:C.3.【解答】解:已知:如右图,四边形EFGH是矩形,且E、F、G、H分别是AB、BC、CD、AD的中点,求证:四边形ABCD是对角线垂直的四边形.证明:由于E、F、G、H分别是AB、BC、CD、AD的中点,根据三角形中位线定理得:EH∥FG∥BD,EF∥AC∥HG;∵四边形EFGH是矩形,即EF⊥FG,∴AC⊥BD,故选:C.4.【解答】解:∵(﹣)2=9,∴()2的平方根是±3,即x=±3,∵64的立方根是y,∴y=4,当x=3时,x+y=7,当x=﹣3时,x+y=1.故选:D.5.【解答】解:由不等式的解集是x>a,根据大大取大,a≥3.选:D.6.【解答】解:,由①得,x≤﹣1,由②得,x>﹣5,故﹣5<x≤﹣1.在数轴上表示为:.故选:A.7.【解答】解:∵点P(2﹣4m,m﹣4)在第三象限,∴,由①得,m>,由②得,m<4,所以,不等式组的解集是<m<4,∴整数m为1、2、3,∴满足横、纵坐标均为整数的点P有3个.故选:C.8.【解答】解:作出P关于OB的对称点D,则D的坐标是(0,3),则PQ+QA 的最小值就是AD的长,则OD=3,因而AD==5,则PD+PA和的最小值是5,故选:A.二、填空题9.【解答】解:原式=2+1﹣=3﹣2=1.故答案为:1.10.【解答】解:的算术平方根=,故答案为:11.【解答】解:∵一个正数x的平方根为2a﹣3和5﹣a,∴(2a﹣3)+(5﹣a)=0,解得:a=﹣2.∴2a﹣3=﹣7,5﹣a=7,∴x=(±7)2=49.故答案为:49.12.【解答】解:∵(a+1)x>a+1的解集为x<1,∴a+1<0,∴a<﹣1.13.【解答】解:∵四边形ABCD是菱形,∴AB=AD,∵AM=AN=MN=AB,∴AB=AM,AN=AD,△AMN是等边三角形,∴∠B=∠AMB,∠D=∠AND,∠MAN=60°,设∠B=x,则∠AMB=x,∠BAM=∠DAN=180°﹣2x,∵∠B+∠BAD=180°,∴x+180°﹣2x+60°+180°﹣2x=180°,解得:x=80°,∴∠B=80°,∴∠C=180°﹣80°=100°.故答案为:100°.14.【解答】解:设中间两个正方形的边长分别为x、y,最大正方形E的边长为z,则由勾股定理得:x2=32+52=34;y2=22+32=13;z2=x2+y2=47;即最大正方形E的边长为:,所以面积为:z2=47.故答案为:47.三、解答题15.【解答】解:(1)由原不等式,得2x+10<3x﹣15,即10+15<3x﹣2x∴x>25;(2)由不等式组得,解得16.【解答】解:(1)x+3=﹣3,所以x=﹣6;(2)(x﹣1)2=,x﹣1=±,所以x=或x=﹣.17.【解答】解:依题意有,解得,A==3,B==﹣2A﹣B=3+2=5,故A﹣B的平方根是±.18.【解答】解:在RT△ABC中,AC==4米,故可得地毯长度=AC+BC=7米,∵楼梯宽2米,∴地毯的面积=14平方米,故这块地毯需花14×30=420元.答:地毯的长度需要7米,需要花费420元.19.【解答】解:,①+②得:x=﹣3+a,①﹣②得:y=﹣4﹣2a,所以方程组的解为:,因为关于x、y的方程组的解都是非正数,所以可得:,解得:﹣2≤a≤3.20.【解答】解:(2)若<0,则或;故答案为:或;由上述规律可知,不等式转化为或,所以,x>2或x<﹣1.21.【解答】(1)证明:∵四边形ABCD是矩形,∴AB∥CD,∴∠ACD=∠CAB,∵∠EDC=∠CAB,∴∠EDC=∠ACD,∴AC∥DE;(2)解:四边形BCEF是平行四边形.理由如下:∵BF⊥AC,四边形ABCD是矩形,∴∠DEC=∠AFB=90°,DC=AB在△CDE和△BAF中,,∴△CDE≌△BAF(AAS),∴CE=BF,DE=AF(全等三角形的对应边相等),∵AC∥DE,即DE=AF,DE∥AF,∴四边形ADEF是平行四边形,∴AD=EF,∵AD=BC,∴EF=BC,∵CE=BF,∴四边形BCEF是平行四边形(两组对边分别相等的四边形是平行四边形).22.【解答】解:(1)设购买甲种树苗x棵,则购买乙种树苗(400﹣x)棵,由题意,得200x+300(400﹣x)=90000,解得:x=300,∴购买乙种树苗400﹣300=100棵,答:购买甲种树苗300棵,则购买乙种树苗100棵;(2)设应购买甲种树苗a棵,则购买乙种树苗(400﹣a)棵,由题意,得200a≥300(400﹣a),解得:a≥240.答:至少应购买甲种树苗240棵.23.【解答】(1)证明:∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD,在△AFE和△DBE中∴△AFE≌△DBE(AAS),∴AF=BD,∴AF=DC.(2)四边形ADCF是菱形,证明:AF∥BC,AF=DC,∴四边形ADCF是平行四边形,∵AC⊥AB,AD是斜边BC的中线,∴AD=BC=DC,∴平行四边形ADCF是菱形.24.【解答】解:(1)当E与F不重合时,四边形DEBF是平行四边形理由:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD;∵E、F两动点,分别从A、C两点以相同的速度向C、A运动,∴AE=CF;∴OE=OF;∴BD、EF互相平分;∴四边形DEBF是平行四边形;(2)∵四边形DEBF是平行四边形,∴当BD=EF时,四边形DEBF是矩形;∵BD=12cm,∴EF=12cm;∴OE=OF=6cm;∵AC=16cm;∴OA=OC=8cm;∴AE=2cm或AE=14cm;由于动点的速度都是1cm/s,所以t=2(s)或t=14(s);故当运动时间t=2s或14s时,以D、E、B、F为顶点的四边形是矩形.。

相关文档
最新文档