青岛版八年级数学下册单元测试题全套
青岛版八年级数学下册单元测试题全套(含答案)

15.已知菱形的边长为 ,一条对角线的长为 ,则菱形的最大内角是_______.
16.若四边形的两条对角线相等,则顺次连接该四边形各边中点所得的四边形是.
17.如图,在矩形ABCD中,对角线 与 相交于点O,且 ,则BD的长为________cm,BC的长为_______cm.
18.如图,□ABCD的周长为36,对角线AC,BD相交于点O,E是CD的中点,BD=12,则△DOE的周长为_______.
A.3B.2C.1D.0
8.如图,在□ABCD中,下列结论一定正确的是()
A.AC⊥BDB.∠A+∠B=180°C.AB=ADD.∠A≠∠C
9.如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF.添加一个条件,仍不能证明四边形BECF为正方形的是()
A.BC=ACB.CF⊥BFC.BD=DFD.AC=BF
4.B解析:因为四边形ABCD是矩形,所以CD=AB=2.由于沿BD折叠后点C与点C′重合,所以C′D=CD=2.
5.B解析:因为矩形ABCD的面积为2×4=8,S△BEH= ×1×2=1,所以阴影部分的面积为 ,故选B.
6.D解析:连接 ,设 交 于 点.因为四边形 为菱形,所以 ,且 .在△ 中,因为 ,所以 .在△ 中,因为 ,所以 .又因为 ,所以 .故选D.
10.如图,小贤为了体验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架ABCD,B与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,观察所得四边形的变化.下列判断错误的是()
A.四边形ABCD由矩形变为平行四边形
B.BD的长度增大
C.四边形ABCD的面积不变
D.四边形ABCD的周长不变
2022年最新青岛版八年级数学下册第8章一元一次不等式单元测试试题(含答案及详细解析)

八年级数学下册第8章一元一次不等式单元测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若x y >,则下列不等式一定成立的是( )A .x y ->-B .22x y <C .66x y <D .44x y +>+2、等腰三角形的周长为16,且边长为整数,则腰与底边分别为( )A .5,6B .6,4C .7,2D .以上三种情况都有可能3、某市最高气温是33℃,最低气温是24℃,则该市气温t (℃)的变化范围是( )A .t >33B .t ≤24C .24<t <33D .24≤t ≤334、如图,A 、B 、M 、N 四人去公园玩跷跷板.设M 和N 两人的体重分别为m 、n ,则m 、n 的大小关系为( )A .m <nB .m >nC .m =nD .无法确定5、不等式组1224x x x+>⎧⎨-≤⎩的解集在数轴上表示正确的是( ) A . B .C .D .6、甲在集市上先买了3只羊,平均每只a 元,稍后又买了2只,平均每只羊b 元,后来他以每只2a b + 元的价格把羊全卖给了乙,结果甲发现赚了钱,赚钱的原因是( )A .a b =B .a b >C .a b <D .与a b 、大小无关 7、若a b >,则下列式子一定成立的是( )A .12a b +<+B .22a b ->-C .22a b ->-D .33a b < 8、若不等式组3x a x >⎧⎨≥-⎩的解集为x a >,则下列各式正确的是( ) A .3a < B .3a ≤ C .a >-3 D .3a ≥-9、若a b >,则下列式子中一定成立的是( )A .22a b ->-B .22a b >C .11a b -<-D .11a b> 10、已知8x +1<-2x ,则下列各式中正确的是( )A .10x +1>0B .10x +1<0C .8x -1>2xD .10x >-1第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知正整数a ,b ,c 均小于5,存在整数m 满足20221000222a b c m +=++,则()m a b c ++的值为______.2、给出下列不等式:①23x +1>x -x 2;②y -1>3;③x +2x≥2;④x ≤0;⑤3x -y <5,其中属于一元一次不等式的是:___.(只填序号)3、一元一次不等式的概念:2x -6>0,3x -24<4+x 这些不等式的左右两边都是______,只含有______,并且未知数的最高次数是______,像这样的不等式,叫做一元一次不等式.4、某学校学生会组织七年级和八年级共60名同学参加环保活动,七年级学生平均每人收集15个废弃塑料瓶,八年级学生平均每人收集20个废弃塑料瓶.为了保证所收集的塑料瓶总数不少于1000个,至少需要多少名八年级学生参加活动?解:设参加的八年级学生为x 人,根据题意,得:_________,解这个不等式,得:_________,所以至少需要_________名八年级学生参加活动.5、用数轴表示不等式的解集,应记住下面的规律:①大于向______画;小于向______画;②>,<画______圆.空心圆表示______此点三、解答题(5小题,每小题10分,共计50分)1、快递员把货物送到客户手中称为送件,帮客户寄出货物称为揽件.快递员的提成取决于送件数和揽件数.某快递公司快递员小李若平均每天的送件数和揽件数分别为80件和20件,则他平均每天的提成是160元;若平均每天的送件数和揽件数分别为120件和25件,则他平均每天的提成是230元(1)求快递员小李平均每送一件和平均每揽一件的提成各是多少元;(2)已知快递员小李一周内平均每天的送件数和揽件数共计200件,且揽件数不大于送件数的14.如果他平均每天的提成不低于318,求他平均每天的送件数.2、某团委在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的单价比甲种树苗贵10元,用360元购买甲种树苗的棵数恰好与用480元购买乙种树苗的棵数相同.(1)求甲、乙两种树苗的单价各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?3、求不等式组41341233x x x x ->-⎧⎪⎨-≤-⎪⎩的整数解. 4、某医院计划选购A 、B 两种防护服.已知A 防护服每件价格是B 防护服每件价格的1.5倍,用6000元单独购买A 防护服比用5000元单独购买B 防护服要少2件.(1)A ,B 两种防护服每件价格各是多少元?(2)如果该医院计划购买B 防护服的件数比购买A 防护服件数的3倍多80件,且用于购买A ,B 两种防护服的总经费不超过265000元,那么该医院最多可以购买多少件B 防护服?5、解不等式组()3841710x x x x <+⎧⎨+≤+⎩,并把解集表示在数轴上.-参考答案-一、单选题1、D【解析】【分析】根据不等式的性质逐一进行判断即可得到答案.【详解】选项A ,在不等式x >y 两边都乘以-1,不等号的方向改变得<x y --,故选项A 不正确;选项B ,在不等式x >y 两边都乘上2,不等号的方向不变得22>x y ,故选项B 不正确;选项C ,在不等式x >y 两边都除以6,不等号的方向不变得66>x y ,故选项C 不正确; 选项D ,在不等式x >y 两边都加以4,不等号的方向不变得44x y +>+,故选项D 正确. 故选D .【点睛】本题主要考查了不等式的相关知识质,熟练掌握不等式的性质是解题的关键.2、D【解析】【分析】设腰长为x ,则底边为162x -,根据三角形三边关系可得到腰长可取的值,从而求得底边的长.【详解】解:设腰长为x ,则底边为162x -,162162x x x x x --<<-+,48x ∴<<,三边长均为整数, x 可取的值为:5或6或7,∴当腰长为5时,底边为6;当腰长为6时,底边为4,当腰长为7时,底边为2;综上所述,以上三种情况都有可能.故选:D .【点睛】此题主要考查等腰三角形的性质及三角形三边关系的综合运用.此题是借用不等式来求等腰三角形的底边的长度.3、D【解析】【分析】已知某市最高气温和最低气温,可知该市的气温的变化范围应该在最高气温和最低气温之间,且包括最高气温和最低气温.【详解】由题意,某市最高气温是33℃,最低气温是24℃,说明其它时间的气温介于两者之间,∴该市气温t(℃)的变化范围是:24≤t≤33;故选:D.【点睛】本题的关键在于准确理解题意,理解到当天的气温的变化范围应在最低气温和最低气温之间.4、A【解析】【分析】设A,B两人的体重分别为a,b,根据题意列出等式和不等式,即可得出答案.【详解】解:设A,B两人的体重分别为a,b,根据题意得:a+m=n+b,a>b,∴m<n,故选:A.【点睛】本题考查了不等式的性质,根据题意列出等式和不等式是解题的关键.5、D【解析】【分析】首先解出两个不等式的解集,再根据大小小大中间找确定不等式组的解集.【详解】解:由12x +>得:1x >由24x x -≤得:4x ≤综合得:14x <≤故选:D .【点睛】此题主要考查了一元一次不等式组的解法,关键是正确确定两个不等式的解集.6、C【解析】【分析】分别求出买5只羊的总费用和卖掉5只羊的总收入,再利用不等式的性质比较大小即可【详解】解:由题意,甲买羊共付出(32a b +)元,卖羊的共收入5()2a b +元, ∵甲赚了钱,∴32a b +<5()2a b +, 解得:a b <,故选:C .【点睛】本题考查列代数式、不等式的基本性质,理解题意,正确列出代数式和不等式是解答的关键.7、B【解析】【分析】根据不等式的性质依次分析判断.【详解】解:∵a b >,∴a +1>b +1,故选项A 不符合题意;∵a b >,∴22a b ->-,故选项B 符合题意;∵a b >,∴-2a<-2b ,故选项C 不符合题意;∵a b >,∴33a b >,故选项D 不符合题意; 故选:B .【点睛】此题考查了不等式的性质:不等式两边同时加上或减去同一个整式,不等号方向不变;不等式两边同时乘或除以同一个不为0的整正数,不等号方向不变;不等式两边同时乘或除以同一个不为0的负数,不等号方向改变.8、D【解析】【分析】不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.【详解】解:∵不等式组3x a x >⎧⎨≥-⎩的解为x a >, ∴3a ≥-,故选D .【点睛】本题考查了一元一次不等式组的解法,熟练掌握一元一次不等式组的解法是解答本题的关键.9、C【解析】【分析】根据不等式的性质逐个判断即可.【详解】解:A. a b >,∴22a b -<-,故该选项不正确,不符合题意;B.当0a b >>时,22a b >,故该选项不正确,不符合题意;C. a b >,∴11a b -<-,故该选项正确,符合题意;D. 当0a b >>时,11a b<,故该选项不正确,不符合题意; 故选C【点睛】 本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题的关键.不等式的性质:不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变;不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.10、B【解析】【分析】根据不等式的性质解答即可.【详解】解:由不等式性质得,在不等式8x+1<-2x的两边同加上2x,不等号的方向不变,即10x+1<0.故选:B.【点睛】本题考查不等式的性质,熟练掌握不等式的性质是解答的关键,注意符号的变化.二、填空题1、14【解析】【分析】首先根据正整数a,b,c均小于5,得出2a+2b+2c≤24+24+24=48,2a+2b+2c≥2+2+2=6,即6≤2022+1000m≤48,解不等式组求出m的范围,根据m为整数,得出m=-2,那么2022+1000m=22.观察得只有2+4+16=22,求出a+b+c=1+2+4=7,进而得到m(a+b+c)=-2×7=-14.【详解】解:∵正整数a,b,c均小于5,∴2a+2b+2c≤24+24+24=48,2a+2b+2c≥2+2+2=6,∴6≤2022+1000m≤48,∴-2.016≤m≤-1.974,∵m为整数,∴m=-2,∴2022+1000m=22.∵2a,2b,2c,的取值只能为2,4,8,16,观察得只有2+4+16=22,∴a+b+c=1+2+4=7,∴m(a+b+c)=-2×7=-14.故答案为:-14.【点睛】本题考查了有理数的混合运算,不等式的性质,一元一次不等式组的解法,求出m与a+b+c的值是解题的关键.2、②④【解析】【分析】根据一元一次不等式的定义,只要含有一个未知数,并且未知数的次数是1的不等式就是一元一次不等式.【详解】①23x+1>x-x2是一元二次不等式,故选项不符合题意;②y-1>3是一元一次不等式,故此选项符合题意;③x+2x≥2中2x不是整式,故选项不符合题意;④x≤0是一元一次不等式,故此选项符合题意;⑤3x-y<5;含两个未知数,故选项不符合题意.故答案为:②④【点睛】本题考查一元一次不等式的定义中的未知数的最高次数为1次,本题还要注意未知数的系数不能是0.3、整式一个未知数 1【解析】略4、 15×(60-x )+20x ≥1000 x ≥20 20【解析】略5、 右 左 空心 不含【解析】略三、解答题1、 (1)快递员小李平均每送一件和平均每揽一件的提成各是1.5元和2元(2)他平均每天的送件数是160件或161件或162件或163件或164件【解析】【分析】(1)设快递员小李平均每送一件的提成是x 元,平均每揽一件的提成是y 元,列二元一次方程求解;(2)设他平均每天的送件数是m 件,则他平均每天的揽件数是(200)m -件,列不等式组求解.(1)解:设快递员小李平均每送一件的提成是x 元,平均每揽一件的提成是y 元,根据题意得: 802016012025230x y x y +=⎧⎨+=⎩, 解得 1.52x y =⎧⎨=⎩, 答:快递员小李平均每送一件和平均每揽一件的提成各是1.5元和2元;(2)解:设他平均每天的送件数是m 件,则他平均每天的揽件数是(200)m -件,根据题意得:()120041.52200318m m m m ⎧-⎪⎨⎪+-⎩, 解得160164m ,m 是正整数,m ∴的值为160,161,162,163,164,答:他平均每天的送件数是160件或161件或162件或163件或164件.【点睛】此题考查了二元一次方程组的实际应用,一元一次不等式组的实际应用,正确理解题意是解题的关键.2、 (1)甲种树苗的单价是30元,乙种树苗的单价是40元;(2)他们最多可购买11棵乙种树苗;【解析】【分析】(1)根据题意可得等量关系:480360=乙树苗单价甲树苗单价,根据等量关系列出方程求解即可; (2)根据题意可知不等关系:×110501500-⨯-≤甲树苗单价(%)(乙树苗数量),根据题意列出不等式求解即可.(1)解:设甲种树苗每棵的价格是x 元,则乙种树苗每棵的价格是(x +10)元,依题意有48036010x x=+ , 解得:x =30,经检验,x =30是原方程的解,x +10=40,∴甲种树苗的单价是30元,乙种树苗的单价是40元.(2)设他们可购买y棵乙种树苗,依题意有,30×(1﹣10%)(50﹣y)+40y≤1500 ,解得,71113y≤,∴y最大为11,答:他们最多可购买11棵乙种树苗.【点睛】本题考查列分式方程解决实际问题,以及列不等式解决实际问题,能够根据题意找出等量关系并列出方程是解决本题的关键.3、该不等式的整数解为-2,-1,0,1.【解析】【分析】首先求出不等式组中每一个不等式的解集,再根据大小小大中间确定不等式的解集即可.【详解】解:41341233x xx x->-⎧⎪⎨-≤-⎪⎩①②,由①得:x>-3,由②得x≤1,不等式组的解集为:-3<x≤1,则该不等式的整数解为-2,-1,0,1.【点睛】本题考查了解一元一次不等式组,关键是掌握解集的规律,同大取大,同小取小,大小小大中间找,大大小小找不到.4、 (1)B种防护服每件价格是500元,A种防护服每件价格是750元(2)该医院最多可以购买380件B防护服【解析】【分析】根据题意可知等量关系:500060002B A-=防护服单价防护服单价,根据A防护服每件价格是B防护服每件价格的1.5倍,可用一个未知数表示出A,B两种防护服单价,进而可列分式方程解决本题;根据该医院计划购买B防护服的件数比购买A防护服件数的3倍多80件,可知A,B两种防护服购买数量之间的关系,由题意可得,购买A型防护服装所需经费+B型防护服所需经费≤265000,故列出不等式解决即可.(1)设B种防护服每件价格是x元,则A种防护服每件价格是1.5x元,依题意得:5000600021.5x x-=,解得:x=500,经检验,x=500是原方程的解,且符合题意,则1.5x=750,答:B种防护服每件价格是500元,A种防护服每件价格是750元.(2)设该医院可以购买y件A防护服,则购买(3y+80)件B防护服,依题意得:750y+500(3y+80)≤265000,解得:y≤100,则3y+80≤380,答:该医院最多可以购买380件B 防护服.【点睛】本题考查列方式方程解应用题,用不等式解决应用题,能够根据题意找到等量关系并列出方程是解决本题的关键.5、不等式组的解集为24x -≤<,数轴见解析【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:解不等式①得4x <,解不等式②得 2x ≥-,在数轴上表示为:∴此不等式组的解集为24x -≤<.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.。
青岛版八年级数学下册《第6章平行四边形》单元达标测试卷-附带有答案

青岛版八年级数学下册《第6章平行四边形》单元达标测试卷-附带有答案学校: 班级: 姓名: 考号:一、单选题1.如图,ABCD 的对角线AC BD ,交于点O ,已知8AD =,BD=12,AC=6,则OBC 的周长为( )A .13B .15C .17D .262.如图,在平行四边形ABCD 中,如果∠A =55°,那么∠B 的度数是( )A .55°B .45°C .125°D .145°3.平行四边形不具有的性质是( )A .对角线互相垂直B .对边平行且相等C .对角线互相平分D .对角相等4.平行四边形、矩形、菱形、正方形都具有的性质是( )A .对角线相等B .对角线互相平分C .对角线平分一组对角D .对角线互相垂直5.若菱形的周长是40,则它的边长为( ) A .20 B .10 C .15 D .256.如图,在∠ABCD 中,EF∠AD ,HN∠AB ,则图中的平行四边形共有( )A .8个B .9个C .7个D .5个 7.如图,以钝角三角形ABC 最长边BC 为边向外作矩形BCDE ,连结AE AD ,,设AED ,ABE 和ACD 的面积分别为12S S S ,,,若要求出12S S S --的值,只需知道( )A.ABE的面积B.ACD的面积C.ABC的面积D.矩形BCDE的面积8.如图,E、F分别是正方形ABCD的边CD,AD上的点,且CE=DF,AE,BF相交于点O,下列结论①AE=BF;②AE∠BF;③AO=OE;④S∠AOB=S四边形DEOF中,正确结论的个数为()A.4个B.3个C.2个D.1个9.四边形形ABCD中,AD‖BC,要判定四边形ABCD是平行四边形,还应满足()A.∠A+∠C=180°B.∠B+∠D=180°C.∠A+∠B=180°D.∠A+∠D=180°10.如图是等腰三角形ABC纸片,点D,E分别是腰AB,AC的中点,沿线段DE将纸片剪成两部分,恰好拼成一个菱形,则AB BC:的值为()A.1B.2C.3D.4二、填空题11.一个三角形的三边长分别为4,5,6,则连结各边中点所得三角形的周长为.12.如图,在∠ABC中,D为BC边中点,P为AC边中点,E为BC上一点且BE=27CE,连接AE,取AE中点Q并连接QD,取QD中点G,延长PG与BC边交于点H.若BC=9,则HE=.13.已知菱形的两条对角线长分别为2cm,3cm,则它的面积是cm2.14.如图,在直角坐标系,矩形OABC的边OA在x轴上,边OC在y轴上,点B的坐标为(3,1),将矩形沿对角线BO翻折,C点落在D点的位置,且BD交x轴于点E.那么点D的坐标为.三、解答题15.已知:如图,在∠ABCD中,M、N是对角线BD上的两点,且BM=DN.求证:四边形AMCN是平行四边形.16.如图,在矩形ABCD中,E、F分别在AB、CD上,且DE=BF.求证:四边形DEBF是平行四边形.17.如图,在∠ABC中,BD是AC的垂直平分线.过点D作AB的平行线交BC于点F,过点B作AC 的平行线,两平行线相交于点E,连接CE.求证:四边形BECD是矩形.18.在∠ABC中,AD平分∠BAC.BD∠AD,垂足为D,过D作DE∠AC,交AB于E.(1)求证:AE=DE(2)若AB=8,求线段DE的长.四、综合题19.如图,∠ABC中,CA=CB,E、F分别在AC、AB的延长线上,且CE=CF,EG∠AB于G,FH∠AB 于H,连接EF.(1)求证:四边形FEGH是矩形;(2)若∠A=30°,且四边形FEGH是正方形时,求AC:CE的值.20.如图,E,F分别是∠ABCD的AD,BC边上的点,且AE=CF.(1)求证:∠ABE∠∠CDF;(2)若M,N分别是BE,DF的中点,连接MF,EN,试判断四边形MFNE是怎样的四边形,并证明你的结论.21.某学校有一块长方形活动场地,长为2x米,宽比长少5米,实施“阳光体育”行动以后,学校为了扩大学生的活动场地,让学生能更好地进行体育活动,将操场的长和宽都增加4米.(1)求活动场地原来的面积是多少平方米.(用含x的代数式表示)x ,求活动场地面积增加后比原来多多少平方米.(2)若2022.如图,在∠ABC中,∠ACB=90°,∠CAB=30°,∠ABD是等边三角形,E是AB的中点,连接CE并延长交AD于F.求证:(1)∠AEF∠∠BEC;(2)四边形BCFD是平行四边形.23.如图,矩形ABCD中,点E、F、G.H分别AB、BC、CD、DA边上的动点,且AE=BF=CG=DH(1)求证:四边形EFGH是平行四边形:(2)在点E、F、G、H运动过程中,判断直线GE是否经过某一定点,如果是,请你在图中画出这个点:如果不是,请说明理由.参考答案与解析1.【答案】C【解析】【解答】解:∵四边形ABCD是平行四边形,且AD=8,BD=12,AC=6∴BC=AD=8162OB BD==,132OC AC==,∴∠OBC的周长为:OB+OC+BC=6+3+8=17故答案为:C.【分析】根据平行四边形的性质,分别由已知条件求得∠OBC三边的长度,然后计算其周长即可。
青岛版2020八年级数学下册第八章一元一次不等式单元综合基础测试题4(附答案) (1)

23.对于任意实数 a,b,定义关于“⊕”的一种运算如下:a⊕b=2a-b.例如:5⊕2=2×5 -2=8,(-3)⊕4=2×(-3)-4=-10. (1)若 3⊕x=-2 011,求 x 的值; (2)若 x⊕3<5,求 x 的取值范围. 24.某公司经营甲、乙两种商品,每件甲种商品进价 12 万元,售价 14.5 万元.每件乙 种商品进价 8 万元,售价 10 万元,且它们的进价和售价始终不变.现准备购进甲、乙 两种商品共 20 件,所用 资金不低于 190 万元不高于 200 万元. (1)该公司有哪几种进货方案? (2)该公司采用哪种进货方案可获得最大利润?最大利润是多少? 25.“缤纷节”已经成为西南大学附中一张响亮的名片,受到了社会各界的高度赞扬缤纷 意寓缤纷的青春,缤纷的风采,缤纷的个性,缤纷的创意,它充分展现了我校学子的青
【详解】
当 3>x+2,即 x<1 时,3(x+2)+x+2>0,
解得:x>−2,
∴−2<x<1;
当 3<x+2,即 x>1 时,3(x+2)−(x+2)>0,
解得:x>−2,
∴x>1,
综上,−2<x<1 或 x>1,
故选:C.
7.B
【解析】
【分析】
先求出不等式的解集,然后从解集中找出最小整数即可.
”猜成
4
,请你解一元一次不等式组
x
4
0
;
(2)张老师说:我做一下变式,若“
”表示字母,且
x x
2 1
的解集是
0
x
3
,请求
字母“ ”的取值范围.
青岛版数学八年级下册:第七章《实数》单元测试(解析版)

青岛版数学八年级下册:第七章《实数》单元测试一、单选题1.已知 9x 2−49=0 ,则 x 的值为( )A. 73 B. ±73 C. 37 D. ±372.将面积为2π的半圆与两个正方形A 和正方形B 拼接如图所示,这两个正方形面积的和为( )A. 4B. 8C. 2πD. 163.勾股定理是人类最伟大的科学发现之一,在我国古代算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大的正方形内.若知道图中阴影部分的面积,则一定能求出( )A. 直角三角形的面积B. 最大正方形的面积C. 较小两个正方形重叠部分的面积D. 最大正方形与直角三角形的面积和 4.下列等式成立的是( )A. √25=±5B. √(−3)33=3C. √(−4)2=−4D. ±√0.36=±0.6 5.下列说法中正确的有( )①负数没有平方根,但负数有立方根;②一个数的立方根等于它本身,则这个数是0或1; ③无理数与数轴上的点一一对应;④ √643 的平方根是±2;⑤- √a 一定是负数 A. 1个 B. 2个 C. 3个 D. 4个6.在△ABC 中,∠A ,∠B ,∠C 的对边分别是a 、b 、c ,下列条件中,能判断△ABC 是直角三角形( ) A. a=2,b=3,c=4 B. a :b :c= √2:√3:√5 C. ∠A+∠B=2∠C D. ∠A=2∠B=3∠C7.在实数 √2 ,3.14159, √643 ,227,1.010010001···, π ,0. 21 中,无理数的个数是( )A. 1B. 2C. 3D. 48.如图所示的“赵爽弦圈”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为n ,较短直角边长为b .若nb=8,大正方形的面积为25,则小正方形的边长为( )A. 9B. 6C. 4D. 39.如图,将两个大小、形状完全相同的△ABC 和△A′B′C′拼在一起,其中点A′与点A 重合,点C′ 落在边AB 上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C 的长为( )A. 3√3B. 6C. 3√2D. √2110.已知:在△ABC中,三边长a,b,c满足等式a2-16b2-c2+6ab+10bc=0,则()A. a<b<cB. a+c=2bC. c<b<aD. a+c与2b的大小关系不能确定11.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个锐角顶点与另一个的直角顶点重合于点A,且另外三个锐角顶点B,C,D在同一条直线上,若AB= √2,则CD的长为()A. B. C. D.12.如图,设正方体ABCD-A1B1C1D1的棱长为1,黑、白两个甲壳虫同时从点A出发,以相同的速度分别沿棱向前爬行,黑甲壳虫爬行的路线是AA1→A1D1→……,白甲壳虫爬行的路线是AB→BB1→……,并且都遵循如下规则:所爬行的第n+2与第n条棱所在的直线必须是既不平行也不相交(其中n是正整数).那么当黑、白两个甲壳虫各爬行完第2018条棱分别停止在所到的正方体顶点处时,它们之间的距离是()A. 0B.C.D. 1二、填空题13.已知√10的整数部分为a,小数部分为b,则a-b=________ .14.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=________15.程大位所著《算法统宗》是一部中国传统数学重要的著作.在《算法统宗》中记载:“平地秋千未起,踏板离地一尺.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几?”【注释】1步=5尺.译文:“当秋千静止时,秋千上的踏板离地有1尺高,如将秋千的踏板往前推动两步(10尺)时,踏板就和人一样高,已知这个人身高是5尺.美丽的姑娘和才子们,每天都来争荡秋千,欢声笑语终日不断.好奇的能工巧匠,能算出这秋千的绳索长是多少吗?”如图,假设秋千的绳索长始终保持直线状态,OA是秋千的静止状态,A是踏板,CD是地面,点B是推动两步后踏板的位置,弧AB是踏板移动的轨迹.已知AC=1尺,CD=EB=10尺,人的身高BD=5尺.设绳索长OA=OB=x尺,则可列方程为________.16.已知,如图,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,且∠A=90°,则四边形ABCD的面积________.17.如图,在高3米,坡面线段AB长为5米的楼梯表面铺地毯,已知楼梯宽1.5米,地毯售价为40元/平方米,若将楼梯表面铺满地毯,则至少需________元.18.如图,要使宽为2米的矩形平板车ABCD 通过宽为2 √2 米的等宽的直角通道,平板车的长不能超过________米.19.如图1,Rt △ABC 中,∠ACB=90°,AC=1,BC=2,将△ABC 放置在平面直角坐标系中,使点A 与原点重合,点C 在x 轴正半轴上.将△ABC 按如图2方式顺时针滚动(无滑动),则滚动2017次后,点B 的坐标为________.20.分析探索题:细心观察如图,认真分析各式,然后解答问题. OA 22=(√1)2+1=2 S 1=√12;OA 32=(√2)2+1=3 S 2=√22;OA 42=(√3)2+1=4 S 3=√32…(1)请用含有n (n 为正整数)的等式S n =________ ; (2)推算出OA 10=________ (3)求出 S 12+S 22+S 32+…+S 102的值.三、计算题21.求x 的值: (1)(x ﹣2)2=81 (2)(2x ﹣1)3+27=0(3)计算: |-5|-(√2−1)0+(−13)−2+√−273;22.已知2是 3x −2 的平方根, −3 是 y −2x 的立方根,求 12x +y 的平方根.23.课堂上老师讲解了比较√11−√10和√15−√14的方法,观察发现11-10=15-14=1,于是比较这两个数的倒数:1√11−√10=√11+√10(√11−√10)(√11+√10)=√11+√10√15−√14=√15√14(√15−√14)(√15+√14)=√15+√14因为√15+√14>√11+√10,所以√15−√14>√11−√10,则有√15−√14<√11−√10,请你设计一种方法比较√8+√3与√6+√5的大小,四、作图题24.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫格点.(1)在图1中以格点为顶点画一个直角三角形,使它的三边长都为整数;(2)在图2中以格点为顶点画一个直角三角形,使它的三边长都为无理数;(3)在图3中以格点为顶点画一个面积为10的正方形.五、解答题25.如图所示,北部湾海面有一艘解放军军舰正在基地A的正东方向且距A地40海里的B处训练,突然接到基地命令,要该舰前往C岛接送一名患病的渔民到基地A的医院救治.已知C岛在基地A的北偏东58°方向且距基地A32海里,在B处的北偏西32°的方向上.军舰从B处出发,平均每小时行驶40海里,问至少需要多长时间能把患病渔民送到基地医院?26.如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13米,此人以0.5米每秒的速度收绳,10秒后船移动到点D的位置,问船向岸边移动了多少米?(假设绳子是直的,结果保留根号)27.如图,折叠长方形的一边AD,使点D落在BC边上的点F处,BC=10cm,AB=8cm.(1)求BF的长;(2)求EC的长.28.为了积极响应国家新农村建设,遂宁市某镇政府采用了移动宣讲的形式进行宣传动员.如图,笔直公路MN的一侧点A处有一村庄,村庄A到公路MN的距离为600米,假使宣讲车P周围1000米以内能听到广播宣传,宣讲车P在公路MN上沿PN方向行驶时:(1)请问村庄能否听到宣传,请说明理由;(2)如果能听到,已知宣讲车的速度是200米/分钟,那么村庄总共能听到多长时间的宣传?答案解析一、单选题1.【答案】B【考点】平方根【解析】【解答】9x2−49=0,9x2=49,3x=±7,∴x= ±7.3故答案为:B.【分析】先移项,再利用直接开平方法,即可求解.2.【答案】D【考点】勾股定理【解析】【解答】解:已知半圆的面积为2π,所以半圆的直径为:2• √4π÷π=4,即如图直角三角形的斜边为:4,设两个正方形的边长分别为:x,y,则根据勾股定理得:x2+y2=42=16,即两个正方形面积的和为16.故答案为:D.【分析】首先由面积为2π的半圆,可知圆的面积为4π,求出半圆的直径,即直角边的斜边,再根据勾股定理求出两直角边的平方和,即是这两个正方形面积的和.3.【答案】C【考点】勾股定理的应用【解析】【解答】解:设直角三角形的斜边长为c,较长直角边为b,较短直角边为a。
青岛版初中数学八年级下册《实数》单元测试卷练习题3

2 在这里,h 的单位是米,t 的单位是秒,g=9.8 米 / 秒2 .请利用给出的条件计算: 若一物体从距地面 100 米的高空落下,经过多长时间才能到达地面?(精确到 0.1 秒)
B.64 cm2 .
C.32 cm2 .
D.16 cm2 .
