数学选修2-1知识点整理
高中数学选修2-1主要内容

对(2) 分析:
题设中没有具体给出动点所满足的几何条件, 但可以通过分析图形的几何性质而得出, 即圆
心与弦的中点连线垂直于弦,它们的斜率互为负倒数.由学生演板完成,解答为:
设弦的中点为 M(x , y) ,连结 OM ,
则 OM ⊥AM .
∵k OM · kAM =-1 ,
其轨迹是以 OA 为直径的圆在圆 O 内的一段弧 ( 不含端点 ). 2.定义法 利用所学过的圆的定义、 椭圆的定义、 双曲线的定义、 抛物线的定义直接写出所求的动点的 轨迹方程, 这种方法叫做定义法. 这种方法要求题设中有定点与定直线及两定点距离之和或
q 也是 p 的充要条件 . 概括地说 , 如果 p q, 那么 p 与 q 互为充要条件 .
一般地, 若p 若p 若p
q, 但 q q,但 q q,且 q
p,则称 p 是 q 的充分但不必要条件; p,则称 p 是 q 的必要但不充分条件; p,则称 p 是 q 的既不充分也不必要条件.
1.3 简单的逻辑连接词
(以下由学生完成 )
根据它们的对称性, 这两个点的横坐标应相等, 因此方
由弦长公式得:
即 a2b2=4b 2-a2.
2.2 椭圆
把平面内与两个定点 F1, F2 的距离之和等于常数(大于 F1 F2 )的点的轨迹叫做椭圆
(ellipse ).其中这两个定点叫做椭圆的焦点, 两定点间的距离叫做椭圆的焦距. 即当动点
且有 BP∶ PA=1 ∶2,当 B 点在抛物线上变动时,求点 P 的轨迹方程.
分析:
P 点运动的原因是 B 点在抛物线上运动,因此 B 可作为相关点,应先找出点 系.
P 与点 B 的联
解:设点 P(x , y) ,且设点 B(x 0, y 0)
高中数学选修2-1抛物线知识点与典例精析

高中数学选修2-1抛物线知识点与典例精析知识点一抛物线的概念平面内与一个定点F和一条定直线l(l不经过点F)距离________的点的轨迹叫做抛物线.点F叫做抛物线的________,直线l叫做抛物线的________.知识点二抛物线的标准方程与几何性质O(0,0)规律与方法:解决直线与抛物线位置关系问题的常用方法(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系.(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB|=x1+x2+p,若不过焦点,则必须用一般弦长公式.(3)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等解法.提醒:涉及弦的中点、斜率时,一般用“点差法”求解.例1已知点P是抛物线y2=2x上的一个动点,则点P到点A(0,2)的距离与点P 到该抛物线的准线的距离之和的最小值为()A.172B.3C.5D.92例2(2015年10月学考)设抛物线y2=2px(p>0)的焦点为F,若F到直线y=3 x的距离为3,则p等于()A.2B.4C.23D.43例3(2016年10月学考)已知抛物线y2=2px过点A(1,2),则p=________,准线方程是________________.例4已知抛物线关于x轴对称,它的顶点在坐标原点,并且经过点M(4,-22),则它的标准方程为________.例5已知动圆M与直线y=2相切,且与定圆C:x2+(y+3)2=1外切,则动圆圆心M的轨迹方程为________.例6已知抛物线方程为y2=2px(p>0),过此抛物线的焦点的直线与抛物线交于A、B两点,且|AB|=52p,求AB所在直线的方程.例7 过抛物线y 2=2x 的顶点作互相垂直的两条弦OA ,OB . (1)求AB 的中点的轨迹方程; (2)求证:直线AB 过定点.一、选择题1.抛物线y =2x 2的焦点坐标是( ) A .(12,0) B .(14,0) C .(0,18)D .(0,14)2.已知抛物线y =4x 2上一点M 到焦点的距离为1,则点M 的纵坐标是( ) A .1716B .1516C .78D .03.已知抛物线y =ax 2的准线方程是y =2,则a 的值为( ) A .-18B .18C .8D .-84.从抛物线y 2=4x 上一点P 引抛物线准线的垂线,垂足为M ,且|PM |=5,设抛物线的焦点为F ,则△MPF 的面积为( ) A .5B .10C .20D.155.已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,|AB |=12,P 为C 的准线上的一点,则△ABP 的面积为( ) A .18B .24C .36D .486.若点A 的坐标为(3,2),F 是抛物线y 2=2x 的焦点,点M 在抛物线上移动时,使|MF |+|MA |取得最小值的M 的坐标为( ) A .(0,0)B .(12,1)C .(1,2)D .(2,2)7.已知抛物线C 的顶点在坐标原点,准线方程为x =-1,直线l 与抛物线C 相交于A ,B 两点.若线段AB 的中点为(2,1),则直线l 的方程为( ) A .y =2x -3 B .y =-2x +5 C .y =-x +3D .y =x -18.设抛物线C :y 2=16x ,斜率为m 的直线l 与C 交于A ,B 两点,且OA ⊥OB ,O 为坐标原点,则直线l 恒过定点( ) A .(8,0) B .(4,0) C .(16,0) D .(6,0)二、填空题9.若点P 到点F (4,0)的距离比它到直线x +5=0的距离小1,则点P 的轨迹方程是__________.10.直线y =kx +2与抛物线y 2=8x 有且只有一个公共点,则k =________. 11.抛物线y 2=x 上到其准线和顶点距离相等的点的坐标为________. 12.设抛物线y 2=8x 的焦点为F ,准线为l ,P 为抛物线上一点,P A ⊥l ,A 为垂足,如果直线AF 的斜率为-3,那么|PF |=________. 三、解答题13.已知抛物线y 2=2px (p >0)的焦点为F ,A (x 1,y 1),B (x 2,y 2)是过F 的直线与抛物线的两个交点,求证: (1)y 1y 2=-p 2,x 1x 2=p 24;(2)1|AF |+1|BF |为定值;(3)以AB 为直径的圆与抛物线的准线相切.答案精析知识条目排查知识点一相等焦点准线题型分类示例例1A如图,由抛物线定义知|P A|+|PQ|=|P A|+|PF|,则所求距离之和的最小值转化为求|P A|+|PF|的最小值,则当A、P、F三点共线时,|P A|+|PF|取得最小值.又A(0,2),F(12,0),∴(|P A|+|PF|)min=|AF|=(0-12)2+(2-0)2=172.]例2B由抛物线y2=2px(p>0)的焦点为F(p2,0).F到直线y=3x的距离为3,可得|3p2|(3)2+(-1)2=3,解得p=4,故选B.]例32x=-1例4y2=2x解析由题意可知抛物线的焦点在x轴上,设方程为y2=2px(p>0)或y2=-2px(p>0).若方程为y 2=2px (p >0),则8=2p ×4,得p =1,故方程为y 2=2x ;若方程为y 2=-2px (p >0),则8=-2p ×4,得p =-1,不符合条件,故不成立. 所以抛物线的标准方程为y 2=2x . 例5 x 2=-12y解析 设动圆圆心M (x ,y ),半径为r ,根据题意可得⎩⎨⎧y <2,r =|y -2|,x 2+(y +3)2=1+r ,解得x 2=-12y .例6 解 方法一 焦点F (p2,0),设A (x 1,y 1)、B (x 2,y 2),若AB ⊥Ox , 则|AB |=2p <52p ,∴直线AB 的斜率存在,设为k ,则直线AB 的方程为y =k (x -p2),k ≠0. 由⎩⎪⎨⎪⎧y =k (x -p 2),y 2=2px消去x ,整理得ky 2-2py -kp 2=0.由根与系数的关系得,y 1+y 2=2pk ,y 1y 2=-p 2. ∴|AB |=(x 1-x 2)2+(y 1-y 2)2 =(1+1k 2)·(y 1-y 2)2 =1+1k2·(y 1+y 2)2-4y 1y 2 =2p (1+1k 2)=52p ,解得k =±2.∴AB 所在直线方程为y =2(x -p 2)或y =-2(x -p2). 方法二如图所示,抛物线y 2=2px (p >0)的准线为x =-p2,A (x 1,y 1),B (x 2,y 2), 设A ,B 到准线的距离分别为d A ,d B ,由抛物线的定义知, |AF |=d A =x 1+p 2,|BF |=d B =x 2+p2, 于是|AB |=x 1+x 2+p =52p ,x 1+x 2=32p .当x 1=x 2时,|AB |=2p <52p , ∴直线AB 与Ox 不垂直. 设直线AB 的方程为y =k (x -p2). 由⎩⎪⎨⎪⎧y =k (x -p 2),y 2=2px ,得k 2x 2-p (k 2+2)x +14k 2p 2=0,x 1+x 2=p (k 2+2)k 2=32p ,解得k =±2,∴直线AB 的方程为y =2(x -p 2)或y =-2(x -p2).例7 (1)解 设直线OA 的方程为y =kx ,则直线OB 的方程为y =-1k x . 联立直线OA 与抛物线的方程知,点A 的坐标为(2k 2,2k ), 联立直线OB 与抛物线的方程知,点B 的坐标为(2k 2,-2k ),则AB 的中点M 的坐标为(1k 2+k 2,1k -k ),故点M 的轨迹方程为x =y 2+2.(2)证明 由(1)可知k AB =-k -1kk 2-1k 2=-1k -1k=-k k 2-1,则直线AB 的方程为y -(1k -k ) =-k k 2-1x -(1k 2+k 2)],整理,得y =-kk 2-1(x -2).所以直线经过定点(2,0). 考点专项训练1.C 抛物线y =2x 2的标准形式为x 2=12y , ∴p =14,则p 2=18, ∴焦点坐标是(0,18).]2.B 抛物线y =4x 2的标准形式为x 2=14y , ∴其准线方程为y =-116, 设点M 的纵坐标是y 0,由抛物线的定义,得y 0+116=1, ∴y 0=1516.] 3.A4.B 设P (x 0,y 0),依题意可知抛物线准线方程为x =-1, ∴x 0=5-1=4,∴|y 0|=4×4=4, ∴△MPF 的面积为12×5×4=10.]5.C 不妨设抛物线方程为y 2=2px (p >0),依题意,l ