青岛版数学八年级下-平行四边形单元测试题

合集下载

《第6章 平行四边形》 单元练习卷2020-2022学年青岛版八年级数学下册

《第6章  平行四边形》 单元练习卷2020-2022学年青岛版八年级数学下册

第6章平行四边形一、单选题1.平行四边形一边的长是12cm,则这个平行四边形的两条对角线长可以是()A.4cm或6cm B.6cm或10cm C.12cm或12cm D.12cm或14cm 2.如图,在四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定四边形ABCD 为平行四边形的是()A.AB∥CD,AD∥BC B.AD∥BC,AB=CDC.OA=OC,OB=OD D.AB=CD,AD=BC3.如图,四边形ABCD沿直线l对折后互相重合,如果AD∥BC,有下列结论:①AB∥CD;②AB=CD;③AB⊥BC;④AO=OC.其中正确的有()A.4个B.3个C.2个D.1个4.如图,点D和点E分别是BC和BA的中点,已知AC=4,则DE为()A.1B.2C.4D.85.如图,在△ABC中,点D在边BC上,过点D作DE∥AC,DF∥AB,分别交AB,AC 于E,F两点.则下列命题是假命题的是()A.四边形AEDF是平行四边形B.若∠B+∠C=90°,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是菱形6.如图,点E为矩形ABCD的边BC上的点,DF⊥AE于点F,且DF=AB,下列结论不正确的是()A.DE平分∠AEC B.△ADE为等腰三角形C.AF=AB D.AE=BE+EF7.如图,在△ABC中,D是AB上一点,AD=AC,AE⊥CD,垂足为点E,F是BC的中点,若BD=10,则EF的长为()A.8B.10C.5D.48.如图为某城市部分街道示意图,四边形ABCD为正方形,点G在对角线BD上,GE⊥CD,GF⊥BC,AD=1500m,小敏行走的路线为B→A→G→E,小聪行走的路线为B→A →D→E→F,若小敏行走的路程为3100m,则小聪行走的路程为()m.A.3100B.4600C.3000D.36009.如图,在等腰直角△ABC中,AB=BC,点D是△ABC内部一点,DE⊥BC,DF⊥AB,垂足分别为E,F,若CE=3DE,5DF=3AF,DE=2.5,则AF=()A.8B.10C.12.5D.1510.如图,已知在正方形ABCD中,E是BC上一点,将正方形的边CD沿DE折叠到DF,延长EF交AB于点G,连接DG.现有如下4个结论:①AG=GF;②AG与EC一定不相等;③∠GDE=45°;④△BGE的周长是一个定值.其中正确的个数为()A.1B.2C.3D.4二、填空题11.如图,把一张长方形的纸沿对角线折叠,若∠ABC=118°,则∠BAC=.12.如图,平行四边形ABCD中,CE⊥AD于点E,点F为边AB的中点,连接EF,CF,若AD=CD,∠CEF=38°,则∠AFE=.13.如图,直线a过正方形ABCD的顶点A,点B、D到直线a的距离分别为1、3,则正方形的边长为.14.如图,四边形ABCD是长方形,F是DA延长线上一点,CF交AB于点E,G是CF上一点,且∠ACG=∠AGC,∠GAF=∠F.若∠ECB=20°,则∠ACD的度数是.15.如图,正方形ABCD的边长为,O是对角线BD上一动点(点O与端点B,D不重合),OM⊥AD于点M,ON⊥AB于点N,连接MN,则MN长的最小值为.三、解答题16.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,点E,F分别在BD和DB的延长线上,且DE=BF,连接AE,CF.(1)求证:∠E=∠F;(2)连接AF,CE,当BD平分∠ABC时,四边形AFCE是什么特殊四边形?请说明理由.17.如图所示,沿AE折叠长方形ABCD使点D恰好落在BC边上的点F处,已知AB=8cm,BC=10cm.(1)求EC的长;(2)求△AFE的面积.18.如图,在平行四边形ABCD中,点E是边AD的中点,连接CE并延长交BA的延长线于点F,连接AC,DF.求证:(1)△AEF≌△DEC;(2)四边形ACDF是平行四边形.19.如图,在△ABC中,CD是AB边的中线,E是CD的中点,连接AE并延长交BC于点F.求证:BF=2CF.20.如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FG=5,GH=12,求菱形ABCD的周长.21.如图,在正方形ABCD中,AB=BC=CD=AD=10cm,∠A=∠B=∠C=∠D=90°,点E在边AB上,且AE=4cm,如果点P在线段BC上以2cm/秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.设运动时间为t秒.(1)若点Q与点P的运动速度相等,经过2秒后,△BPE与△CQP是否全等?请说明理由;(2)若点Q与点P的运动速度不相等,则当t为何值时,△BPE与△CQP全等?此时点Q的运动速度为多少?参考答案与试题解析一、单选题1.平行四边形一边的长是12cm,则这个平行四边形的两条对角线长可以是()A.4cm或6cm B.6cm或10cm C.12cm或12cm D.12cm或14cm 【分析】根据四边形ABCD是平行四边形,可得OA=AC,OB=BD,进行逐一判断即可.【解答】解:∵四边形ABCD是平行四边形,∴OA=AC,OB=BD,A、∵AC=4cm,BD=6cm,∴OA=2cm,OB=3cm,∴OA+OB=5cm<12cm,不能组成三角形,故不符合;B、∵AC=6cm,BD=10cm,∴OA=3cm,OB=5cm,∴OA+OB=8cm<12cm,不能组成三角形,故不符合;C、∵AC=12cm,BD=12cm,∴OA=6cm,OB=6cm,∴OA+OB=12cm=12cm,不能组成三角形,故不符合;D、∵AC=12cm,BD=14cm,∴OA=6cm,OB=7cm,∴OA+OB=13cm>12cm,能组成三角形,故符合;故选:D.2.如图,在四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定四边形ABCD 为平行四边形的是()A.AB∥CD,AD∥BC B.AD∥BC,AB=CDC.OA=OC,OB=OD D.AB=CD,AD=BC【分析】根据平行四边形的判定方法即可判断.【解答】解:A、根据两组对边分别平行的四边形是平行四边形,可以判定;B、无法判定,四边形可能是等腰梯形,也可能是平行四边形;C、根据对角线互相平分的四边形是平行四边形,可以判定;D、根据两组对边分别相等的四边形是平行四边形,可以判定;故选:B.3.如图,四边形ABCD沿直线l对折后互相重合,如果AD∥BC,有下列结论:①AB∥CD;②AB=CD;③AB⊥BC;④AO=OC.其中正确的有()A.4个B.3个C.2个D.1个【分析】此题考点是轴对称的性质1和性质2,还要结合全等三角形和平行四边形的一些性质,多方面考虑,对各项进行逐一分析.【解答】解:∵直线l是四边形ABCD的对称轴,AD∥BC;∴△AOD≌△BOC;∴AD=BC=CD,OC=AO,且四边形ABCD为平行四边形.故②④正确;又∵AD四边形ABCD是平行四边形;∴AB∥CD.故①正确.故选:B.4.如图,点D和点E分别是BC和BA的中点,已知AC=4,则DE为()A.1B.2C.4D.8【分析】根据三角形中位线定理解答即可.【解答】解:∵点D和点E分别是BC和BA的中点,∴DE是△ABC的中位线,∴DE=AC=×4=2,故选:B.5.如图,在△ABC中,点D在边BC上,过点D作DE∥AC,DF∥AB,分别交AB,AC 于E,F两点.则下列命题是假命题的是()A.四边形AEDF是平行四边形B.若∠B+∠C=90°,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是菱形【分析】根据平行四边形、矩形及菱形的判定方法分别判断后即可确定正确的选项.【解答】解:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,故A选项正确;∵四边形AEDF是平行四边形,∠B+∠C=90°,∴∠BAC=90°,∴四边形AEDF是矩形,故B选项正确;∵DE∥AC,∴,∴DE=AC,同理DF=AB,要想四边形AEDF是菱形,只需DE=DF,则需AC=AB显然没有这个条件,故C选项错误;因为AD平分∠BAC,所以AE=DE,又因为四边形AEDF是平行四边形,所以是菱形,故D选项正确;故选:C.6.如图,点E为矩形ABCD的边BC上的点,DF⊥AE于点F,且DF=AB,下列结论不正确的是()A.DE平分∠AEC B.△ADE为等腰三角形C.AF=AB D.AE=BE+EF【分析】证明Rt△DEF≌Rt△DEC得出A正确;在证明△ABE≌△DF A得出B正确;得出EB=AF,得C错误,D正确,即可得出结论.【解答】解:∵四边形ABCD是矩形,∴∠C=∠ABE=90°,AD∥BC,AB=CD,∵DF=AB,∴DF=CD,∵DF⊥AE,∴∠DF A=∠DFE=90°,在Rt△DEF和Rt△DEC中,,∴Rt△DEF≌Rt△DEC(HL),∴∠FED=∠CED,∴DE平分∠AEC;故A正确;∵AD∥BC,∴∠AEB=∠DAF,在△ABE和△AFD中,,∴△ABE≌△DF A(AAS),∴AE=AD,∴△ADE为等腰三角形;故B正确;∵△ABE≌△DF A,∴不存在AF=AB,故C错误;∵△ABE≌△DF A,∴BE=F A,∴AE=AF+EF=BE+EF.故D正确.故选:C.7.如图,在△ABC中,D是AB上一点,AD=AC,AE⊥CD,垂足为点E,F是BC的中点,若BD=10,则EF的长为()A.8B.10C.5D.4【分析】根据等腰三角形的三线合一得到CE=ED,根据三角形内角和定理解答即可.【解答】解:∵AD=AC,AE⊥CD,∴CE=ED,∵CE=ED,CF=FB,∴EF=BD=×10=5,故选:C.8.如图为某城市部分街道示意图,四边形ABCD为正方形,点G在对角线BD上,GE⊥CD,GF⊥BC,AD=1500m,小敏行走的路线为B→A→G→E,小聪行走的路线为B→A →D→E→F,若小敏行走的路程为3100m,则小聪行走的路程为()m.A.3100B.4600C.3000D.3600【分析】连接CG,由正方形的对称性,易知AG=CG,由正方形的对角线互相平分一组对角,GE⊥DC,易得DE=GE.在矩形GECF中,EF=CG.要计算小聪走的路程,只要得到小聪比小敏多走了多少就行.【解答】解:连接GC,∵四边形ABCD为正方形,所以AD=DC,∠ADB=∠CDB=45°,∵∠CDB=45°,GE⊥DC,∴△DEG是等腰直角三角形,∴DE=GE.在△AGD和△GDC中,,∴△AGD≌△GDC(SAS)∴AG=CG,在矩形GECF中,EF=CG,∴EF=AG.∵BA+AD+DE+EF﹣BA﹣AG﹣GE,=AD=1500m.∵小敏共走了3100m,∴小聪行走的路程为3100+1500=4600(m),故选:B.9.如图,在等腰直角△ABC中,AB=BC,点D是△ABC内部一点,DE⊥BC,DF⊥AB,垂足分别为E,F,若CE=3DE,5DF=3AF,DE=2.5,则AF=()A.8B.10C.12.5D.15【分析】先证四边形DEBF为矩形,得BF=DE=2.5,DF=EB,设DF=3x,则EB=3x,得AF=5x,AB=5x+2.5,然后由AB=BC得出方程,解方程即可.【解答】解:∵DE⊥BC,DF⊥AB,∴∠DEB=∠DFB=90°,∵△ABC为等腰直角三角形,AB=BC,∴∠ABC=90°,∴四边形DEBF为矩形,∴BF=DE=2.5,DF=EB,设DF=3x,则EB=3x,∵5DF=3AF,∴AF=5x,AB=5x+2.5,∵DE=2.5,∴CE=3DE=7.5,∴CB=7.5+3x,∵AB=CB,∴5x+2.5=7.5+3x,解得x=2.5,∴AF=5x=12.5,故选:C.10.如图,已知在正方形ABCD中,E是BC上一点,将正方形的边CD沿DE折叠到DF,延长EF交AB于点G,连接DG.现有如下4个结论:①AG=GF;②AG与EC一定不相等;③∠GDE=45°;④△BGE的周长是一个定值.其中正确的个数为()A.1B.2C.3D.4【分析】由翻折的性质及全等三角形的性质可判断①;根据正方形的性质及角的和差关系可判断③;根据三角形的周长公式可判断④;不能判断②的正确性.【解答】解:根据折叠的意义,得△DEC≌△DEF,∴EF=EC,DF=DC,∠CDE=∠FDE,∵DA=DF,DG=DG,∴Rt△ADG≌Rt△FDG(HL),∴AG=FG,∠ADG=∠FDG,故①正确;∴∠GDE=∠FDG+∠FDE=(∠ADF+∠CDF)=45°,故③正确;∵△BGE的周长=BG+BE+GE,GE=GF+EF=EC+AG,∴△BGE的周长=BG+BE+EC+AG=AB+AC,是定值,故④正确,∴正确的结论有①③④,故选:C.二、填空题11.如图,把一张长方形的纸沿对角线折叠,若∠ABC=118°,则∠BAC=31°.【分析】根据平行线的性质可得∠BAF=62°,根据折叠的性质可得∠BAC=∠CAF=31°.【解答】解:如图:∵CD∥AF,∴∠ABC+∠BAF=180°,∵∠ABC=118°,∴∠BAF=62°,根据折叠的性质可得∠BAC=∠CAF,∴∠BAC=∠CAF=∠BAF=31°.故答案为:31°.12.如图,平行四边形ABCD中,CE⊥AD于点E,点F为边AB的中点,连接EF,CF,若AD=CD,∠CEF=38°,则∠AFE=24°.【分析】延长CF交DA延长线于点G,∴△AGF≌△BCF,【解答】解:如图,延长CF交DA延长线于点G,∵AG∥BC,∴∠G=∠BCF,∠GAF=∠B,∵AF=FB,∴△AGF≌△BCF(AAS),∴GF=CF,AG=BC,∵CE⊥AD,∴EF=FG=FC,∠GEC=90°,∵∠CEF=38°,∴∠FEG=∠FGE=52°,∠GFE=76°,∵AD=CD,∴BC=BF=AF,∵AG=BC,∴AG=AF,∠G=∠AFG=52°,∠AFE=76°﹣52°=24°.故答案为:24°.13.如图,直线a过正方形ABCD的顶点A,点B、D到直线a的距离分别为1、3,则正方形的边长为.【分析】根据正方形的性质得出AD=AB,利用AAS证明Rt△AFD和Rt△BEA全等,利用全等三角形的性质和勾股定理解答即可.【解答】解:在正方形ABCD中,AD=AB,∵DF⊥AF,BE⊥AE,∴∠AFD=∠AEB=90°,∠ADF+∠DAF=90°,∵∠DAF+∠BAE=90°,∴∠ADF=∠BAE,在Rt△AFD和Rt△BEA中,,∴Rt△AFD≌Rt△BEA(AAS),∴DF=AE=3,AF=BE=1,在Rt△BEA中,由勾股定理得:AB=.故答案为:.14.如图,四边形ABCD是长方形,F是DA延长线上一点,CF交AB于点E,G是CF上一点,且∠ACG=∠AGC,∠GAF=∠F.若∠ECB=20°,则∠ACD的度数是30°.【分析】根据矩形的性质得到AD∥BC,∠DCB=90°,根据平行线的性质得到∠F=∠ECB=20°,根据三角形的外角的性质得到∠ACG=∠AGC=∠GAF+∠F=2∠F=40°,于是得到结论.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∠DCB=90°,∴∠F=∠ECB=20°,∴∠GAF=∠F=20°,∴∠ACG=∠AGC=∠GAF+∠F=2∠F=40°,∴∠ACB=∠ACG+∠ECB=60°,∴∠ACD=90°﹣60°=30°,故答案为:30°.15.如图,正方形ABCD的边长为,O是对角线BD上一动点(点O与端点B,D不重合),OM⊥AD于点M,ON⊥AB于点N,连接MN,则MN长的最小值为1.【分析】连接AO,可证四边形AMON是矩形,可得AO=MN,当AO⊥BD时,AO有最小值,即MN有最小值,由等腰直角三角形的性质可求解.【解答】解:如图,连接AO,∵四边形ABCD是正方形,∴AB=AD=,BD=AB=2,∠DAB=90°,又∵OM⊥AD,ON⊥AB,∴四边形AMON是矩形,∴AO=MN,∵当AO⊥BD时,AO有最小值,∴当AO⊥BD时,MN有最小值,此时AB=AD,∠BAD=90°,AO⊥BD,∴AO=BD=1,∴MN的最小值为1,故答案为:1.三、解答题16.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,点E,F分别在BD和DB的延长线上,且DE=BF,连接AE,CF.(1)求证:∠E=∠F;(2)连接AF,CE,当BD平分∠ABC时,四边形AFCE是什么特殊四边形?请说明理由.【分析】(1)根据四边形ABCD是平行四边形,可以得到AD=CB,AD∥BC,从而可以得到∠ADE=∠CBF,然后根据SAS即可证明结论成立;(2)根据BD平分∠ABC和平行四边形的性质,可以证明▱ABCD是菱形,从而可以得到AC⊥BD,然后即可得到AC⊥EF,再根据题目中的条件,可以证明四边形AFCE是平行四边形,然后根据AC⊥EF,即可得到四边形AFCE是菱形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=CB,AD∥BC,∴∠ADB=∠CBD,∴∠ADE=∠CBF,在△ADE和△CBF中,∴△ADE≌△CBF(SAS),∴∠E=∠F;(2)当BD平分∠ABC时,四边形AFCE是菱形,理由:连接AF、CE;∵BD平分∠ABC,∴∠ABD=∠CBD,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,AD∥BC,∴∠ADB=∠CBD,∴∠ABD=∠ADB,∴AB=AD,∴平行四边形ABCD是菱形,∴AC⊥BD,∴AC⊥EF,∵DE=BF,∴OE=OF,又∵OA=OC,∴四边形AFCE是平行四边形,∵AC⊥EF,∴四边形AFCE是菱形.17.如图所示,沿AE折叠长方形ABCD使点D恰好落在BC边上的点F处,已知AB=8cm,BC=10cm.(1)求EC的长;(2)求△AFE的面积.【分析】(1)由矩形的性质和折叠的性质得AF=AD=10cm,DE=EF,在Rt△ABF中,由勾股定理得BF的长,在Rt△CEF中,根据勾股定理得问题的答案;(2)根据三角形的面积公式计算可得答案.【解答】解:(1)∵AB=8cm,BC=10cm,∴DC=8cm,AD=10cm,又∵将△ADE折叠使点D恰好落在BC边上的点F,∴AF=AD=10cm,DE=EF,在Rt△ABF中,AB=8cm,AF=10cm,∴BF==6(cm),∴FC=10﹣6=4(cm),设DE=xcm,则EF=xcm,EC=(8﹣x)cm,在Rt△CEF中,EF2=FC2+EC2,即x2=42+(8﹣x)2,解得x=5,即DE的长为5cm,EC=8﹣x=8﹣5=3,即EC的长为3cm;(2)S△AEF=EF×AF=×5×10=25(cm2).故△AFE的面积是25cm2.18.如图,在平行四边形ABCD中,点E是边AD的中点,连接CE并延长交BA的延长线于点F,连接AC,DF.求证:(1)△AEF≌△DEC;(2)四边形ACDF是平行四边形.【分析】(1)△AEF≌△DEC;(2)四边形ACDF是平行四边形.【解答】解:(1)∵在平行四边形ABCD中,AB∥CD,∴∠F AE=∠CDE,∵点E是边AD的中点,∴AE=DE,在△AEF和△DEC中,,∴△AEF≌△DEC(ASA);(2)∵△AEF≌△DEC,∴AF=DC,∵AF∥DC,∴四边形ACDF是平行四边形.19.如图,在△ABC中,CD是AB边的中线,E是CD的中点,连接AE并延长交BC于点F.求证:BF=2CF.【分析】取AF的中点M,连接DM.根据三角形的中位线定理可得BF=2DM,DM∥BC,再利用AAS证明△MDE≌△FCE可得DM=CF,进而可证明结论.【解答】证明:取AF的中点M,连接DM,∵CD是AB边的中线,∴D是AB边的中点,∴BF=2DM,DM∥BC,∵E是CD的中点,∴DE=CE,在△MDE和△FCE中,,∴△MDE≌△FCE(AAS).∴DM=CF,∴BF=2CF.20.如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FG=5,GH=12,求菱形ABCD的周长.【分析】(1)根据矩形和菱形的性质证明△BGF≌△DEH,即可得结论;(2)连接EG,根据四边形ABGE是平行四边形,可得AB=EG,根据四边形EFGH是矩形和勾股定理即可求出AB=13,进而可得结果.【解答】(1)证明:∵四边形EFGH是矩形,∴EH=FG,EH∥FG,∴∠GFH=∠EHF,∴∠BFG=180°﹣∠GFH,∠DHE=180°﹣∠EHF,∴∠BFG=∠DHE,∵四边形ABCD是菱形,∴AD∥BC,∴∠GBF=∠EDH,∴△BGF≌△DEH(AAS),∴BG=DE;(2)解:连接EG,∵四边形ABCD是菱形,∴AD=BC,AD∥BC,∵E为AD中点,∴AE=ED,∵BG=DE,∴AE=BG,AE∥BG,∴四边形ABGE是平行四边形,∴AB=EG,∵四边形EFGH是矩形,∴EG=FH,∴AB=FH,∵FG=5,GH=12,∠FGH=90°,∴FH==13,∴AB=13,∴菱形ABCD的周长52.21.如图,在正方形ABCD中,AB=BC=CD=AD=10cm,∠A=∠B=∠C=∠D=90°,点E在边AB上,且AE=4cm,如果点P在线段BC上以2cm/秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.设运动时间为t秒.(1)若点Q与点P的运动速度相等,经过2秒后,△BPE与△CQP是否全等?请说明理由;(2)若点Q与点P的运动速度不相等,则当t为何值时,△BPE与△CQP全等?此时点Q的运动速度为多少?【分析】(1)由题意可得BP=CQ,BE=CP,由“SAS”可证△BPE≌△CQP;(2)由全等三角形的性质可得BP=CP=5,BE=CQ=6,即可求点Q的速度.【解答】解:(1)全等.理由:由题意:BP=CQ=2t当t=2时,BP=CQ=4∵AB=BC=10,AE=4∴BE=CP=10﹣4=6∵BP=CQ,∠B=∠C=90°,BE=CP∴△BPE≌△CQP(SAS)(2)∵P、Q运动速度不相等∴BP≠CQ∵∠B=∠C=90°∴当BP=CP,CQ=BE时,△BPE≌△CPQ,∴BP=CP=BC=5,CQ=BE=6∴当t=5÷2=(秒)时,△BPE≌△CPQ,此时点Q的运动速度为6÷=(cm/s)。

2020-2021学年青岛版八年级数学下册 第6章 平行四边形 单元检测试题

2020-2021学年青岛版八年级数学下册  第6章   平行四边形 单元检测试题

第6章平行四边形单元检测试题班级:_____________姓名:_____________一、选择题(本题共计9 小题,每题3 分,共计27分,)1. 一个四边形的三个相邻内角度数依次如下,那么其中是平行四边形的是()A.88∘,108∘,88∘B.88∘,104∘,108∘C.88∘,92∘,92∘D.88∘,92∘,88∘2. 四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB // DC,AD // BCB.AB=DC,AD=BCC.AO=CO,BO=DOD.AB // DC,AD=BCBC,3. 如图,在Rt△ABC中,∠ACB=90∘,点D,E分别是边AB,AC的中点,延长BC至F,使CF=12若AB=10,则EF的长是()A.5B.4C.3D.24. 如图,如果CD是Rt△ABC的中线,∠ACB=90∘,∠A=50∘,那么∠CDB等于()A.100∘B.110∘C.120∘D.130∘5. 矩形的边长为10cm和15cm,其中一内角平分线分长边为两部分,这两部分的长为()A.6cm和9cmB.5cm和10cmC.4cm和11cmD.7cm和8cm6. 下列命题中,正确的是().①有两个角是直角,且对角线相等的四边形是矩形.①一条对角线平分一个内角的平行四边形是菱形.①两条对角线分别平分两组对角的四边形是菱形.①对角线互相垂直且一组邻边相等的四边形是菱形A.①①B.①①C.①①D.①①7. 如图,一根长为2a的木棍(AB),斜靠在与地面(OM)垂直的墙上,设木棍的中点为P,若木棍A端沿墙下滑,且B端沿地面向右滑动,在滑动的过程中OP的长度()A.减小B.增大C.不变D.先减小再增大8. 矩形具有而一般菱形不具有的性质()A.对角相等B.对角线相等C.对角线互相垂直D.对角线互相平分9. 如图,矩形ABCD中,对角线AC与BD相交于点O,P为AD上的动点,过点P作PM⊥AC,PN⊥BD,垂足分别为M,N,若AB=m,BC=n,则PM+PN=()A.m+n2B.mnm+nC.22D.nm二、填空题(本题共计8 小题,每题3 分,共计24分,)10. 若四边形ABCD为平行四边形,请补充条件________(一个即可)使四边形ABCD为矩形.11. 在四边形ABCD中,对角线AC与BD交于点O,若AO=CO,BO=DO,要使它成为菱形,可以添加的条件是________.(写出一个即可).12. 如图,平行四边形ABCD,请你添一个条件________,使它变为矩形.13. 如图,将两条宽度都为3的纸条重叠在一起,使∠ABC=60∘,则四边形ABCD的面积为________.14. 如图,四边形ABCD是菱形,A,B两点的坐标分别是(0,8),(6,0),则C点坐标是________,菱形周长是________.15. 如图,DE是△ABC的中位线,若BC=6,则DE=________.16. 如图,正方形ABCD中,AB=1,点P是对角线AC上的一点,分别以AP、PC为对角线作正方形,则两个小正方形的周长的和是________.17. 如图,在△ABC中,点D、E、F分别在边BC、AB、CA上,且DE // CA,DF // BA.下列四种说法:①四边形AEDF是平行四边形;①如果∠BAC=90∘,那么四边形AEDF是矩形;①如果AD平分∠BAC,那么四边形AEDF是菱形;①如果∠BAC=90∘,AD平分∠BAC,那么四边形AEDF是正方形.其中,正确的有________(只填写序号)三、解答题(本题共计8 小题,共计69分,)18. 如图,在▱ABCD中,DB=DC,∠C=72∘,AE⊥BD于E,求∠DAE的度数.19. 如图A、B、C在方格纸的格点位置上,请再找一个格点,使它们所构成的四边形为平行四边形,这样的格点共有几个,请在图中画出.20. 如图,在△ABC中,∠C=90∘,∠A,∠B的平分线交于点D,DE⊥BC于点E,DF⊥AC于点F.求证:四边形CFDE是正方形.21. 如图,四边形ABCD是正方形,对角线AC、BD相交于点F,∠E=90∘,ED=EC.求证:四边形DFCE是正方形.AB,D、E分别为AB、BC的中点,EF与CA的延长线交于点G,22. 在△ABC中,AB=2AC,AF=14求证:AF=AG.23. 如图.在△ABC中,AD是边BC上的中线,过点A作AE // BC,过点D作与DE // AB,DE与AC、AE分别交于点O、E,连接EA.(1)求证:AD=EC;(2)当△ABC满足时,四边形ADCE是菱形.24. 如图,已知菱形ABCD的边长为4cm,∠BAD=120∘,对角线AC、BD相交于点O,试求这个菱形的两条对角线AC与BD的长.25. 如图,矩形ABCD中,∠ABD,∠CDB的平分线BE,DF分别交边AD,BC于点E,F.(1)求证:四边形BEDF为平行四边形;(2)当∠ABE的度数是多少时,四边形BEDF是菱形?。

精品试题青岛版八年级数学下册第6章平行四边形专项测评试卷(含答案详解)

精品试题青岛版八年级数学下册第6章平行四边形专项测评试卷(含答案详解)

青岛版八年级数学下册第6章平行四边形专项测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列命题错误的是()A.两组对边分别平行的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.一组对边平行,另一组对边相等的四边形是平行四边形D.对角线互相平分的四边形是平行四边形2、如图,正方形ABCD,对角线AC,BD相交于点O,过点B作∠ABO的角平分线交OA于点E,过点A 作AG⊥BE,垂足为F,交BD于点G,连接EG,则S△ABG:S△BEG等于()A.3:5 B 2 C.1:2 D.):13、正方形具有而矩形不一定有的性质是( )A .对角线互相垂直B .对角线相等C .对角互补D .四个角相等4、如图,点E 、F 分别在正方形ABCD 的边DC 、BC 上,AG ⊥EF ,垂足为G ,且AG =AB ,则∠EAF =( )度A .30°B .45°C .50°D .60°5、如图,点A ,B ,C 在同一直线上,且23AB AC =,点D ,E 分别是AB ,BC 的中点.分别以AB ,DE ,BC 为边,在AC 同侧作三个正方形,得到三个平行四边形(阴影部分)的面积分别记作1S ,2S ,3S ,若1S 23S S +等于( )A B C D 6、已知:在△ABC 中,AC =BC ,点D 、E 分别是边AB 、AC 的中点,延长DE 至点F ,使得EF =DE ,那么四边形AFCD 一定是( )A .菱形B .矩形C .直角梯形D .等腰梯形7、如图,直线l 上有三个正方形A 、B 、C ,若正方形A 、C 的边长分别为4和6,则正方形B 的面积为( )A .26B .49C .52D .648、如图,将长方形ABCD 分成2个长方形与2个正方形,其中③、④为正方形,记长方形①的周长为1C ,长方形②的周长为2C ,则1C 与2C 的大小为(A .12C C >B .12C C = C .12C C <D .不确定9、在平行四边形ABCD 中,∠A ∶∠ B ∶∠ C ∶∠ D 的值可以是( )A .1∶2∶3∶4B .1∶2∶2∶1C .2∶2∶1∶1D .1∶2∶1∶210、能够判断一个四边形是矩形的条件是( )A .对角线相等B .对角线垂直C .对角线互相平分且相等D .对角线垂直且相等第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在Rt ABC 中,90ACB ∠=︒,AC BC =,射线AF 是BAC ∠的平分线,交BC 于点D ,过点B 作AB 的垂线与射线AF 交于点E ,连结CE ,M 是DE 的中点,连结BM 并延长与AC 的延长线交于点G .则下列结论正确的是______.①BCG ACD ≌△△ ②BG 垂直平分DE ③BE CE ⊥ ④2G GBE ∠=∠ ⑤BE CG AC +=2、如图,正方形ABCD 中,E 为CD 上一动点(不含C 、)D ,连接AE 交BD 于F ,过F 作FH AE ⊥交BC 于H ,过H 作HG BD ⊥于G ,连接AH ,EH .下列结论:①AF FH =;②45HAE ∠=︒;③FH 平分GHC ∠;④2BD FG =,正确的是__(填序号).3、如图,在矩形ABCD 中,AB =6,BC =8.如果E、F 分别是AD 、BC 上的点,且EF 经过AC 中点O ,G ,H 是对角线AC 上的点.下列判断正确的有______.①在AC 上存在无数组G 、H ,使得四边形EGFH 是平行四边形;②在AC 上存在无数组G 、H ,使得四边形EGFH 是矩形;③在AC 上存在无数组G 、H ,使得四边形EGFH 是菱形;④当AG =54时,存在E 、F 、G ,H ,使得四边形EGFH 是正方形.4、如图,在Rt △ABC 中,∠ACB =90°,将△ABC 绕顶点C 逆时针旋转得到△A′B′C′,M 是BC 的中点,P 是A ′B ′的中点,若BC =2,∠BAC =30°,则线段PM 的最大值是_____.5、已知:如图,ABC的两条高AD与CE相交于点F,G为BC上一点,连接AG交CE于点H,且AB AG=,若2CHG ADE∠=∠,23DFAF=,152ACGS=,则线段AD的长为_______.三、解答题(5小题,每小题10分,共计50分)1、如图,小正方形的边长为1,△ABP的顶点都在格点上,请利用网格作图或计算.(1)△ABP的面积为;(2)过点P画直线PM∥AB,且M为格点;(3)在直线AP上作出点N,使得点N到A、B、P三点的距离之和最小.2、下面是小东设计的“利用直角三角形和它的斜边中点作矩形”的尺规作图过程.已知:如图,在Rt△ABC中,∠ABC=90°,O为AC的中点.求作:四边形ABCD ,使得四边形ABCD 是矩形.作法:①作射线BO ,以点O 为圆心,OB 长为半径画弧,交射线BO 于点D ;②连接AD ,CD .四边形ABCD 是所求作的矩形.根据小东设计的尺规作图过程,(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:∵点O 为AC 的中点,∴AO =CO .又∵BO = ,∴四边形ABCD 是平行四边形( )(填推理的依据).∵∠ABC =90°,∴□ABCD 是矩形( )(填推理的依据).3、如图,▱ABCD 中,E 是AD 边的中点,BE 的延长线与CD 的延长线相交于F .求证:DC =DF .4、如图,在平行四边形ABCD 中,E 、F 分别是边AB 、DC 上的点,且AE CF =,90DEB ∠=︒,求证:四边形DEBF 是矩形5、如图,在▱ABCD中,点O是对角线的交点,且AB=AO,∠OCD=120°.(1)求∠AOB的度数;(2)过点A作AE⊥OB,垂足为点E,点G、F分别是OA、BC的中点,连接EF、FG,求证:四边形AEFG 是菱形.-参考答案-一、单选题1、C【解析】【分析】根据平行四边形的判定逐项分析即可得.【详解】解:A、两组对边分别平行的四边形是平行四边形,正确,则此项不符合题意;B、两组对边分别相等的四边形是平行四边形,正确,则此项不符合题意;C、一组对边平行,另一组对边相等的四边形可能是平行四边形,也可能是等腰梯形,故原命题错误,此项符合题意;D 、对角线互相平分的四边形是平行四边形,正确,则此项不符合题意,故选:C .【点睛】本题考查了平行四边形的判定,熟记平行四边形的判定是解题关键.2、D【解析】【分析】由BE 平分ABD ∠,BF AG ⊥得BA BG =,根据正方形的性质得90BOE AOG ∠=∠=︒,BO AO =,故BEO AGO ∠=∠,根据AAS 得BOE AOG ≅,故EO GO =,设2AB AD BG a ===,进而可用含a 的式子表示出线段AO 和EO 的长,要求:ABG BEG S S 的比值即求AO 和EO 的比值,代入即可求解.【详解】∵BE 平分ABD ∠,BF AG ⊥,∴ABG 是等腰三角形,∴BA BG =,四边形ABCD 是正方形,∴90BOE AOG ∠=∠=︒,BO AO =,∴90BOE BFG ∠=∠=︒,∴BEO AGO ∠=∠,在BOE △与AOG 中,BEO AGO BOE AOG BO AO ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴()BOE AOG AAS ≅,∴EO GO =,设2AB AD BG a ===,则AC BD ==,∴AO BO =,∴(2EO GO BG BO a ==-=, ∵12ABG S BG AO =⋅⋅,12BEGS BG EO =⋅⋅,∴:::(21):1ABG BEG S S AO EO a ==.故选:D .【点睛】本题主要考查了正方形的性质,角平分线的定义以及全等三角形的判定与性质,解题的关键是将两个三角形的面积比转化成两条线段的比,综合性较强.3、A【解析】【分析】根据正方形的性质,矩形的性质逐一进行判断即可.【详解】解:A 中对角线互相垂直,是正方形具有而矩形不具有,故符合题意;B 中对角线相等,正方形具有而矩形也具有,故不符合题意;C 中对角互补,正方形具有而矩形也具有,故不符合题意;D 中四个角相等,正方形具有而矩形也具有,故不符合题意;故选:A .【点睛】本题考查了正方形的性质,矩形的性质.解决本题的关键是对正方形,矩形性质的灵活运用.4、B【解析】【分析】根据正方形的性质以及HL 判定,可得出△ABF ≌△AGF ,故有∠BAF =∠GAF ,再证明△AGE ≌△ADE ,有∠GAE =∠DAE ,即可求∠EAF =45°【详解】解:在正方形ABCD 中,∠B =∠D =∠BAD =90°,AB =AD ,∵AG ⊥EF ,∴∠AGF =∠AGE =90°,∵AG =AB ,∴AG =AB=AD ,在Rt △ABF 与Rt △AGF 中,AB AGAF AF =⎧⎨=⎩∴△ABF ≌△AGF ,∴∠BAF =∠GAF ,同理可得:△AGE ≌△ADE ,∴∠GAE =∠DAE ;∴∠EAF =∠EAG +∠FAG 1452BAD ︒=∠=,∴∠EAF =45°故选:B【点睛】本题主要考查了正方形的性质、全等三角形的判定和性质、解题的关键是得出△ABF ≌△AGF .5、B【解析】【分析】设BE=x,根据正方形的性质、平行四边形的面积公式分别表示出S1,S2,S3,根据题意计算即可.【详解】∵23AB AC=,AC AB BC=+∴AB=2BC,又∵点D,E分别是AB,BC的中点,∴设BE=x,则EC=x,AD=BD=2x,∵四边形ABGF是正方形,∴∠ABF=45°,∴△BDH是等腰直角三角形,∴BD=DH=2x,∴S1=DH•AD2x•2x∴x2∵BD=2x,BE=x,∴S2=MH•BD=(3x−2x)•2x=2x2,S3=EN•BE=x•x=x2,∴S2+S3=2x2+x2=3x2故选:B.【点睛】本题考查的是正方形的性质、平行四边形的性质,掌握正方形的四条边相等、四个角都是90°是解题的关键.6、B【解析】【分析】先证明四边形ADCF是平行四边形,再证明AC=DF即可.【详解】解:∵E是AC中点,∴AE=EC,∵DE=EF,∴四边形ADCF是平行四边形,∵AD=DB,AE=EC,∴DE=12 BC,∴DF=BC,∵CA=CB,∴AC=DF,∴四边形ADCF是矩形;故选:B.【点睛】本题考查了矩形的判定、等腰三角形的性质、平行四边形的判定、三角形中位线定理;熟记对角线相等的平行四边形是矩形是解决问题的关键.7、C【解析】【分析】证EFG GMH ∆≅∆,推出6FG MH ==,4GM EF ==,则216EF =,236HM =,再证22222EG EF FG EF HM =+=+,代入求出即可.【详解】解:如图,正方形A ,C 的边长分别为4和6,4EF ∴=,6MH =,由正方形的性质得:90EFG EGH GMH ∠=∠=∠=︒,EG GH =,90FEG EGF ∠︒∠+=,90EGF MGH ∠+∠=︒,FEG MGH ∴∠=∠,在EFG ∆和GMH ∆中,EFG GMH FEG MGH EG GH ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()EFG GMH AAS ∴∆≅∆,6FG MH ∴==,4GM EF ==,22416EF ∴==,22636HM ==,∴正方形B 的面积为22222163652EG EF FG EF HM =+=+=+=,故选:C .【点睛】本题考查了全等三角形的判定与性质、正方形的性质等知识,解题的关键是熟练掌握正方形的性质,证明EFG GMH ∆≅∆.8、B【解析】【分析】根据长方形、正方形的性质,得CG BE =,AE DG =,BC AD =,AB CD =,设正方形③的边长为a ,正方形④的边长为b ,结合整式加减运算的性质计算,即可得到答案.【详解】如图:∵将长方形ABCD 分成2个长方形与2个正方形,其中③、④为正方形∴CG BE =,AE DG =,BC AD =,AB CD =设正方形③的边长为a ,正方形④的边长为b∴CG BE a ==,CF BC BE AD a =-=-,AE DG b ==,AH AD DH AD b =-=-∴长方形①的周长为1222222C AH AE AD b b AD =+=-+=,长方形②的周长为2222222C CF CG AD a a AD =+=-+=∴12C C =故选:B .【点睛】本题考查了长方形、正方形、整式加减运算的知识;解题的关键是熟练掌握合并同类项的性质,从而完成求解.9、D【解析】略10、C【解析】略二、填空题1、①②⑤【解析】【分析】先由题意得到∠ABE =∠ACB =∠BCG =90°,∠BAC =45°,再由角平分线的性质得到∠BAE =∠DAC =22.5°,从而推出∠BEA =∠ADC ,则∠BDE =∠BED ,再由三线合一定理即可证明BM ⊥DE ,∠GBE =∠DBG ,即可判断②;得到∠MAG +∠MGA =90°,再由∠CBG +∠CGB =90°,可得∠DAC=∠GBC=22.5°,则∠GBE=22.5°,2∠GBE=45°,从而可证明△ACD≌△BCG,即可判断①;则CD=CG,再由AC=BC=BD+CD,可得到AC=BE+CG,即可判断⑤;由∠G=180°-∠BCG-∠CBG=67.5°,即可判断④;延长BE交AC延长线于G,先证△ABH是等腰直角三角形,得到C为AH的中点,然后证BE≠HE,即E不是BH的中点,得到CE不是△ABH的中位线,则CE与AB不平行,即可判断③.【详解】解:∵∠ACB=90°,BE⊥AB,AC=BC,∴∠ABE=∠ACB=∠BCG=90°,∠BAC=45°,∴∠BAE+∠BEA=90°,∠DAC+∠ADC=90°,∵AF平分∠BAC,∴∠BAE=∠DAC=22.5°,∴∠BEA=∠ADC,又∵∠ADC=∠BDE,∴∠BDE=∠BED,∴BD=ED,又∵M是DE的中点,∴BM⊥DE,∠GBE=∠DBG,∴BG垂直平分DE,∠AMG=90°,故②正确,∴∠MAG+∠MGA=90°,∵∠CBG+∠CGB=90°,∴∠DAC=∠GBC=22.5°,∴∠GBE=22.5°,∴2∠GBE=45°,又∵AC=BC,∴△ACD≌△BCG(ASA),故①正确;∴CD=CG,∵AC=BC=BD+CD,∴AC=BE+CG,故⑤正确;∵∠G=180°-∠BCG-∠CBG=67.5°,∴∠G≠2∠GBE,故④错误;如图所示,延长BE交AC延长线于G,∵∠ABH=∠ABC+∠CBH=90°,∠BAC=45°,∴△ABH是等腰直角三角形,∵BC⊥AH,∴C为AH的中点,∵AB≠AH,AF是∠BAH的角平分线,∴BE≠HE,即E不是BH的中点,∴CE不是△ABH的中位线,∴CE与AB不平行,∴BE与CE不垂直,故③错误;故答案为:①②⑤.【点睛】本题主要考查了全等三角形的性质与判定,等腰三角形的性质与判定,三角形中位线定理,三角形内角和定理,熟知等腰三角形的性质与判定条件是解题的挂件.2、①②④【解析】【分析】连接FC ,延长HF 交AD 于点L .可证ADF CDF ∆∆≌,进而可得FHC FCH ∠=∠,由此可得出FH AF =;再由FH AF =,即可得出45HAE ∠=︒;连接AC 交BD 于点O ,则2BD OA =,证明AOF FGH ≌,即可得出OA GF =,进而可得2BD FG =;过点F 作MN BC ⊥于点N ,交AD 于点M ,由于F 是动点,FN 的长度不确定,而FG OA =是定值,即可得出FH 不一定平分GHC ∠.【详解】解:如图,连接FC ,延长HF 交AD 于点L .∵BD 为正方形ABCD 的对角线∴45ADB CDF ∠=∠=︒,AD CD =在ADF 和CDF 中45AD CD ADB CDF DF DF =⎧⎪∠=∠=︒⎨⎪=⎩∴()ADF CDF SAS ∆∆≌∴AF FC =,DCF DAF ∠=∠∵90AFL ∠=︒,90ALH LAF ∠+∠=︒ ,ALH FHC ∠=∠∴90LHC DAF ∠+∠=︒∵DCF DAF ∠=∠,90FCD FCH ∠+∠=︒∴FHC FCH ∠=∠∴FH FC =∴AF FH =故①正确;∵90AFH ∠=︒,AF FH =∴AFH 是等腰直角三角形∴45HAE ∠=︒故②正确;连接AC 交BD 于点O ,则2BD OA =∵90AFO GFH GHF GFH ∠+∠=∠+∠=︒∴AFO GHF ∠=∠在AOF 和FGH 中90AFO GHF AOF FGH AF FH ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴()AOF FGH AAS ∆∆≌∴OA GF =∴22BD OA GF ==故④正确.过点F 作MN BC ⊥于点N ,交AD 于点M ,F 是动点∵FN 的长度不确定,而FG OA =是定值∴FN 不一定等于FGFH ∴不一定平分GHC ∠故③错误;故答案为:①②④.【点睛】本题考查了正方形性质,全等三角形判定和性质,角平分线性质和判定,等腰三角形的性质与判定等,熟练掌握全等三角形判定和性质,合理添加辅助线构造全等三角形是解题关键.3、①②④【解析】【分析】如图,矩形ABCD ,O 为对角线的交点,由中心对称性证明:,OE OF = 所以当OG OH =时,四边形EGFH 是平行四边形,当OE OG OF OH 时,四边形EGFH 是矩形,当,,OG OH EF AC 四边形EGFH 是菱形,再利用正方形的性质求解,AG 从而可得答案.【详解】解:如图,矩形ABCD ,O 为对角线的交点,由中心对称性可得:,OE OF =所以当OG OH =时,四边形EGFH 是平行四边形,所以AC 上存在无数组G 、H ,使得四边形EGFH 是平行四边形;故①符合题意;当OE OG OF OH 时,四边形EGFH 是矩形,而OE 不是定值,所以在AC 上存在无数组G 、H ,使得四边形EGFH 是矩形;故②符合题意;当,,OG OH EF AC四边形EGFH 是菱形,而AC 位置确定,所以EF 唯一,所以在AC 上不存在无数组G 、H ,使得四边形EGFH 是菱形,故③不符合题意;如图,当四边形EGFH 是正方形时,,,,EG GF FH EH OE OF OG OH EF GH,FA FC由矩形ABCD 可得:90,6,8,,ABC AB DC AD BC OA OC 226810,,5,ACAG CH OA OC 2226+8,AF AF 25,4AF 2225155,44OF OG1555,44AG 所以当AG =54时,存在E 、F 、G ,H ,使得四边形EGFH 是正方形,故④符合题意; 故答案为:①②④【点睛】本题考查的是平行四边形的判定与性质,矩形的判定与性质,菱形的判定,正方形的性质,掌握“特殊四边形的判定与性质”是解本题的关键.4、3【解析】【分析】连结PC ,根据30°直角三角形性质得出AB =2BC =4,根据将△ABC 绕顶点C 逆时针旋转得到△A′B′C′,得出A B ''=AB =4,根据M 为BC 中点,求出CM =112122BC =⨯=,根据直角三角形斜边中线性质得出CP =A B 114222,利用两点距离得出PM ≤PC +CM ,当点P 、C 、M 三点共线时PM 最大即可求解.【详解】解:连结PC ,∵∠ACB =90°,BC =2,∠BAC =30°,∴AB =2BC =4,∵将△ABC 绕顶点C 逆时针旋转得到△A′B′C′,∴A B ''=AB =4,∵M 为BC 中点,∴CM =112122BC =⨯=, ∵点P 为A B ''的中点,△A B C ''是直角三角形,∴CP =A B 114222,根据两点间距离得出PM ≤PC +CM ,当点P 、C 、M 三点共线时PM 最大,PM 最大=PC +CM =2+1=3.故答案为:3.【点睛】本题考查30°直角三角形性质,三角形旋转性质,线段中点,直角三角形斜边中线性质,掌握30°直角三角形性质,三角形旋转性质,线段中点,直角三角形斜边中线性质,利用三角形三边关系是解题关键.5、5【解析】【分析】如图,取AC 的中点,Q 连接,,EQ DQ 由∠ADC =∠AEC =90°,证明∠ACH =∠ADE ,再由∠CHG =2∠ADE 可得∠HAC =∠ACH 再由AB =AG 可推出∠BCE =∠DAG 从而推出∠DAC =∠DCA ,所以AD =DC ,然后求出DG 与CG 的比,进而求出S △ADC 的面积,最后求出AD 的长.【详解】解:如图,取AC 的中点,Q 连接,,EQ DQ∵AD ⊥BC ,CE ⊥AB ,∴∠ADC=∠AEC=90°,QA QE QD QC,QAE QEA QED QDE QDC QCD,,,QEA QED QCD即180, 2360,AED ACD BED BAD ADE ACB ACE BCE,AEF ADC AFE CFD90,,EAD BCE,∴∠ADE=∠ACE,∵∠GHC=∠HAC+∠HCA,∠ADE=∠HCA,∴∠GHC=∠HAC+∠ADE,∵∠CHG=2∠ADE,∴2∠ADE=∠HAC+∠ADE,∴∠ADE=∠HAC,∴∠ACH=∠HAC,∴∠BCE+∠B=90°,∠BAD+∠B=90°,∴∠BCE=∠BAD,∵AB=AG,AD⊥BC,∴∠DAG=∠BAD,∴∠DAG=∠BCE,∴∠DAG+∠GAC=∠BCE+∠ACH,∴∠DAC=∠DCA,∴AD=DC,∴△ADG≌△CDF(ASA),∴DG=DF,∴23 DF DFC AFG==,∴S△ADG=23S△AGC=5,∴S△ADC=5+152252=,∴12AD•DC=252,∴AD2=25,∴AD=5,故答案为:5.【点睛】本题考查了等腰三角形的性质,全等三角形的判定和性质,直角三角形斜边上的中线等于斜边的一半,熟练的运用直角三角形斜边上的中线等于斜边的一半是解本题的关键.三、解答题1、 (1)9(2)见解析(3)见解析【解析】【分析】(1)用△ABP所在的长方形的面积减去三个直角三角形的面积即可;(2)利用平行线的判定画出图形即可;(3)运用垂线段最短进行解答即可(1)解:111454251339222ABPS∆=⨯-⨯⨯-⨯⨯-⨯⨯=(2)解:如图:直线PM即为所求(3)解:如图:点N即为所求;【点睛】本题主要考查了基本作图、平行线的判定和性质、垂线段最短等知识,掌握数形结合的思想是解答本题的关键2、 (1)补全图形见解析(2)OD,对角线互相平分的四边形是平行四边形,有一个角是直角的平行四边形是矩形.【解析】【分析】(1)根据题意画图即可;(2)根据对角线互相平分的四边形是平行四边形,得到四边形ABCD是矩形,再结合一个角是直角,即可得证.(1)解:如图,四边形ABCD即为所求.(2)证明:∵点O为AC的中点,∴AO=CO.又∵BO=OD,∴四边形ABCD是平行四边形(对角线互相平分的四边形是平行四边形),∵∠ABC=90°,∴▱ABCD是矩形(有一个角是直角的平行四边形是矩形).故答案为:OD,对角线互相平分的四边形是平行四边形,有一个角是直角的平行四边形是矩形.【点睛】本题考查矩形的判定、平行四边形的判定,对角线互相平分的四边形是平行四边形;有一个角是直角的平行四边形是矩形.3、见解析【解析】【分析】由四边形ABCD是平行四边形,可得AB∥CD,AB=DC,易证得△DEF≌△AEB,则可得DF=AB,继而证得DC=DF.【详解】证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=DC,∴∠F=∠EBA,∵E是AD边的中点,∴DE=AE,在△DEF和△AEB中,∵F EBADEF AEB DE AE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DEF≌△AEB(AAS),∴DF=AB,∴DC=DF.【点睛】此题考查了平行四边形的性质与全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.4、证明见解析【解析】【分析】平行四边形ABCD ,可知AB CD AB CD =,;由于AE CF = ,可得BE DF =,BE DF ,知四边形DEBF 为平行四边形,由90DEB ∠=︒可知四边形DEBF 是矩形.【详解】证明:∵四边形 ABCD 是平行四边形∴AB CD AB CD =,∵AE CF BE AB AE DF DC CF ==-=-,,∴BE DF =∵BE DF BE DF =,∴四边形DEBF 为平行四边形又∵90DEB ∠=︒∴四边形DEBF 是矩形.【点睛】本题考查了平行四边形的性质与判定,矩形的判定等知识.解题的关键在于灵活掌握矩形的判定.5、 (1)∠AOB =30°;(2)见解析【解析】【分析】(1)利用平行四边形的性质得到∠OCD =∠OAB =120°,再利用等腰三角形的性质即可求解;(2)利用等腰三角形的性质得到点E 为OB 中点,再利用三角形中位线的性质得到EF =AG ,EF ∥AG ,推出四边形AEFG 是平行四边形,再利用30度角的直角三角形的性质得到AE =12OA ,即可证明四边形AEFG 是菱形.(1)解:在▱ABCD中,∵∠OCD=120°,∴∠OCD=∠OAB=120°,∵AB=AO,∴∠ABO=∠AOB,∴∠AOB=1801202︒-︒=30°;(2)证明:∵AB=AO,AE⊥OB,∴BE=EO,∵F是BC的中点,∴EF=12OC,EF∥OC,在▱ABCD中,∵点G是OA的中点,∴AG=12OA=12OC,∴EF=AG,且EF∥AG,∴四边形AEFG是平行四边形,在Rt△AEO中,∠AOB=30°,∴AE=12 OA,∴AE= AG,∴四边形AEFG是菱形.【点睛】本题考查了平行四边形的性质和判定,菱形的判定,三角形中位线定理,等腰三角形的判定和性质,熟记各图形的性质并准确识图是解题的关键.。

青岛版八年级数学下册单元测试题全套和答案

青岛版八年级数学下册单元测试题全套和答案

青岛版八年级数学下册单元测试题全套及答案第6章平行四边形一、选择题1.菱形具有而矩形不具有的性质是()A.对角相等B.四边相等C.对角线互相平分D.四角相等2.平行四边形的对角线长为x、y,一边长为12,则x、y的值可能是()A.8和14B.10和14C.18和20D.10和343.下列说法中的错误的是( ).A.一组邻边相等的矩形是正方形B.一组邻边相等的平行四边形是菱形C.一组对边相等且有一个角是直角的四边形是矩形D.一组对边平行且相等的四边形是平行四边形4.矩形的两条对角线所成的钝角为120°,若一条对角线的长是2,那么它的周长是()A.6B.C.2(1+)D.1+5.下列说法不正确的是()A.有两组对边分别平行的四边形是平行四边形B.平行四边形的对角线互相平分C.平行四边形的对角互补,邻角相等D.平行四边形的对边平行且相等6.若∠α与∠β的两边分别平行,且∠α =(x+10)°,∠β =(2x-25)°,则∠α的度数为()A.45°B.75°C.45°或75°D.45°或55°7.若菱形两条对角线的长分别为10cm和24cm,则这个菱形的周长为()A.13cm B.26cm C.34cm D.52cm8.正五边形各内角的度数为()A.72°B.108°C.120°D.144°9.如图所示,EF过矩形ABCD对角线的交点O,且分别交AB,CD于点E,F,那么阴影部分的面积是矩形ABCD面积的().A.B.C.D.10.ABCD中,∠A比∠B小200,则∠A的度数为( )A.600B.800C.1000D.120011.若一个多边形的每一个外角都是40°,则这个多边形是()A.六边形B.八边形C.九边形D.十边形12.一个多边形的内角和是外角和的2倍,则这个多边形是()B.五边形C.六边形D.八边形A.四边形二、填空题13.已知平行四边形的三个顶点坐标分别为(-1,0)(0,2)(2,0),则在第四象限的第四个顶点的坐标为___________。

【完整版】青岛版八年级下册数学第6章 平行四边形含答案

【完整版】青岛版八年级下册数学第6章 平行四边形含答案

青岛版八年级下册数学第6章平行四边形含答案一、单选题(共15题,共计45分)1、如图①,在矩形 ABCD 中,动点 E 从点 A 出发,沿AB→BC 方向运动,当点 E 到达点 C 时停止运动.过点 E 作FE⊥AE,交 CD 于 F 点,设点 E 运动路程为 x,FC=y,图②表示 y与 x 的函数关系的大致图像,则矩形 ABCD 的面积是()A. B.5 C.6 D.2、在平行四边形ABCD中,∠A=65°,则∠D的度数为()A.105°B.115°C.125°D.65°3、下列说法错误的是()A.顺次连接矩形各边的中点所成的四边形是菱形B.四个角都相等的四边形是矩形C.对角线互相垂直且相等的四边形是正方形D.一组对边平行且相等的四边形是平行四边形4、如图,在菱形ABCD中,对角线BD=4,AC=3BD,则菱形ABCD的面积为()A.96B.48C.24D.65、如图所示,在矩形ABCD中,AB= ,BC=2,对角线AC、BD相交于点O,过点O作OE垂直AC交AD于点E,则AE的长是()A. B. C.1 D.1.56、如图为两正方形ABCD、BEFG和矩形DGHI的位置图,其中G、F两点分别在BC、EH上.若AB=5,BG=3,则△GFH的面积为何?()A.10B.11C.D.7、如图所示,矩形的两边、分别在x轴、y轴上,点C与原点重合,点A的坐标为(-1,2),将矩形沿x轴向右翻滚,经过第1次翻滚点A对应点记为,经过第2次翻滚点对应点记为……依此类推,经过第5次翻滚后点A对应点记为的坐标为( )A.(5,2)B.(6,0)C.(8,1)D.(8,0)8、下列说法正确的是( )A.3的平方根是B.对角线相等的四边形是矩形C.近似数0.2050有4个有效数字 D.两个底角相等的梯形一定是等腰梯形9、在下列性质中,矩形具有而菱形不一定有的是()A.对角线互相垂直B.对角线互相平分C.四个角是直角D.四条边相等10、如图,O是菱形ABCD的对角线AC、BD的交点,E、F分别是OA、OC的中点.下列结论:①S△ADE =S△EOD;②四边形BFDE也是菱形;③四边形ABCD的面积为EF×BD;④∠ADE=∠EDO;⑤△DEF是轴对称图形.其中正确的结论有()A.5个B.4个C.3个D.2个11、菱形具有而矩形不具有的性质是()A.对角线互相平分B.四条边都相等C.对角相等D.邻角互补12、如图,两条宽度分别为1和2的长方形纸条交叉放置,重叠部分为四边形ABCD,若AB•BC=5,则四边形ABCD的面积是( ).A.2.5B.C.3.5D.13、如图,在平行四边形ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,则AD 的长为()A.4cmB.5cmC.6cmD.8cm14、如图,在△ABC中,中线BE,CD相交于点O,连接DE,则下列判断错误的是( )A.DE是△ABC的中位线B.点O是△ABC的重心 C.△DEO∽△CBO D. =15、如图,正方形的边长为2,以各边为直径在正方形内画半圆,则图中阴影部分的面积( )A.π-4B.2π-4C.4-πD.4-2π二、填空题(共10题,共计30分)16、已知一个菱形的两条对角线长分别为6cm和8cm,则这个菱形的面积为________cm2.17、如图,将平行四边形ABCO放置在平面直角坐标系xOy中,O为坐标原点,若点A的坐标是(6,0),点C的坐标是(1,4),则点B的坐标是________.18、如图,在矩形ABCD中,AB=4,BC=6,将△AB E沿着AE折叠至△AB'E,若BE=CE,连接B'C,则B′C的长为________.19、如图,AC是正方形ABCD的对角线,∠DCA的平分线交BA的延长线于点E,若AB=3,则AE=________20、如图,平行四边形ABCD,请你添一个条件________,使四边形ABCD为矩形.21、如图,菱形OABC中点A的坐标是(2,1),点B的横坐标是3,则点C的坐标是________.22、把一把直尺和一块三角板如图放置,若∠1=42°,则∠2的度数为________°.23、平行四边形的周长为24cm,相邻两边长的比为3:1,那么这个平行四边形较短的边长为________ cm.24、如图所示,在正方形中,延长到点,若,则四边形周长为________.25、如图,在四边形ABCD中,已知AB=CD,再添加一个条件________(写出一个即可),则四边形ABCD是平行四边形.(图形中不再添加辅助线)三、解答题(共5题,共计25分)26、如图,E、F是平行四边形ABCD对角线AC上的两点,BE∥DF.求证:BE=DF.27、已知:如图,在▱ABCD中,对角线AC,BD相交于点O.∠1=∠2.求证:▱ABCD是矩形.28、如图,在正方形ABCD中,E、F分别是AB、BC上的点,且AE=BF.求证:CE=DF.29、如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于点F,AB=BF,.求证:四边形ABCD是平行四边形.30、如图,已知▱ABCD中,AE平分∠BAD,CF平分∠BCD,分别交BC、AD于E、F.求证:AF=EC.参考答案一、单选题(共15题,共计45分)1、B2、B3、C4、C5、D6、D7、C9、C10、B11、B12、D13、A14、D15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、30、。

青岛版八年级下册数学第6章平行四边形单元检测

青岛版八年级下册数学第6章平行四边形单元检测
7.B
【解析】
由题意得: .
故选B.
8.B
【解析】
试题分析:A、由①得有一组邻边相等的平行四边形是菱形,由②得有一个角是直角的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;
B、由②得有一个角是直角的平行四边形是矩形,由③得对角线相等的平行四边形是矩形,所以不能得出平行四边形ABCD是正方形,错误,故本选项符合题意;
点评:本题属于基础应用题,只需学生熟练掌握菱形的判定方法,即可完成.
D
【解析】
试题分析:本题考查了矩形的性质;熟练掌握矩形的性质是解决问题的关键.矩形的性质:四个角都是直角,对角线互相平分且相等;由矩形的性质容易得出结论.∵四边形ABCD是矩形,∴∠ABC=∠BCD=∠CDA=∠BAD=90°,AC=BD,OA=AC,OB=BD,∴OA=OB,∴A、B、C正确,D错误
18.将2017个边长为2的正方形,按照如图所示方式摆放,O1, O2, O3, O4, O5, …是正方形对角线的交点,那么阴影部分面积之和等于________.
19.如图:在矩形ABCD中,AB=6,BC=8,P为AD上任一点,过点P作PE⊥AC于点E,PF⊥BD于点F,则PE+PF=______.
10.C
【解析】
试题分析:可证明四边形AEFD为平行四边形,可求得BC=EF,可判断①;结合角平分线的定义和条件可证明△ABE、△CDF为等边三角形,可判断②③,可得出答案.
试题解析:∵四边形ABCD为平行四边形,
∴AD∥BC,且AD=BC,
又∵AE∥DF,
∴四边形AEDF为平行四边形,
∴EF=AD,
∴AE平分∠DAB,∠DAE+∠DCF=120°,

(北师大版)青岛市八年级数学下册第六单元《平行四边形》测试题(有答案解析)

(北师大版)青岛市八年级数学下册第六单元《平行四边形》测试题(有答案解析)

一、选择题1.如图,在正八边形ABCDEFGH 中,AC 是对角线,则CAB ∠的大小是 ( )A .22.5︒B .21.5︒C .23.5︒D .24.5︒ 2.如图,在ABCD 中,3AB =,4=AD ,60ABC ∠=︒,过BC 的中点E 作EF AB ⊥,垂足为点F ,与DC 的延长线相交于点H ,则DEF 的面积是( )A .63+B .43C .23D .623+ 3.在面积为15的平行四边形ABCD 中,过点A 作AE 垂直于直线BC 于点E ,作AF 垂直于直线CD 于点F ,若5AB =,6BC =,则CE CF +的值为( )A .11311+B .11311-C .11311+或11311-D .11311+或31+ 4.如果一个多边形的内角和为1260︒,那么从这个多边形的一个顶点可以作( )条对角线.A .4B .5C .6D .75.如图,在平行四边形ABCD 中,DE 平分∠ADC 交BC 边于点E ,已知BE =4cm ,AB =6cm ,则AD 的长度是( )A .4cmB .6cmC .8cmD .10cm 6.一个多边形的内角和是外角和的2倍,则这个多边形的边数为( )A .4B .5C .6D .77.如图,在平面直角坐标系中,▱ABCD 三个顶点坐标分别为A (-1,-2),D (1,1),C (5,2),则顶点B 的坐标为( )A .(-1,3)B .(4,-1)C .(3,-1)D .(3,-2) 8.如图,下面不能判定四边形ABCD 是平行四边形的是( )A .AB //CD,AB CD =B .,AB CD AD BC ==C .B DAB 180,AB CD ︒∠+∠==D .B D,BCA DAC ∠=∠∠=∠9.如图,AD 、BE 分别是ABC 的中线和角平分线,AD BE ⊥,4AD BE ==,F 为CE 的中点,连接DF ,则AF 的长等于( )A .2B .3C .5D .2510.如图所示,EF 过▱ABCD 的对角线的交点O ,交AD 于点E ,交BC 于点F ,已知AB =4,BC =5,OE =1.5,那么四边形EFCD 的周长是( )A .10B .11C .12D .1311.如图,△ACE 是以□ABCD 的对角线AC 为边的等边三角形,点C 与点E 关于x 轴对称.若E 点的坐标是(7,-3D 点的坐标是 ( )A .(4,0)B .(92,0) C .(5,0) D .(112,0) 12.正多边形的一个外角的度数为72°,则这个正多边形的边数为( )A .4B .5C .6D .7 二、填空题13.边长相等的正方边形ABFG 和正五边形BCDEF 如图所示拼接在一起,则∠FGE =____°.14.一个正多边形的内角和为720︒,则这个多边形的外角的度数为______.15.如图,线段AB ,BC 的垂直平分线1l ,2l 相交于点O .若135∠=︒,则A C ∠+∠的度数为______.16.一枚小小的硬币上有很多的文化信息.铸造时间就体现了一段时期社会背景事件,还有就是硬币的铸造工艺与防伪技术,正面图案的含义万分,背面的国徽更是权力与主权的象征等等,如下图,1角硬币边缘镌刻的是正九边形,则这个正九边形每个内角的度数是______°.17.如图,在四边形ABCD 中,点P 是对角线BD 的中点,点E 、F 分别是AB 、CD 的中点,AD BC =,30PEF ∠=︒,则EPF ∠的度数是______.18.一个n 边形的每一个内角等于108°,那么n=_____.19.如图,在平行四边形ABCD 中,BF 平分ABC ∠,交AD 于点F ,CE 平分BCD ∠,交AD 于点E ,6AB =,2EF =,则BC 长为_________.20.如图,现有一个边长为a 的等边三角形,记为第1个等边三角形,取其各边的中点,顺次连接得到一个新的等边三角形,记为第2个等边三角形,取第2个等边三角形各边中点,顺次连接又得到一个新的等边三角形,记为第3个等边三角形,…,按此方式依次操作,则第n 个等边三角形的边长为_____.三、解答题21.如图,在每个小正方形的边长均为1的方格纸中,其中端点,A B 均在小正方形的顶点上.(1)在图中画出平行四边形ABCD ,点C 和点D 均在小正方形的顶点上,且平行四边形ABCD 的面积为12;(2)在图中画出以AB 为腰的等腰直角ABE △,且点E 在小正方形的顶点上; (3)连接DE ,直接写出DE 的长.22.如图,将正方形ABCD 绕点B 顺时针旋转()090θθ︒<<︒,得到正方形BEFG .连接AG ,与正方形交于点H ,K ,连接EC ,DF .∠的值(用θ表示);(1)求BAGAG EC;(2)求证://(3)写出线段AG,EC,DF之间的数量关系,并证明.23.已知:如图AB=AC,AB⊥AC,AD=AE,AD⊥AE,点M为CD的中点求证:2AM=BE24.如图,在△ABC中,∠ACB=90°,CA=CB,点O在△ABC的内部,⊙O经过B,C两点,交AB于点D,连接CO并延长交AB于点G,以GD,GC为邻边作平行四边形GDEC.(1)判断DE与⊙O的位置关系,并说明理由;(2)若DE=17,CE=13,求⊙O的半径.25.如图,在▱ABCD中,DE=CE,连接AE并延长交BC的延长线于点F.(1)求证:△ADE≌△FCE;(2)若AB =2BC ,∠F =36°,求∠B 的度数.26.如图,在ABCD 中,点E ,F 分别在AD ,BC 边上,且BE ∥DF. 求证:(1)四边形BFDE 是平行四边形;(2)AE=CF.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】求出正八边形的内角和,算出每个内角的度数,再根据△ABC 为等腰三角形以及内角和为180°,可求出∠CAB 的大小【详解】解:∵正八边形的内角和为:()8-2180=1080⨯︒︒每个内角的度数为10808=135︒÷︒又∵AB =BC∴△ABC 是等腰三角形 ∴()1=180-135=22.52CAB ∠︒︒︒ 故选:A【点睛】本题考查多边形内角和与等腰三角形的性质,熟练掌握相关知识点是解决本题的关键 2.C解析:C【分析】根据平行四边形的性质得到AB =CD =3,AD =BC =4,求出BE 、BF 、EF ,根据相似得出CH =1,EH 3△DFH 的面积,即可求出答案.【详解】解:∵四边形ABCD 是平行四边形,∴AD =BC =4,AB ∥CD ,AB =CD =3,∵E 为BC 中点,∴BE =CE =2,∵∠B =60°,EF ⊥AB ,∴∠FEB =30°,∴BF =1,由勾股定理得:EF =3, ∵AB ∥CD ,∴∠B =∠ECH ,在△BFE 和△CHE 中,B ECH BE CE BEF CEH ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△BFE ≌△CHE (ASA ),∴EF =EH =3,CH =BF =1,∴DH=4,∵S △DHF =12DH •FH =43, ∴S △DEF =12S △DHF =23, 故选:C .【点睛】本题主要考查对平行四边形的性质,平行线的性质,勾股定理,含30度角的直角三角形,三角形的面积,三角形的内角和定理等知识点的理解和掌握,能综合运用这些性质进行计算是解此题的关键.3.D解析:D【分析】根据平行四边形面积求出AE 和AF ,有两种情况,求出BE 、DF 的值,求出CE 和CF 的值,相加即可得出答案.【详解】解:四边形ABCD 是平行四边形,5AB CD ∴==,6BC AD ==,①如图:由平行四边形面积公式得:15BC AE CD AF ⨯=⨯=, 求出52AE =,3AF =, 在Rt ABE ∆和Rt ADF ∆中,由勾股定理得:222AB AE BE =+, 把5AB =,52AE =代入求出532BE =, 同理335DF =>,即F 在DC 的延长线上(如上图),5632CE ∴=-,335CF =-, 即312CE CF +=+, ②如图:5AB =,52AE =,在ABE ∆中,由勾股定理得:532BE =, 同理33DF =①知:5632CE =,335CF =, 111132CE CF ∴+= 故选:D .【点睛】 此题考查了平行四边形的性质以及勾股定理.此题难度适中,注意掌握数形结合思想与分类讨论思想的应用.4.C解析:C【分析】先利用n 边形的内角和公式算出n ,再利用n 边形的每一个顶点有(n-3)条对角线计算即可.【详解】根据题意,得(n-2)×180=1260,解得n=9,∴从这个多边形的一个顶点可以作对角线的条数为:n-3=9-3=6.故选C.【点睛】本题考查了n边形的内角和和经过每一个顶点可作的对角线条数,熟记多边形内角和公式,计算经过每一个顶点的对角线条数计算公式是解题的关键.5.D解析:D【分析】由已知平行四边形ABCD,DE平分∠ADC可推出△DCE为等腰三角形,所以得CE=CD=AB=6,那么AD=BC=BE+CE,从而求出AD.【详解】解:已知平行四边形ABCD,DE平分∠ADC,∴AD∥BC,CD=AB=6cm,∠EDC=∠ADE,AD=BC,∴∠DEC=∠ADE,∴∠DEC=∠CDE,∴CE=CD=6cm,∴BC=BE+CE=4+6=10cm,∴AD=BC=10cm,故选:D.【点睛】此题考查的知识点是平行四边形的性质及角平分线的性质,关键是由平行四边形的性质及角平分线的性质得等腰三角形通过等量代换求出AD.6.C解析:C【分析】⨯=︒,设这个多边形是n边形,内角和是多边形的外角和是360︒,则内角和是2360720()-⋅︒,这样就得到一个关于n的方程,从而求出边数n的值.n2180【详解】解:设这个多边形是n边形,根据题意,得()-⨯︒=⨯,n21802360=.解得:n6即这个多边形为六边形.故选:C.【点睛】本题考查了多边形的内角和与外角和,熟记内角和公式和外角和定理并列出方程是解题的关键,根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决. 7.C解析:C【分析】根据平行四边形的性质,CD=AB,CD∥AB,根据平移的性质即可求得顶点B的坐标.【详解】∵四边形ABCD是平行四边形,∴CD=AB,CD∥AB,∵▱ABCD的顶点A、D、C的坐标分别是A(-1,-2)、D(1,1)、C(5,2),D(1,1)向左平移2个单位,再向下3个单位得到A(-1,-2),则C(5,2)向左平移2个单位,再向下3个单位得到(3,-1),∴顶点B的坐标为(3,-1).故选:C.【点睛】本题考查了平行四边形的性质,平移的性质.注意数形结合思想的应用是解此题的关键.8.C解析:C【分析】根据平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形判断即可.【详解】根据平行四边形的判定,A、B、D均符合是平行四边形的条件,C则不能判定是平行四边形.故选C.【点睛】此题主要考查了学生对平行四边形的判定的掌握情况.对于判定定理:“一组对边平行且相等的四边形是平行四边形.”应用时要注意必须是“一组”,而“一组对边平行且另一组对边相等”的四边形不一定是平行四边形.9.D解析:D【分析】已知AD是ABC的中线,F为CE的中点,可得DF为△CBE的中位线,根据三角形的中位线定理可得DF∥BE,DF=12BE=2;又因AD BE,可得∠BOD=90°,由平行线的性质可得∠ADF=∠BOD=90°,在Rt△ADF中,根据勾股定理即可求得AF的长.【详解】∵AD是ABC的中线,F为CE的中点,∴DF为△CBE的中位线,∴DF∥BE,DF=12BE=2;∵AD BE⊥,∴∠BOD=90°,∵DF∥BE,∴∠ADF=∠BOD=90°,在Rt△ADF中,AD=4,DF=2,∴22224225AD DF+=+=故选D.【点睛】本题考查了三角形的中位线定理及勾股定理,利用三角形的中位线定理求得DF∥BE,DF=12BE=2是解决问题的关键.10.C解析:C【解析】试题根据平行四边形的性质,得AO=OC,∠EAO=∠FCO,又∠AOE=∠COF,∴△AOE≌△COF,∴OF=OE=1.5,CF=AE,根据平行四边形的对边相等,得CD=AB=4,AD=BC=5,故四边形EFCD的周长=EF+FC+ED+CD=OE+OF+AE+ED+CD=1.5+1.5+5+4=12.故选C.11.C解析:C【详解】解:如图,∵点C与点E关于x轴对称,E点的坐标是(7,3∴C的坐标为(7,3∴CH3CE3,∵△ACE是以▱ABCD的对角线AC为边的等边三角形,∴AC3∴AH=9,∵OH=7,∴AO=DH=2,∴OD=5,∴D点的坐标是(5,0),故答案为(5,0).【点睛】本题考查了平行四边形的性质、等边三角形的性质、点关于x轴对称的特点以及勾股定理的运用.12.B解析:B【分析】正多边形的外角和是360°,且正多边形的每个外角相等,因而用360°除以外角的度数,就得到外角和中外角的个数,外角的个数就是多边形的边数.【详解】∵正多边形的外角和是360°,∴360÷72=5,那么它的边数是5.故选B.【点睛】本题考查了多边形的内角与外角.根据正多边形的外角和求多边形的边数是常用的一种方法,需要熟练掌握.二、填空题13.9【分析】根据多边形的内角和定理计算即可;【详解】∵四边形ABFG是正方形∴又∵五边形BCDEF是正五边形∴正五边形的内角和为∴∴∵∴∴即∴;故答案是9【点睛】本题主要考查了多边形内角和定理准确分析 解析:9【分析】根据多边形的内角和定理计算即可;【详解】∵四边形ABFG 是正方形,∴90BFG ∠=︒,又∵五边形BCDEF 是正五边形,∴正五边形的内角和为()52180540-⨯︒=︒,∴5405108BFE ∠=︒÷=︒,∴36010890162GFE ∠=︒-︒-︒=︒,∵FG FE =,∴FGE FEG ∠=∠,∴180FGE FEG EFG ∠+∠+∠=︒,即1602180FGE ︒+∠=︒,∴9FGE ∠=︒;故答案是9.【点睛】本题主要考查了多边形内角和定理,准确分析计算是解题的关键.14.60°【分析】首先设这个正多边形的边数为n 根据多边形的内角和公式可得180(n-2)=720继而可求得答案【详解】解:设这个正多边形的边数为n ∵一个正多边形的内角和为720°∴180(n-2)=72解析:60°【分析】首先设这个正多边形的边数为n ,根据多边形的内角和公式可得180(n-2)=720,继而可求得答案.【详解】解:设这个正多边形的边数为n ,∵一个正多边形的内角和为720°,∴180(n-2)=720,解得:n=6,∴这个正多边形的每一个外角是:360°÷6=60°.故答案为:60°.【点睛】本题考查了多边形的内角和与外角和的知识.此题难度不大,注意掌握方程思想的应用,注意熟记公式是关键.15.35°【分析】连接OB 同理得AO=OB=OC 由等腰三角形的性质得∠A=∠ABO ∠C=∠CBO 进而得到∠A+∠C=∠ABC 由等腰三角形三线合一得∠AOD=∠BOD ∠BOE=∠COE 由平角的定义得∠DO解析:35°【分析】连接OB ,同理得AO=OB=OC ,由等腰三角形的性质得∠A=∠ABO ,∠C=∠CBO ,进而得到∠A+∠C=∠ABC ,由等腰三角形三线合一得∠AOD=∠BOD ,∠BOE=∠COE ,由平角的定义得∠DOE=145°,最后由四边形内角和定理可得结论.【详解】解:连接OB ,∵线段AB 、BC 的垂直平分线l 1、l 2相交于点O ,∴AO=OB=OC ,∴∠AOD=∠BOD ,∠BOE=∠COE ,∠A=∠ABO ,∠C=∠CBO ,∴∠A+∠C=∠ABC ,∵∠DOE+∠1=180°,∠1=35°,∴∠DOE=145°,∴∠ABC=360°-∠DOE-∠BDO-∠BEO=35°;故答案为:35°【点睛】本题主要考查线段的垂直平分线的性质,等腰三角形的性质,四边形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.16.140°【分析】根据多边形的内角和定理:求出该多边形的内角和继而可求出每个内角的度数【详解】解:正九边形的内角和为:则每个内角的度数为:故答案为:【点睛】本题考察多边形的内角和定理解题的关键是熟练掌 解析:140°【分析】根据多边形的内角和定理:()1802n ︒⨯-,求出该多边形的内角和,继而可求出每个内角的度数.【详解】解:正九边形的内角和为:()180921260︒⨯-=︒, 则每个内角的度数为:12601409︒=︒,故答案为:140︒.【点睛】本题考察多边形的内角和定理,解题的关键是熟练掌握多边形的内角和定理.17.【分析】根据中位线定理推出PE=ADPF=BC 由此得到PE=PF 推出△PEF 是等腰三角形根据三角形的内角和定理求出答案【详解】∵点是对角线的中点点分别是的中点∴PE=ADPF=BC ∵∴PE=PF ∴△解析:120︒【分析】根据中位线定理推出PE=12AD ,PF=12BC ,由此得到PE=PF ,推出△PEF 是等腰三角形,根据三角形的内角和定理求出答案.【详解】∵点P 是对角线BD 的中点,点E 、F 分别是AB 、CD 的中点,∴PE=12AD ,PF=12BC , ∵AD BC =,∴PE=PF ,∴△PEF 是等腰三角形,∴∠PFE=30PEF ∠=︒,∴EPF ∠=1803030120︒︒︒︒--=,故答案为:120︒.【点睛】此题考查三角形的中位线定义及定理,等腰三角形的判定及性质,三角形的内角和定理,熟记三角形的中位线的定义及定理是解题的关键.18.5【分析】首先求得外角的度数然后利用360度除以外角的度数即可求得【详解】解:外角的度数是:180°﹣108°=72°则n==5故答案为5【点睛】本题考查根据多边形的内角和计算公式求多边形的边数解答解析:5【分析】首先求得外角的度数,然后利用360度除以外角的度数即可求得.【详解】解:外角的度数是:180°﹣108°=72°,则n=36072︒︒=5, 故答案为5.【点睛】 本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.19.10【分析】先证明AB =AF =6DC =DE 再根据EF =AF +DE−AD 求出AD 即可得出答案【详解】∵四边形ABCD 是平行四边形∴AB =CD =6BC =ADAD ∥BC ∵BF 平分∠ABC 交AD 于FCE 平分解析:10【分析】先证明AB =AF =6,DC =DE ,再根据EF =AF +DE−AD 求出AD ,即可得出答案.【详解】∵四边形ABCD 是平行四边形,∴AB =CD =6,BC =AD ,AD ∥BC ,∵BF 平分∠ABC 交AD 于F ,CE 平分∠BCD 交AD 于E ,∴∠ABF =∠CBF =∠AFB ,∠BCE =∠DCE =∠CED ,∴AB =AF =6,DC =DE =6,∴EF =AF +DE−AD =6+6−AD =2.∴AD =10,∴BC =10,故答案为:10.【点睛】本题考查平行四边形的性质,等腰三角形的判定和性质等知识,解题的关键是熟练掌握这些知识的应用,属于常见题,中考常考题型.20.【分析】已知第1个等边三角形的边长是a 根据中位线定理依次可得:第二个等边三角形的边长是第三个等边三角形的边长是第四个等边三角形的边长是…从而得结论【详解】解:如图∵DE 分别是AB 和AC 的中点∴DE 是 解析:12n a - 【分析】已知第1个等边三角形的边长是a ,根据中位线定理依次可得:第二个等边三角形的边长是2a ,第三个等边三角形的边长是211222a a ⨯=,第四个等边三角形的边长是32a ,…,从而得结论.【详解】解:如图,∵D ,E 分别是AB 和AC 的中点,∴DE 是△ABC 的中位线,∴DE =12BC =12a , 即第1个等边三角形的边长是a , 第二个等边三角形的边长是2a , 同理得第三个等边三角形的边长是211222a a ⨯=, 第四个等边三角形的边长是32a , …∴第n 个等边三角形的边长是12n a -; 故答案为:12n a -. 【点睛】 本题考查的是等边三角形的性质、三角形的中位线定理,熟练掌握三角形中位线定理是关键,能总结出规律是解此题的难点.三、解答题21.(1)见解析;(2)见解析;(3)DE =【分析】(1)由平行四边形ABCD 的面积为12,把,A B 分别往右平移3个单位长度,对应点分别为,,D C 从而可得答案;(2)如图,取格点,P 满足90,APB ∠=︒ 把APB △绕点A 逆时针旋转90,︒ ,P B 的对应点分别为,,H E 则ABE △即为所求作的等腰直角三角形;(3)利用勾股定理直接计算即可得到答案.【详解】解:(1)如图,把,A B 分别往右平移3个单位长度,对应点分别为,,D C 则四边形ABCD 即为所求作的平行四边形.理由如下:由平移的性质可得://,,AB CD AB CD =∴ 四边形ABCD 是平行四边形,3412.ABCD S =⨯=(2)如图,取格点,P 满足90,APB ∠=︒ 把APB △绕点A 逆时针旋转90,︒ ,P B 的对应点分别为,,H E 则ABE △即为所求作的等腰直角三角形,理由如下:由旋转可得:,90,AB AE BAE PAH =∠=∠=︒ABE ∴是以AB 为腰的等腰直角三角形.(3)由勾股定理得:2212 5.DE =+【点睛】本题考查的是平行四边形的作图与判定,平移的性质,旋转的性质,等腰直角三角形的定义,勾股定理的应用,掌握以上知识是解题的关键.22.(1)452BAG θ︒=-∠;(2)见解析;(3)AG DF EC =+,见解析【分析】(1)根据旋转的性质得出△BAG 为等腰三角形即可求解;(2)先根据等腰三角形求出∠CEB 的度数(用θ表示),再由外角的性质求出∠AHE 的度数(用θ表示),根据内错角相等即可求证;(3)延长FD 构造平行四边形,根据平行四边形的性质即可求证.【详解】(1)由旋转得090EBG =∠,AB BG = ∴000180(90)4522BAG θθ-+==-∠ (2)∵BE BC =,090EBC θ-∠=∴()0180-90-=2245CEB θθ︒︒+∠= 又∵00452245EHA θθθ-+=+∠= ∴∠CEB=∠EHA∴ AG EC ∥.(3)如图延长FD 到I 使DI EC =,联结EI ,AI∵BE CB =∴BEC BCE ∠=∠∴12∠=∠∴EJ JC =∵CD EF =∴DJ JF =∴34∠=∠∵EJC DJF ∠=∠∴23∠∠=∵DF EC ∥即DI EC ∥又∵DI EC =∴四边形DIEC 为平行四边形∴DC IE =,DC IE ∥∵DC AB =,DC AB ∥∴IE AB =,IE AB ∥∴四边形IABE 为平行四边形∴IA EB =,IA EB ∥∵FG EB =,FG EB∴FG IA =,FG IA ∥∴四边形IAGF 为平行四边形∴AG IF =∴AG DF EC =+.【点睛】此题主要考察了旋转的性质,等腰三角形的性质,平行线的判定以及平行四边形的性质和判定;解题的关键是掌握平移的性质,等腰三角形的性质,平行线的判定以及平行四边形的性质和判定,以及正确作出辅助线.23.详见解析【分析】作CN∥AM,交DA延长线于N,根据AM∥CN,点M是CD的中点,得到AM是△DCN的中位线,推出CN=2AM,AE=AN,根据∠BAC=∠DAE=90︒证出∠CAN=∠BAE,证得△BAE≌△CAN,推出BE=CN,由此得到结论.【详解】如图,作CN∥AM,交DA延长线于N,∵AM∥CN,点M是CD的中点,∴AM是△DCN的中位线,∴CN=2AM,AD=AN,∴AE=AN,∵AD⊥AE,AB⊥AC,∴∠BAC=∠DAE=90︒∴∠EAN=90︒,∴∠CAE+∠EAN=∠BAC+∠CAE,∴∠CAN=∠BAE,∵AB=AC,AE=AN,∴△BAE≌△CAN,∴BE=CN,∴2AM=BE..【点睛】此题考查全等三角形的判定及性质,三角形中位线的性质,题中辅助线的引出是解题的关键,在三角形中,已知一边中点时,通常是利用中点构造全等三角形解决问题.r=24.(1)DE是⊙O的切线,理由见解析;(2)12(1)连接OD ,求得∠ABC =45°,根据圆周角定理可得∠COD =2∠ABC =90°,根据平行四边形的性质可得DE ∥CG ,得到∠EDO +∠COD =180°,推出OD ⊥DE 于是即可求得结论; (2)设⊙O 的半径为r ,根据平行四边形的性质可得DG =CE =13,CG =DE =17,由勾股定理可得关于r 的方程,解方程即可求解.【详解】(1)DE 是⊙O 的切线.证明:连接OD ,∵∠ACB =90°,CA =CB ,∴∠ABC =45°,∴∠COD =2∠ABC =90°,又∵四边形GDEC 是平行四边形,∴DE ∥CG ,∴∠EDO +∠COD =180°,∴∠EDO =90°,∴OD ⊥DE ,∴DE 是⊙O 的切线;(2)解:设⊙O 的半径为r ,∵四边形GDEC 为平行四边形,∴DG =CE =13,CG =DE =17,∵∠DOG =180°-∠DOC =180°-90°=90°,∴222OD OG DG +=,即222(17)13r r +-=,解得125,12r r ==,当=5r 时,OG =12,点G 在⊙O 外,∴=5r 不成立,舍去,∴12r =, .【点睛】本题考查了直线与圆的位置关系,圆周角定理、平行四边形的性质、勾股定理的应用,解题的关键是综合利用所学知识.25.(1)见解析;(2)108°(1)利用平行四边形的性质得出AD ∥BC ,AD=BC ,证出∠D=∠ECF ,由ASA 即可证出△ADE ≌△FCE ;(2)证出AB=FB ,由等腰三角形的性质和三角形内角和定理即可得出答案.【详解】证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC ,∴∠D=∠ECF ,在△ADE 和△FCE 中,D ECF DE CEAED FEC ===∠∠⎧⎪⎨⎪∠∠⎩∴△ADE ≌△FCE (ASA );(2)∵△ADE ≌△FCE ,∴AD=FC ,∵AD=BC ,AB=2BC ,∴AB=FB ,∴∠BAF=∠F=36°,∴∠B=180°-2×36°=108°.【点睛】运用了平行四边形的性质,全等三角形的判定与性质,等腰三角形的性质、三角形内角和定理;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.26.(1)见解析;(2)见解析.【分析】(1)由四边形ABCD 是平行四边形,可得AD ∥BC ,又BE ∥DF ,可证四边形BFDE 是平行四边形;(2)由四边形ABCD 是平行四边形,可得AD=BC ,又ED=BF ,从而AD-ED=BC-BF ,即AE=CF.【详解】(1)∵四边形ABCD 是平行四边形,∴AD ∥BC ,即DE ∥BF .∵BE ∥DF,∴四边形BFDE 是平行四边形;(2)∵四边形ABCD 是平行四边形,∴AD=BC ,∵四边形BFDE 是平行四边形,∴ED=BF ,∴AD-ED=BC-BF,即AE=CF.本题主要考查了平行四边形的判定与性质,熟练掌握两组对边分别平行的四边形是平行四边形,平行四边形对边平行且相等是解答本题的关键.。

青岛版八年级下册数学第6章平行四边形单元检测(解析版)

青岛版八年级下册数学第6章平行四边形单元检测(解析版)

青岛版⼋年级下册数学第6章平⾏四边形单元检测(解析版)青岛版⼋年级下册数学第6章平⾏四边形单元检测⼀、选择题1.下列命题中,正确的是()A. 对⾓线互相垂直且相等的四边形是菱形B. 对⾓线互相垂直的平⾏四边形是菱形C. 对⾓线互相平分且相等的四边形是菱形D. 对⾓线相等的四边形是菱形【答案】B【解析】试题分析:根据菱形的判定⽅法依次分析各选项即可.A、对⾓线互相垂直且相等的四边形不⼀定是菱形,C、对⾓线互相平分且相等的四边形是矩形,D、对⾓线相等的四边形不⼀定是菱形,故错误;B、对⾓线互相垂直的平⾏四边形是菱形,本选项正确.考点:菱形的判定点评:本题属于基础应⽤题,只需学⽣熟练掌握菱形的判定⽅法,即可完成.2.如图,在矩形ABCD中,对⾓线AC、BD交与点O,以下说法错误的是()A. ∠ABC=90°B. AC=BDC. OA=OBD. OA=AD【答案】D【解析】试题分析:本题考查了矩形的性质;熟练掌握矩形的性质是解决问题的关键.矩形的性质:四个⾓都是直⾓,对⾓线互相平分且相等;由矩形的性质容易得出结论.∵四边形ABCD是矩形,∴∠ABC=∠BCD=∠CDA=∠BAD=90°,AC=BD,OA=AC,OB=BD,∴OA=OB,∴A、B、C正确,D错误考点:矩形的性质3.已知下列命题:①矩形是轴对称图形,且有两条对称轴;②两条对⾓线相等的四边形是矩形;③有两个⾓相等的平⾏四边形是矩形;④两条对⾓线相等且互相平分的四边形是矩形.其中正确的有()A. 4个B. 3个C. 2个D. 1个【答案】C【解析】①正确.②等腰梯形是对⾓线相等,错误.③菱形也两个⾓相等,错误.④正确.所以选C.4.⽤两个边长为a的等边三⾓形纸⽚拼成的四边形是()A. 等腰梯形B. 正⽅形C. 矩形D. 菱形【答案】D【解析】试题解析:由于两个等边三⾓形的边长都相等,则得到的四边形的四条边也相等,即是菱形.由题意可得:得到的四边形的四条边相等,即是菱形.故选D.5.在△ABC中,点E、D、F分别在AB、BC、AC上且DE∥CA,DF∥BA,下列四个判断中不正确的是()A. 四边形AEDF是平⾏四边形B. 如果∠BAC=90°,那么四边形AEDF是矩形C. 如果AD⊥BC,那么四边形AEDF是菱形D. 如果AD平分∠BAC,那么四边形AEDF是菱形【答案】C【解析】∵DE∥CA,DF∥BA,∴四边形AEDF是平⾏四边形,故A正确;⼜∵∠BAC=90°,∴平⾏四边形是矩形,故B正确;⼜∵AD平分∠BAC,∴平⾏四边形AEDF是菱形,故D正确;AD⊥BC时,⽆法判断平⾏四边形AEDF是菱形,故C错误;故选C.点睛:本题主要考查平⾏四边形、矩形、菱形的判定,熟练掌握这⼏个图形的判定⽅法是解题的关键. 6.如图,在□ABCD 中,如果EF∥AD , GH∥CD , EF与GH相交与点O ,那么图中的平⾏四边形⼀共有().A. 4个B. 5个C. 8个D. 9个【答案】D 【解析】解:∵EF ∥AD ,GH ∥CD ,⽽平⾏四边形的定义得到AB ∥CD ,AD ∥CB ,∴EF ∥AD ∥CB ,GH ∥CD ∥AB ,∴图中的四边形AEOG ,AEFD ,ABHG ,CNOF ,ABCD ,CBEF ,BHOE ,DGOF 和HCOF 都是平⾏四边形,共9个.故选D .7.已知平⾏四边形ABCD 的周长为32,AB =4,则BC 的长为() A. 4 B. 12C. 24D. 48【答案】B 【解析】由题意得:2()32,4,12AB BC AB BC +===得: . 故选B. 8.已知四边形ABCD 是平⾏四边形,再从①AB=BC ,②∠ABC=90°,③AC=BD ,④AC ⊥BD 四个条件中,选两个作为补充条件后,使得四边形ABCD 是正⽅形,现有下列四种选法,其中错误的是() A. 选①② B. 选②③C. 选①③D. 选②④【答案】B 【解析】试题分析:A 、由①得有⼀组邻边相等的平⾏四边形是菱形,由②得有⼀个⾓是直⾓的平⾏四边形是矩形,所以平⾏四边形ABCD 是正⽅形,正确,故本选项不符合题意;B 、由②得有⼀个⾓是直⾓的平⾏四边形是矩形,由③得对⾓线相等的平⾏四边形是矩形,所以不能得出平⾏四边形ABCD 是正⽅形,错误,故本选项符合题意;C 、由①得有⼀组邻边相等的平⾏四边形是菱形,由③得对⾓线相等的平⾏四边形是矩形,所以平⾏四边形ABCD 是正⽅形,正确,故本选项不符合题意;D 、由②得有⼀个⾓是直⾓的平⾏四边形是矩形,由④得对⾓线互相垂直的平⾏四边形是菱形,所以平⾏四边形ABCD 是正⽅形,正确,故本选项不符合题意.故选B .考点:1.正⽅形的判定;2.平⾏四边形的性质.9. 不能判定⼀个四边形是平⾏四边形的条件是【】A. 两组对边分别平⾏B. ⼀组对边平⾏,另⼀组对边相等C. ⼀组对边平⾏且相等D. 两组对边分别相等【答案】B【解析】根据平⾏四边形的判定:①两组对边分别平⾏的四边形是平⾏四边形;②两组对边分别相等的四边形是平⾏四边形;③两组对⾓分别相等的四边形是平⾏四边形;④对⾓线互相平分的四边形是平⾏四边形;⑤⼀组对边平⾏且相等的四边形是平⾏四边形.A、D、C均符合是平⾏四边形的条件,B则不能判定是平⾏四边形.故选B.10.如图所⽰,在平⾏四边形ABCD中,∠ABE=∠AEB,AE∥DF,DC是∠ADF的⾓平分线.下列说法正确的是()①BE=CF ②AE是∠DAB的⾓平分线③∠DAE+∠DCF=120°.A. ①B. ①②C. ①②③D. 都不正确【答案】C【解析】试题分析:可证明四边形AEFD为平⾏四边形,可求得BC=EF,可判断①;结合⾓平分线的定义和条件可证明△ABE、△CDF 为等边三⾓形,可判断②③,可得出答案.试题解析:∵四边形ABCD为平⾏四边形,∴AD∥BC,且AD=BC,⼜∵AE∥DF,∴四边形AEDF为平⾏四边形,∴EF=AD,∴BC=EF,∴BE=CF,故①正确;∵DC平分∠ADF,∴∠ADC=∠FDC,⼜∵AD∥EF,∴∠ADC=∠DCF,∴∠DCF=∠FDC,∴DF=CF,⼜∵AE=DF,∴AE=CF=BE,⼜∵∠ABE=∠AEB,∴AB=AE,∴△ABE和△CDF为等边三⾓形,∴∠BAE=∠B=∠DAE=∠DCF=60°,∴AE平分∠DAB,∠DAE+∠DCF=120°,故②③正确;故选C.考点:平⾏四边形的性质.11.如图,D、E、F分别为Rt△ABC中AB、AC、BC的中点,AB=23,则DC和EF的⼤⼩关系是()A. DC>EFB. DC<EFC.DC=EF D. ⽆法⽐较【答案】C【解析】【详解】解:∵E、F分别为AC、BC的中点,∴EF=12AB3Rt△ABC中,D是AB的中点,∴CD=12AB3CD=EF.故选C.【点睛】本题考查的是三⾓形中位线定理和直⾓三⾓形的性质,掌握三⾓形的中位线平⾏于第三边且等于第三边的⼀半和直⾓三⾓形斜边上的中线等于斜边的⼀半是解题的关键.12.如图,在梯形ABCD中,∠ABC=90o,AE∥CD交BC于E,O是AC的中点,AB=3,AD=2,BC=3,下列结论:①∠CAE=30o;②AC=2AB;③S△ADC=2S△ABE;④BO⊥CD,其中正确的是()A. ①②③B. ②③④C. ①③④D. ①②③④【答案】D【解析】试题分析:根据梯形的性质和直⾓三⾓形中的边⾓关系,逐个进⾏验证,即可得出结论.解:在直⾓三⾓形ABC中,∵AB=,BC=3,∴tan∠ACB=.∴∠ACB=30°.∴∠BAC=60°,AC=2AB=2.②是正确的∵AD∥BC,AE∥CD,∴四边形ADCE是平⾏四边形.∴CE=AD=2.∴BE=1.在直⾓三⾓形ABE中,tan∠BAE=,∠BAE=30°.∴∠CAE=30°.①是正确的∴AE=2BE=2.∵AE=CE,∴平⾏四边形ADCE是菱形.∴∠DCE=∠DAE=60°.∴∠BAE=30°⼜∵∠CAE=30°∴∠BAO=60°⼜∵AB=AO∴△AOB是等边三⾓形,∴∠ABO=60°.∴∠OBE=30°.∴BO⊥CD.④是正确的.∵AD∥BC,AD=2BE.∴S△ADC=2S△ABE,③是正确的.∴①②③④都是正确的,故选D.考点:四边形的综合题点评:此类问题难度较⼤,在中考中⽐较常见,⼀般在压轴题中出现,需特别注意.⼆、填空题13.矩形ABCD的对⾓线AC、BD相交于点O,∠AOD=120°,AC+BD=16,则该矩形的⾯积为________ 【答案】163【解析】解:如图.∵四边形ABCD是矩形,∴AC=BD.⼜AC+BD=16,∴AC=BD=8,且OA=OB=4.∵∠AOD=120°,可得∠AOB=60°,∴△AOB是等边三⾓形,∴AB=4.∵∠ABC=90°,∴∠ACB=30°,∴BC=22=43,∴矩形的⾯积AC BC=4×43=163.故答案为163.14.如图,剪两张等宽对边平⾏的纸条,随意交叉叠放在⼀起,转动其中的⼀张,重合的部分构成了⼀个四边形,这个四边形是________.【答案】菱形【解析】试题分析:⾸先可判断重叠部分为平⾏四边形,且两条纸条宽度相同;再由平⾏四边形的等积转换可得邻边相等,则四边形ABCD为菱形.所以根据菱形的性质进⾏判断.解:过点D分别作AB,BC边上的⾼为AE,AF,∵四边形ABCD是⽤两张等宽的纸条交叉重叠地放在⼀起⽽组成的图形,∴AB∥CD,AD∥BC,∴四边形ABCD是平⾏四边形(对边相互平⾏的四边形是平⾏四边形);∵DE⊥AB,DF⊥BC,∴DE=DF(两纸条相同,纸条宽度相同),∵S平⾏四边形ABCD=AB?ED=BC?DF,∴AB=CB,∴四边形ABCD是菱形,故答案为菱形.考点:菱形的判定.15.如图,?ABCD的对⾓线交于点O,且AB=5,△OCD的周长为13,则?ABCD的两条对⾓线长度之和为________.【答案】16【解析】∵四边形ABCD是平⾏四边形,∴CD=AB=5,AC=2CO,BD=2DO.∵△OCD的周长为13,∴CO+DO=13-5=8,∴AC+BD=2×8=16.故答案为16.16.如图,?ABCD中,∠A=50°,AD⊥BD,沿直线DE将△ADE翻折,使点A落在点A′处,AE交BD于F,则∠DEF=________ .【答案】65°【解析】解:由折叠的性质可得:∠DA′E=∠A=50°,∠AED=∠DEF.∵四边形ABCD是平⾏四边形,∴AB∥CD,∴∠AEA′=180°﹣∠DA′E=130°,∴∠DEF=12∠DA′E=65°.故答案为65°.17.已知菱形的两条对⾓线长为8和6,那么这个菱形⾯积是________,菱形的⾼________.【答案】24;24 5.【解析】解:如图,四边形ABCD是菱形,BD=8,AC=6,作AE⊥BC于E,∴AC⊥BD,AO=12AC=3,BO=12BD=4,∴AB=22AO OB+=2234+=5,∴BC=AB=5,∴菱形的⾯积=12ACBD=24.∵BC?AE=24,∴AE=245,∴菱形的⾼为245.故答案为24,245.18.将2017个边长为2的正⽅形,按照如图所⽰⽅式摆放,O1, O2, O3, O4, O5, …是正⽅形对⾓线的交点,那么阴影部分⾯积之和等于________.【答案】2016【解析】解:由题意可得阴影部分⾯积等于正⽅形⾯积14,则⼀个阴影部分⾯积为:1.n个这样的正⽅形重叠部分(阴影部分)的⾯积和为14×(n﹣1)×4=(n﹣1).所以这个2017个正⽅形重叠部分的⾯积和=14×(2017﹣1)×4=2016.故答案为2016.点睛:本题考查了正⽅形的性质,解决本题的关键是得到n个这样的正⽅形重叠部分(阴影部分)的⾯积和的计算⽅法,难点是求得⼀个阴影部分的⾯积.19.如图:在矩形ABCD中,AB=6,BC=8,P为AD上任⼀点,过点P作PE⊥AC于点E,PF⊥BD于点F,则PE+PF=______.【答案】245【解析】【分析】本题主要考查矩形的性质,相似三⾓形的性质,根据它们的性质进⾏答题.【详解】设AP=x ,则DP=8-x ;根据相似三⾓形的性质可得:PE AP DC AC =,PF PDAB DB=;即有PE=35x ,PF=35(8-x ),则PE+PF=4.8.【点睛】本题考查矩形的性质,矩形具有平⾏四边形的性质,⼜具有⾃⼰的特性,要注意运⽤矩形具备⽽⼀般平⾏四边形不具备的性质.20.四边形ABCD 中,如果AB=DC ,当AB ______DC 时,四边形ABCD 是平⾏四边形;当AD ________ BC 时,四边形ABCD 是平⾏四边形. 【答案】平⾏,=. 【解析】试题分析:四边形ABCD 中,AB=DC ,当AB ∥DC 时,四边形ABCD 是平⾏四边形;当AD=BC 时,四边形ABCD 是平⾏四边形.考点: 平⾏四边形的判定.21.如图,△ABC 中,AD=BD ,AE=EC ,BC=6,则DE=________.【答案】3 【解析】因为AD=BD ,AE=EC ,∴DE=12BC=3,故答案为3.22.如图,菱形ABCD的边长为5cm,对⾓线BD的长为6cm,则菱形ABCD的⾯积为________ cm2.【答案】24【解析】解:∵四边形ABCD是菱形,∴AC⊥BD,OB=12BD=12×6=3(cm),∴OA=22AB OB-=2253-=4(cm),∴AC=2OA=8c m,∴S菱形ABCD=12AC?BD=12×6×8=24(cm2).故答案为24.点睛:本题考查了菱形的性质以及勾股定理.注意掌握菱形的⾯积等于对⾓线积的⼀半.三、解答题23.已知:如图,E、F分别为?ABCD中AD、BC的中点,分别连接AF、BE交于G,连接CE、DF交于点H.求证:EF与GH互相平分.【答案】详见解析.【解析】试题分析:可先证明四边形AFCE是平⾏四边形,进⽽利⽤平⾏四边形的性质得出四边形GFHE是平⾏四边形,即可得出结论.试题解析:证明:∵E为AD的中点,F为BC的中点,∴AE=12AD,CF=12BC.∵四边形ABCD是平⾏四边形,∴AD∥BC,∴AE∥CF,AE=CF,∴四边形AFCE是平⾏四边形,∴AF∥CE,同理可证:BE∥DF,∴四边形GFHE是平⾏四边形,∴EF与GH互相平分.点睛:本题主要考查平⾏四边形的判定与性质,能够熟练掌握并求解此类问题.24.如图,已知△ABC的中线BD、CE相交于点O、M、N分别为OB、OC的中点.(1)求证:MD和NE互相平分;(2)若BD⊥AC,2,OD+CD=7,求△OCB的⾯积.【答案】(1)见试题解析(2)8.5.【解析】试题分析:(1)连接ED、MN,根据三⾓形中位线定理可得ED∥MN,ED=MN,进⽽得到四边形DEMN是平⾏四边形,再根据平⾏四边形的性质可得MD和NE互相平分;(2)利⽤(1)中所求得出OC=2DN=4,再利⽤勾股定理以及三⾓形⾯积公式求出S△OCB=OB×CD即可.试题解析:(1)证明:连接ED、MN,∵CE、BD是△ABC的中线,∴E、D是AB、AC中点,∴ED∥BC,ED=BC,∵M、N分别为OB、OC的中点,∴MN∥BC,MN=BC,∴ED∥MN,ED=MN,∴四边形DEMN是平⾏四边形,∴MD和NE互相平分;(2)解:由(1)可得DN=EM=2,∵BD⊥AC,∴∠ODC=90°,∵N是OC的中点,∴OC=2DN=4(直⾓三⾓形斜边中线等于斜边的⼀半)∵OD2+CD2=OC2=32,(OD+CD)2=OD2+CD2+2OD×CD=72=49,2OD×CD=49﹣32=17,OD×CD=8.5,∵OB=2OM=2OD,∴S△OCB=OB×CD=OD×CD=8.5.考点:平⾏四边形的判定与性质;三⾓形中位线定理.25.如图,△ABC 中,点O 是边AC 上⼀个动点,过O 作直线MN∥BC,设MN 交∠ACB 的平分线于点E,交∠ACB 的外⾓平分线于点F.(1)求证:OE=OF;(2)当点O 在边AC 上运动到什么位置时,四边形AECF 是矩形?并说明理由.(3)若AC 边上存在点O,使四边形AECF 是正⽅形,猜想△ABC 的形状并证明你的结论.【答案】(1)见解析;(2)当点O 在边AC 上运动到AC 中点时,四边形AECF 是矩形.见解析;(3)△ABC 是直⾓三⾓形,理由见解析.【解析】【分析】(1)根据平⾏线的性质以及⾓平分线的性质得出∠1=∠2,∠3=∠4,进⽽得出答案;(2)根据AO=CO,EO=FO可得四边形AECF平⾏四边形,再证明∠ECF=90°利⽤矩形的判定得出即可(3)利⽤正⽅形的性质得出AC⊥EN,再利⽤平⾏线的性质得出∠BCA=90°,即可得出答案【详解】证明:(1)∵MN 交∠ACB 的平分线于点E,交∠ACB 的外⾓平分线于点F,∴∠2=∠5,∠4=∠6,∵MN∥BC,∴∠1=∠5,∠3=∠6,∴∠1=∠2,∠3=∠4,∴EO=CO,FO=CO,∴OE=OF;(2)当点O 在边AC 上运动到AC 中点时,四边形AECF 是矩形.证明:当O 为AC 的中点时,AO=CO,∵EO =FO ,∴四边形 AECF 是平⾏四边形,∵CE 是∠ACB 的平分线,CF 是∠ACD 的平分线,∴∠ECF =12(∠ACB +∠ACD )=90°,∴平⾏四边形 AECF 是矩形.(3)△ABC 是直⾓三⾓形,理由:∵四边形 AECF 是正⽅形,∴AC ⊥EN ,故∠AOM =90°,∵MN ∥BC ,∴∠BCA =∠AOM ,∴∠BCA =90°,∴△ABC 是直⾓三⾓形.【点睛】此题考查了正⽅形的判断和矩形的判定,需要知道排放新的象征和⾓平分线的性质才能解答此题26.如图,在矩形ABCD 中,AB =8cm ,BC =16cm ,点P 从点D 出发向点A 运动,运动到点A 停⽌,同时,点Q 从点B 出发向点C 运动,运动到点C 即停⽌,点P 、Q 的速度都是1cm/s .连接PQ 、AQ 、CP .设点P 、Q 运动的时间为ts .(1)当t 为何值时,四边形ABQP 是矩形; (2)当t 为何值时,四边形AQCP 是菱形; (3)分别求出(2)中菱形AQCP 的周长和⾯积.【答案】(1)8;(2)6;(3),40cm,80cm 2. 【解析】【分析】(1)当四边形ABQP 是矩形时,BQ=AP ,据此求得t 的值;(2)当四边形AQCP是菱形时,AQ=AC,列⽅程求得运动的时间t;(3)菱形的四条边相等,则菱形的周长=4t,⾯积=矩形的⾯积-2个直⾓三⾓形的⾯积.【详解】(1)当四边形ABQP是矩形时,BQ=AP,即:t=16-t,解得t=8.答:当t=8时,四边形ABQP是矩形;(2)设t秒后,四边形AQCP是菱形当AQ=CQ时,四边形AQCP为菱形.解得:t=6.答:当t=6时,四边形AQCP是菱形;(3)当t=6时,CQ=10,则周长为:4CQ=40cm,⾯积为:10×8=80(cm2).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行四边形单元测试卷-命题:寿光泉水叮咚
班级___________ 姓名_________ 学号_________ 总分____
1、下列命题中,真命题是( )
A .两条对角线相等的四边形是矩形
B . 两条对角线互相垂直的四边形是菱形
C .两条对角线互相垂直且相等的四边形是正方形
D .两条对角线互相平分的四边形是平行四边形 2、菱形具有而矩形不具有的性质是 ( )A .对角相等 B .四边相等 C .对角线互相平分 D .四角相等
3、如图,在平面直角坐标系中,□ABCD 的顶点A 、B 、D 的坐标分别是(0,0),(5,0)(2,3),则顶点C 的坐标是( )
A .(3,7) B.(5,3) C.(7,3) D.(8,2)
4、已知菱形的边长和一条对角线的长均为2cm ,则菱形的面积为( )
A.2
4cm B.2
3cm
C.2
23cm
D.2
3cm
5、如图,在菱形ABCD 中,E 、F 分别是AB 、CD 的中点,如果EF=2,那么ABCD 的周长是( ) A .4 B .8 C .12 D .16
6、如图,在
ABCD 中,AD=2AB ,CE 平分∠BCD 交AD 边于点E , 且AE=3,则AB
的长为( ).(A)4 (B)3 (C)
5
2
(D)2 7、如图,在▱ABCD 中,E 是AD 边上的中点,连接BE ,并延长BE 交CD 延长线于点F ,则△EDF 与△BCF 的周长之比是( )A 、1:2 B 、 1:3 C 、 1:4 D 、1:5
⑥ ⑦ ⑧ ⑨
8、如图,菱形ABCD 中,∠B=60°,AB=4,则以AC 为边长的正方形ACEF 的周长为( ) A .14 B .15
C .16
D .17
9、已知菱形ABCD 的两条对角线分别为6和8,M 、N 分别是边BC 、CD 的中点,P 是对角线BD 上一点,则PM+PN 的最小值= .
10、如图,两个完全相同的三角尺ABC 和DEF 在直线l 上滑动.要使四边形CBFE 为菱形,还需添加的一个条件是 (写出一个即可)
11、如图,正方形ABCD 的对角线相交于点O ,正三角形OEF 绕点O 旋转.在旋转过程中,当AE =BF 时,∠AOE 的大小是 .
O (A )
B
C
D
12、如图,边长分别为4和8的两个正方形ABCD 和CEFG 并排放在一起,连结BD 并延长交EG 于点T ,交
FG 于点P ,则GT = ( )A .2 B .22 C .2 D .1
13、如图,点D E F ,,分别是ABC △三边上的中点.若ABC △的面积为12,则DEF △的面积为 .
14、如图,把一张长方形ABCD 的纸片沿EF 折叠后,ED 与BC 的交点为G ,点D 、C 分别落在D ′、C ′的位置上,若∠EFG=55°, 求∠AEG 和∠EFB 的度数.
A
B
C
F E
D
15、如图,在□ABCD中,点E、F分别在CD、AB的延长线上,且AE=AD,CF=CB.
求证:四边形AFCE是平行四边形.
16、如图,如图在△ABC中,D是AB的中点,E是CD的中点,过点C作CF平行AB交AE的延长线F,连接BF.
(1)求证DB=CF;
(2)如果AC=BC,试判断四边形BDCF的形状,并证明你的结论.
17、如图①,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB.(1)求证:△BCP≌△DCP;
(2)求证:∠DPE=∠ABC;
(3)把正方形ABCD改为菱形,其它条件不变(如图②),若∠ABC=58°,则∠DPE= 度.。

相关文档
最新文档