8.4 14 、 226 、15 三个数的大小关系是( )
A.4 14 <15< 226
B. 226 <15<4 14
C.4 14 < 226 <15
D. 226 <4 14 <15
9.下列各式中,正确的是( )
A. 25 =±5
B. ( 5)2 = 5
TB:小初高题库
青岛版初中数学
C. 16 1 =4 1 42
D.6÷ 2 2 = 9 2
3
2
10.下列计算中,正确的是( )
A.2 3 +3 2 =5 5
B.( 3 + 7 )· 10 = 10 · 10 =10
C.(3+2 3 )(3-2 3 )=-3
D.( 2a b )( 2a b )=2a+b 二、填空题
18.( 2 - 3 )2009·( 2 + 3 )2010=________.
三、解答题 19.(8 分)用计算器计算下列各式的值(结果保留 3 个有效数字).
(1) 126 ;
(2) 0.4 ;
(3) 3 92 ;
(4) 3 56 .
TB:小初高题库
20.(8 分)求下列各式中 x 的值.
实数 单元测试 青岛版八年级数学下册

第7章 实数测试卷一、选择题1. 下列各数没有算术平方根的是( )A. 0B. 16C. -4D. 22. 在下列四组数中,不是勾股数的一组是( )A. 15,8,7B. 4,5,6C. 24,25,7D. 5,12,133. ,227,2π中,无理数有( )A. 1个 B. 2个C. 3个D. 4个4. 16的平方根为( )A. 4B. 4-C. 8±D. 4±5. 下列各式中正确的是( )A. 4=±B. 34=C. 3=D. 4=6. 下列说法正确的是( )A. 不存在最小的实数B. 有理数是有限小数C. 无限小数都是无理数D. 带根号的数都是无理数7. ﹣3的相反数是( )A. 13- B. 13 C. 3- D. 38. 2的值在( )A. 2到3之间B. 3到4之间C. 4到5之间D. 5到6之间二、填空题9. 一个正方形的面积为5,则它的边长为_____.10. 若()240a -+=,则a b =__.11. 如图,数字代表所在正方形的面积,则A 所代表的正方形的面积为________.12. 直角三角形的一直角边长4cm,斜边长5cm,则其斜边上的高是__________cm.13. 已知a,b,c为三角形的三边,若有(a+c)2=b2+2ac,则这个三角形的形状是_____三角形.14. 如图,点D在△ABC内,∠BDC=90°,AB=3,AC=BD=2,CD=1,则图中阴影部分的面积为_______________.15. 如图,长方形ABCD的边AB落在数轴上,A、B两点在数轴上对应的数分别为BC=,连接BD,以B为圆心,BD为半径画弧交数轴于点E,则点E1-和1,1在数轴上所表示的数为_________.16. 数轴上A,B两点表示的数分别为﹣2,点B关于点A的对称点为C,则点C所表示的数为___.三、解答题17. ()23-.18. 解方程,求x的值.(1)2x=232(2)()381-27x -=19. 已知一个数的算术平方根是m +4,平方根是±(3m +2),求这个数.20. 如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画图形.(1)在图1中,画一个等腰三角形(不含直角),使它的面积为8;(2)在图2中,画一个直角三角形,使它的三边长都是有理数;(3)在图3中,画一个正方形,使它的面积为10.21. 洋洋想知道学校旗杆的高度,他发现旗杆顶端的绳子垂到地面还多2米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,求旗杆的高度.22. 如图,在等腰 ABC 中,AB =AC =15,点D 是AC 边上的一点,且CD =3,BD =9,判断 ABD 的形状,并说明理由.23. 如图,已知点C 是线段BD 上的一点,∠B=∠D =90°,若AB =4,BC =3,CD =8,DE =6,AE 2=125.(1)求AC 、CE 的长;(2)求证:∠ACE =90°.24. 如图,在ABC 中,90C ∠=︒,把ABC 沿直线DE 折叠,使ADE 与BDE △重合.(1)若20CBD ∠=︒,则A ∠的度数为____________;(2)若8AC =,6BC =,求AD 的长;(3)当()0AB m m =>,ABC 的面积为1m +时,求BCD △的周长.(用含m 的代数式表示)25. 已知在 ABC 中,AC =8cm ,BC =6cm ,AB =10cm ,CD 为AB 边上的高.(1)判断 ABC 的形状,并说明理由.(2)求CD 的长;(3)若动点P 从点A 出发,沿着A →C →B →A 运动,最后回到A 点,速度为1cm/s ,设运动时间为t s .t 为何值时, BCP 为等腰三角形?第7章 实数测试卷一、选择题【1题答案】【答案】C【解析】【2题答案】【答案】B【解析】【分析】利用勾股数的定义(勾股数就是可以构成一个直角三角形三边的一组正整数),最大数的平方=最小数的平方和,直接判断即可.【详解】解:A 、2228715+=,故A 不符合题意.B 、222456+≠,故B 符合题意.C 、22272425+=,故C 不符合题意.D 、22251213+=,故D 不符合题意.故选:B .【点睛】本题主要是考查了勾股数的判别,熟练掌握勾股数的定义,是求解该题的关键.【3题答案】【答案】B【解析】【分析】无理数是无限不循环小数,根据定义逐一判断即可得到答案.2π是无理数.故选B .【点睛】本题考查的是无理数的识别,掌握无理数的定义是解题关键.【4题答案】【答案】D【解析】【分析】根据平方根的定义可直接进行求解.±=,【详解】解:∵()2416±,∴16的平方根为4故选D.【点睛】本题主要考查了求一个数的平方根,熟知平方根的定义是解题的关键.【5题答案】【答案】D【解析】【分析】由算术平方根的含义可判断A,B,C,由立方根的含义可判断D,从而可得答案.=故A不符合题意;4,3,=故B不符合题意;2没有意义,故C不符合题意;=,运算正确,故D符合题意;4故选D【点睛】本题考查的是算术平方根的含义,立方根的含义,掌握“利用算术平方根与立方根的含义求解一个数的算术平方根与立方根”是解本题的关键.【6题答案】【答案】A【解析】【7题答案】【答案】D【解析】【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3,故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.视频【8题答案】【答案】A【解析】【分析】先估算45=<<=,然后再减去2即可求出范围.【详解】解:∵45=<<=,在4到5之间,2在2到3之间,故选:A .【点睛】本题考查了无理数的估值计算,属于基础题,熟练常见正整数的平方根是解题的关键.二、填空题【9题答案】【解析】【分析】根据正方形面积根式求出边长,即可得出答案.【点睛】本题考查了算术平方根,关键是会求一个数的算术平方根.【10题答案】【答案】16【解析】【分析】根据平方的非负性,算术平方根的非负性,求得,a b 的值,进而根据有理数的乘方运算计算即可【详解】解:由题意得,40a -=,20b +=,解得4a =,2b =-,所以,()4216a b =-=.故答案为:16.【点睛】本题考查了平方的非负性,算术平方根的非负性,有理数的平方,掌握以上知识是解题的关键.【11题答案】【答案】25【解析】【分析】如图(见解析),先根据正方形的面积公式可得22,BC BD 的值,再利用勾股定理可得2CD 的值,由此即可得.【详解】解:如图,229,16,90BC BD CBD ==∠=︒ ,22225CD BC BD ∴=+=,则A 所代表的正方形的面积为25,故答案为:25.【点睛】本题考查了勾股定理,熟练掌握勾股定理是解题关键.【12题答案】【答案】2.4【解析】【分析】根据勾股定理求出直角三角形另一条一直角边,根据三角形的面积公式计算即可.【详解】解:设斜边上的高为hcm ,=3,由三角形的面积公式可得,12×3×4=12×h ×5,解得,h =12 2.45=,故答案为:2.4.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.【13题答案】【答案】直角【解析】【分析】利用完全平方公式展开后计算,利用勾股定理的逆定理解答即可.【详解】解:∵(a +c )2=b 2+2ac ,∴22222a ac c b ac ++=+ ,即222a c b +=,所以该三角形是直角三角形.故答案为:直角.【点睛】本题主要考查了勾股定理的逆定理,熟练掌握若一个三角形的两边的平方和等于第三边的平方,则该三角形是直角三角形是解题的关键.【14题答案】1##1-+【解析】【分析】根据勾股定理和=90BDC ∠︒,2BD =,1CD =,可以先求出BC 的长,然后根据勾股定理的逆定理可以判断ABC ∆的形状,从而可以求出阴影部分的面积.【详解】解:=90BDC ∠︒ ,2BD =,1CD =,BC ∴===3AB = ,2AC =,22222224593AC BC AB ∴+=+=+===,ΔACB ∴是直角三角形,90ACB ∠=︒,S ∴阴影2112ACB BDC S S ∆∆⨯=-=-=,1-.【点睛】本题考查勾股定理的逆定理、勾股定理、三角形的面积,解题的关键是求出BC 的长.【15题答案】【答案】11+【解析】【分析】根据勾股定理求得BD ,进而根据数轴上的两点距离即可求得点E 在数轴上所表示的数.【详解】解: 四边形ABCD 是长方形,A 、B 两点在数轴上对应的数分别为1-和1,1BC =,1,2AD BC AB ∴===依题意BE BD ===.设点E 在数轴上所表示的数为x ,则1x -=解得1x =-故答案为:1【点睛】本题考查了勾股定理,实数与数轴,掌握勾股定理求得BD 是解题的关键.【16题答案】【答案】4-##4-【解析】【分析】先根据对称点可以求出AC 的长度,根据C 在原点的左侧,进而可求出C 点坐标.【详解】解:∵点B 关于点A 的对称点为C ,∴CA =AB -(-2)+2,设点C 所表示的数是x ,∴CA =|-2-x +2,∴x =-2±+2),∵C 点在原点左侧,∴C 表示的数:,故答案为:4-.【点睛】本题考查了实数与数轴,掌握用数轴理解题意,用x 表示线段的长是解决本题的关键.三、解答题【17题答案】【答案】2【解析】【分析】先分别求解绝对值,算术平方根,乘方运算的结果,再进行加减运算即可.()23--7492=+-=【点睛】本题考查的是求解一个数的绝对值,算术平方根,有理数的乘方运算,掌握以上基本运算的运算法则是解本题的关键.【18题答案】【答案】(1)4x =或4x =- ;(2)x =−12【解析】【分析】(1)方程变形后,利用平方根定义开方即可求出解;(2)把x −1可做一个整体求出其立方根,进而求出x 的值.【详解】解:(1)2232x =,216x = ,4x =或4x =- ;(2)8(x −1)3=−27,(x−1)3=−278,x−1=−32,x=−12.【点睛】本题考查了平方根、立方根.熟练掌握平方根、立方根的定义和性质是解题的关键.【19题答案】【答案】25或25 4【解析】【分析】根据算术平方根和平方根的概念分两种情况讨论,分别列出方程求解即可.【详解】解:(1)当m+4=3m+2时,m=1,m+4=5,所以这个数为25;(2)当m+4=-3m-2时,m=32,m+4=52,所以这个数为254.这个数是25或25 4【点睛】此题考查了算术平方根和平方根的概念,解题的关键是熟练掌握算术平方根和平方根的概念.【20题答案】【答案】(1)作图见详解;(2)作图见详解;(3)作图见详解.【解析】【分析】(1)根据题意找出三角形底为4,高为4的三角形即可;(2)根据题意可画出直角边分别为3,4的直角三角形,斜边通过勾股定理计算为5,符合题意;(3的正方形.【详解】(1)如图所示,三角形底为4,高为4,面积为8,符合题意,即为所求;(2)如图所示,三角形为所求,直角边分别为3,4,根据勾股定理,斜边为5,符合题意;(3=,10=,符合题意.【点睛】此题主要考查网格与图形,解题的关键是熟练运用勾股定理.【21题答案】【答案】214米【解析】【分析】因为旗杆、绳子、地面正好构成直角三角形,设旗杆的高度为x米,则绳子的长度为(x+2)米,根据勾股定理即可求得旗杆的高度.【详解】解:设旗杆的高度为x米,则绳子的长度为(x+2)米,根据勾股定理可得:x2+52=(x+2)2,解得,x=214.答:旗杆的高度为214米.【点睛】此题考查学生利用勾股定理解决实际问题的能力,关键是利用勾股定理即可求得AB的长.【22题答案】【答案】 ABD 是直角三角形,见解析【解析】【分析】求出AD 长,求出BD 2+AD 2=AB 2,再根据勾股定理的逆定理得出即可.【详解】△ABD 是直角三角形,理由是:∵AC =15,CD =3,∴AD =AC ﹣CD =15﹣3=12,∵AB =15,BD =9,∴BD 2+AD 2=AB 2,∴ ABD 是直角三角形.【点睛】本题考查勾股定理的逆定理,掌握勾股定理的逆定理是解题的关键.【23题答案】【答案】(1)5AC =;10CE =;(2)见解析.【解析】【分析】(1)根据勾股定理即可求解;(2)根据勾股定理的逆定理,求得ACE △为直角三角形,即可求解.【详解】(1)解:∵在Rt ABC 中,90B AB BC ∠=︒==,,,43∴5AC ==∵在Rt EDC 中,9086D CD DE ∠=︒==,,,∴10CE ===(2)证明:∵225AC =,2100CE =,2125AE =,∴222AE AC CE =+,∴ACE △为直角三角形,90ACE ∠=︒【点睛】本题考查勾股定理及其逆定理,熟练掌握勾股定理及其逆定理的表达式是解题关键.【24题答案】【答案】(1)35︒;(2)AD 的长为254;(3)BCD △的周长为:2m +【解析】【分析】(1)根据折叠可得∠1=∠A =35°,根据三角形内角和定理可以计算出∠ABC =55°,进而得到∠CBD =20°;(2)根据折叠可得AD =DB ,设BD =AD =x ,则CD =AC -AD =8-x ,在Rt △BCD 中,由勾股定理可得(8-x )2+62=x 2,再解方程可得AD 的长;(3)根据三角形ACB 的面积可得12AC •BC =m +1,进而得到AC •BC =2m +2,再在Rt △CAB 中,CA 2+CB 2=BA 2,再把左边配成完全平方可得CA +CB 的长,进而得到△BCD 的周长.【小问1详解】∵把△ABC 沿直线DE 折叠,使△ADE 与△BDE 重合,∴∠ABD =∠A ,∵∠C =90°,∠CBD =20°,∴∠ABD +∠A =180°-90°-20°=70°,∴∠A =70°÷2=35°,故答案为:35°;【小问2详解】∵ADE 与BDE △重合,∴BD AD =,∴设BD AD x ==,则8CD AC AD x =-=-,在Rt BCD △中,由勾股定理可得:222CD BC BD +=,∴222(8)6x x -+=,解得:254x =,∴AD 的长为254;【小问3详解】∵90C ∠=︒,ABC 的面积为1m +,∴112AC BC m ⋅=+,∴2(1)AC BC m ⋅=+,在Rt ABC 中,AB m =,由勾股定理可得:2222AC BC AB m +==,∴22()2AC BC AC BC m +-⋅=,∴2222()2(22)44(2)AC BC m m m m m +=++=++=+,∴2AC BC m +=+,∵AD BD =,∴BCD △的周长为:2BD CD BC AD CD BC AC BC m ++=++=+=+.【点睛】本题考查了图形的翻折变换,以及勾股定理,完全平方公式,关键是掌握勾股定理,以及折叠后哪些是对应角和对应线段.【25题答案】【答案】(1)直角三角形,证明见解析;(2)245cm ;(3)2或20或19或1065【解析】【分析】(1)利用勾股定理的逆定理判断即可.(2)利用面积法可知,S △ABC =12•CD •AB =12•AC •BC ,由此求出CD 即可.(3)份点P 在线段AC 上,在线段BA 上,分别求出点P 的运动路程,可得结论.【详解】解:(1)△ABC 是直角三角形,理由:∵AC =8cm ,BC =6cm ,AB =10cm ,∴AC 2+BC 2=AB 2,∴∠ACB =90°,∴△ABC 是直角三角形.(2)∵CD ⊥AB ,△ABC 是直角三角形,∴S △ABC =12•CD •AB =12•AC •BC ,∴12×CD ×10=12×8×6,∴CD =245cm ;(3)∵∠C =90°,AB =10cm ,BC =6cm ,AC =8cm ,△BCP 为等腰三角形时,分三种情况:①如果CP=CB,那么点P在AC上,AP=2cm,此时t=2(秒);②如果BC=BP,那么点P在AB上,BP=6cm,CA+BC+BP=8+6+6=20(cm),此时t=20(秒);③如果PB=PC,那么点P在BC的垂直平分线与AB的交点处,即在AB的中点,此时CA+BC+BP=8+6+5=19(cm),t=19(秒),④当CP=CB时,t=8+6+2×185=1065,综上可知,当t=2或20或19或1065时,△BCP为等腰三角形.【点睛】本题属于三角形综合题,考查了等腰三角形的判定和性质,勾股定理的逆定理,三角形的面积等知识,解题的关键是学会利用面积法求高,学会用分类讨论的思想思考问题,属于中考常考题型.。
青岛版数学八年级下册全册单元试卷及答案

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】单元测试卷一、选择题1.下列命题中,正确的是()A. 对角线互相垂直且相等的四边形是菱形B. 对角线互相垂直的平行四边形是菱形C. 对角线互相平分且相等的四边形是菱形D. 对角线相等的四边形是菱形2.如图,在矩形ABCD中,对角线AC,BD交于点O,以下说法错误的是()A. ∠ABC=90°B. AC=BDC. OA=OBD. OA=AB3.已知下列命题中:①矩形是轴对称图形,且有两条对称轴;②两条对角线相等的四边形是矩形;③有两个角相等的平行四边形是矩形;④两条对角线相等且互相平分的四边形是矩形;其中正确的有().A. 4个B. 3个C. 2个D. 1个4.用两个边长为a的等边三角形纸片拼成的四边形是().A. 等腰梯形B. 正方形C. 矩形D. 菱形5.在△ABC中,点E、D、F分别在AB、BC、AC上且DE∥CA,DF∥BA,下列四个判断中不正确的是()A. 四边形AEDF是平行四边形B. 如果∠BAC=90°,那么四边形AEDF 是矩形C. 如果AD⊥BC,那么四边形AEDF是菱形D. 如果AD平分∠BAC,那么四边形AEDF是菱形6.如图,在□ABCD中,如果EF∥AD ,GH∥CD ,EF与GH相交与点O ,那么图中的平行四边形一共有().A. 4个B. 5个C. 8个D. 9个7.已知▱ABCD的周长为32,AB=4,则BC等于( )A. 4B. 12C. 24D.288.已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD 四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A. 选①②B. 选①③C. 选②④D. 选②③9.下列条件中,不能判定四边形是平行四边形的是()A. 两组对边分别平行B. 一组对边平行,另一组对边相等C. 两组对边分别相等D. 一组对边平行且相等10.如图所示,在平行四边形ABCD中,∠ABE=∠AEB,AE∥DF,DC是∠ADF的角平分线.下列说法正确的是()①BE=CF ②AE是∠DAB的角平分线③∠DAE+∠DCF=120°.A. ①B. ①②C. ①②③D. 都不正确11.如图,D、E、F分别为Rt△ABC中AB、AC、BC的中点,AB=2,则DC和EF的大小关系是()A. DC>EFB. DC<EFC. DC=EFD. 无法比较12.如图,在梯形ABCD中,∠ABC=90º,AE∥CD交BC于E,O是AC的中点,AB=,AD=2,BC=3,下列结论:①∠CAE=30º;②AC=2AB;③S△ADC=2S△ABE;④BO⊥CD,其中正确的是()A. ①②③B. ②③④C. ①③④D. ①②③④二、填空题13.矩形ABCD的对角线AC、BD相交于点O,∠AOD=120°,AC+BD=16,则该矩形的面积为________14.如图,剪两张等宽对边平行的纸条,随意交叉叠放在一起,转动其中的一张,重合的部分构成了一个四边形,这个四边形是________.15.如图,▱ABCD的对角线交于点O,且AB=5,△OCD的周长为13,则▱ABCD的两条对角线长度之和为________.16.如图,▱ABCD中,∠A=50°AD⊥BD,沿直线DE将△ADE翻折,使点A落在点A′处,AE交BD于F,则∠DEF=________17.已知菱形的两条对角线长为8和6,那么这个菱形面积是________,菱形的高________.18.将2017个边长为2的正方形,按照如图所示方式摆放,O1,O2,O3,O4,O5,…是正方形对角线的交点,那么阴影部分面积之和等于________.19.如图所示,在矩形ABCD中,AB=6,AD=8,P是AD上的动点,PE⊥AC,PF⊥BD于F,则PE+PF的值为________.20.四边形ABCD中,如果AB=DC,当AB________ DC时,四边形ABCD是平行四边形;当AD________ BC时,四边形ABCD是平行四边形.21.如图,△ABC中,AD=BD,AE=EC,BC=6,则DE=________.22.如图,菱形ABCD的边长为5cm,对角线BD的长为6cm,则菱形ABCD的面积为________ cm2.三、解答题23.已知:如图,E、F分别为▱ABCD中AD、BC的中点,分别连接AF、BE交于G,连接CE、DF交于点H.求证:EF与GH互相平分.24.如图,已知△ABC的中线BD、CE相交于点O、M、N分别为OB、OC的中点.(Ⅰ)求证:MD和NE互相平分;(Ⅱ)若BD⊥AC,EM=2 ,OD+CD=7,求△OCB的面积.25.如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA 的外角平分线CF于点F,交∠ACB内角平分线CE于E.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论;(3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
青岛版八年级数学下册单元测试题全套(含答案)第1章检测题(全等三角形)一、选择题1.下列每组中的两个图形,是全等图形的是( )A B C D2.如图是已知∠BAC,求作∠EDF的作图痕迹,则下列说法正确的是( )A.因为边的长度对角的大小无影响,所以BC弧的半径长度可以任意选取B.因为边的长度对角的大小无影响,所以DE弧的半径长度可以任意选取C.因为边的长度对角的大小无影响,所以FE弧的半径长度可以任意选取D.以上三种说法都正确3.如图,△ABC≌△ADE,已知在△ABC中,AB边最长,BC边最短,则△ADE中三边的大小关系是( )A.AD=AE=DEB.AD<AE<DEC.DE<AE<ADD.无法确定4.如图,点A在DE上,AC=CE,∠1=∠2=∠3,则DE的长等于( )A.DCB.BCC.ABD.AE+AC5.如图,工人师傅做了一个长方形窗框ABCD,E,F,G,H分别是四条边上的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在( )A.A,C两点之间B.E,G两点之间C.B,F两点之间D.G,H两点之间6.如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S 是( )A.50B.62C.65D.687.如图所示,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D,E,AD,CE交于点H,已知EH=EB=3,AE=4,则CH的长是( )A.1B.2C.3D.48.如图,▱ABCD中,E,F是对角线BD上的两点,如果添加一个条件,使△ABE≌△CDF,则添加的条件不能为()A. BE=DF B. BF=DE C. AE=CF D.∠1=∠29.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A. 1个 B. 2个 C. 3个 D. 4个10.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B. AB=DC C.∠ACB=∠DBC D. AC=BD11.如图,在△ABC中,AB>AC,点D、E分别是边AB、AC的中点,点F在BC边上,连接DE、DF、EF,则添加下列哪一个条件后,仍无法判断△FCE与△EDF全等()A.∠A=∠DFE B. BF=CF C. DF∥AC D.∠C=∠EDF12. 如图,若△OAD≌△OBC,且∠O=65°,∠C=20°,则∠OAD= ( )A.65°B.75°C.85°D.95°13. 如图,下列条件中,不能证明△ABC≌△DCB的是()A. AB=DC,AC=DB B. AB=DC,∠ABC=∠DCBC. BO=CO,∠A=∠D D. AB=DC,∠A=∠D14. 如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A. AB=CD B. EC=BF C.∠A=∠D D. AB=BC15. 如图所示,已知∠1=∠2,若用“SAS”说明△ACB≌△BDA,还需加上条件( )A.AD=BCB.BD=ACC.∠D=∠CD.OA=OB16.如图为八个全等的正六边形紧密排列在同一平面上的情形.根据图中标示的各点位置,判断△ACD与下列哪一个三角形全等( )A.△ACFB.△ADEC.△ABCD.△BCF二、填空题17.如图所示的图案是由全等的图形拼成的,其中AD=0.5cm,BC=1cm,则AF= cm.18.如图,AD,BC相交于点O,△AOB≌△DOC,A,D为对应顶点,则∠C的度数为.19.如图,已知∠C=∠D,∠ABC=∠BAD,AC与BD相交于点O,请写出图中一组相等的线段 .20.如图,∠DAB=∠EAC=60°,AB=AD,AC=AE,BE和CD相交于点O,AB和CD相交于P,AC和BE相交于F,则∠DOE的度数是.21.如图,点E,F分别在∠CAB的边AC,AB上,若AB=AC,AE=AF,BE与CF交于点D,给出结论:①△ABE≌△ACF;②BD=DE;③△BDF≌△CDE;④点D在∠BAC的平分线上.其中正确的结论有(填写序号).三、解答题22.如图,△ABC≌△ADE,∠CAD=10°,∠B=∠D=25°,∠EAB=120°,试求∠ACB的度数.23.如图,已知△ABC中,∠ABC=45°,AD是BC边上的高,(1)尺规作图:在∠ABC的内部作∠CBM,使得∠CBM=∠DAC(要求:只保留作图痕迹,不写作法和理由).(2)若射线BM与AC交于点E,与AD交于点F,且CD=3,试求线段DF的长.24.如图所示,甲、乙二人同时从O点以相同的速度出发,甲沿正东方向前进,乙沿东北方向前进,到某一时刻他们同时改变方向,甲沿正北方向前进,乙沿东南方向前进,他们的速度均保持不变,问他们相遇时在出发点的什么方向?答案一、选择题1.C2.A3.C4.C5.B6.A7.A8.C9.C 10.D 11.A 12.D 13.D 14.A 15.B 16.B二、填空题17.6 18. 30°19. AC=BD(或BC=AD或OD=OC或OA=OB,答案不唯一)20. 120°21.①③④三、解答题22. 【解析】因为AC∥DF,所以∠A=∠FDE,又因为AD=BE,所以AB=DE,在△ABC和△DEF中所以△ABC≌△DEF,所以BC=EF.23.【解析】(1)作图如图1:(2)如图2:因为AD⊥BC,∠ABC=45°,所以∠1=∠ABC=45°,所以AD=BD.在△BDF和△ADC中,所以所以△BDF≌△ADC(ASA),所以DF=DC=3.24.【解析】连接OC,由题意知,OA=OB,AC=BC.在△OAC和△OBC中,所以△OAC≌△OBC(SSS),所以∠AOC=∠BOC.又∠AOB=45°,所以∠AOC=∠BOC=∠AOB=22.5°,所以∠MOC=45°+22.5°=67.5°,即他们相遇时在出发点的北偏东67.5°方向上.AD M 第2章测试卷一,选择题:1.下列图形中对称轴最多的是 ( )A .圆B .正方形C .等腰三角形D .线段2.已知A 、B 两点的坐标分别是(-2,3)和(2,3),则下面四个结论:①A 、B 关于x 轴对称;②A 、B关于y 轴对称;③A 、B 关于原点对称;④若A 、B 之间的距离为4,其中正确的有( )A .1个B .2个C .3个D .4个3.下列平面图形中,不是轴对称图形的是 ( )A B C D4.如图,把一个正方形三次对折后沿虚线剪下,则所得图形大致是 ( )A B C D 5.下列图形:①角,②两相交直线,③圆,④正方形,其中轴对称图形有( )A .4个B .3个C .2个D .1个6.如图,已知AC ∥BD ,OA=OC ,则下列结论不一定成立的是( )A .∠B=∠DB .∠A=∠BC .OA=OBD .AD=BC7.△ABC 中,AB=AC.外角∠CAD=100°,则∠B 的度数( )A .80°B .50°C .40°D .30°8.如图,先将正方形纸片对折,折痕为MN,再把B 点折叠,在折痕MN 上,折痕为AE,点B 在MN 上的对应点为H,沿AH 和DH 剪下,这样剪得的三角形中 ( )A .B .C .D .二、填空题:9.如果一个等腰三角形的一个外角等于40°,则该等腰三角形的底角的度数是 .10.在等腰三角形ABC 中,两边长分别是4cm ,6cm ,则其周长是= .11.等边三角形的两条高线相交所成的钝角的度数是 .12.已知点A (a ,-2)和B (3,b ),当a= b= 时,点A 和点B 关于y 轴对称。
(-2,1)点关于x轴对称的点坐标为__________.13.在△ABC 中,DE 是AC 的垂直平分线,AE=3cm,△ABD 的周长为13cm,则△ABC 的周长为____________.三、作图题:(不写作法,但必须保留作图痕迹,)14. 如图,已知点M 、N 和∠AOB ,求作一点P ,使P 到点M 、N 的距离相等,•且到∠AOB 的两边的距离相等.15.如图,已知线段a ,作△ABC ,使∠A=90°,AB=AC ,BC=a.a____________.四,解答题:16.如图,在△ABC 中,AB=AD=DC,∠BAD=26°,求∠B 和∠C 的度数.17.已知AB=AC ,D 是AB 上一点,DE ⊥BC 于E ,ED 的延长线交CA 的延长线于F ,试说明△ADF 是等腰三角AD DH AH ≠=AD DH AH ==DH AD AH ≠=AD DH AH ≠≠AB D C形的理由。
18.在△ABC 中,AB=AC, ∠A=120°,AB 的垂直平分线交BC 于M ,交AB 于E ,AC 的垂直平分线交BC 于N,交AC 于F ,求证:19.在ABC 中,AB=AC(1)试问ADE 是否是等腰三角形,说明理由.(2)若M 为DE 上的点,且BM 平分,CM 平分,若的周长为20,BC=8.求的周长.20.如图,已知△ABC 和△CDE 都是等边三角形,B 、C 、D 在同一直线上,BE 交AC 于F ,AD 交CE 于H 。
(1)求证:△BCE ≌△ACD(2)求证:CF=CH(3)判断△CFH 的形状并说明理由。
∆∆ABC ∠ACB ∠ADE ∆ABC ∆E M D C B A第3章测试题一、选择题1.下列式子①x2,②5y x +,③a -21,④1-πx 中,是分式的有( )A. ①②B. ③④C. ①③D. ①②③④ 2.分式()()211+++x x x 有意义,则x 应满足( )A. 1-≠xB. 2≠xC. 1±≠xD.21≠-≠x x 且3. A.-3 B.0 C.3 D.±34.下列各式从左到右的变形正确的是( )A. y x y x +-2121 =y x y x 22+- B. b a b a b a b x 222.02.0++=++ C. y x x y x x --=-+-11 D. b a b a b a b a +-=-+ 5.把分式nm mn-中的m 和n 都扩大为原来的2倍,那么分式的值( ) A. 扩大为原来的2倍 B. 扩大为原来的4倍 C.不变 D. 缩小为原来的2倍 6.下列约分正确的是( )A.326x x x =B.0=++y x y xC.x xy x y x 12=++D.214222=y x xy 7.下列关于x 的方程,是分式方程的是( )A. 52323x x +=-+B. 2712x x =-C. 321x x -=+πD. x x 2121-=+8.329632-÷--+m m m m 的结果为( )A. 1B. 33+-m mC. 33-+m m D. 33+m m9.在下列分式中:22,,2,y x y x y x y x x y x xy -+-+-不能再约分化简的分式有( )A.1个B. 2个C.3个D.4个 10.分式35,3,cx a bx c ax b -的最简公分母是( )A.35cxB.abcx 15C.315abcxD.515abcx 11.解分式方程4223=-+-xxx 时,去分母后得( ) A. ()243-=-x x B. ()243-=+x x C. ()x x -=+243 D. 43=-x12.某工厂原计划在x 天内完成120个零件,采用新技术后,每天可多生产3个零件,结果提前2天完成。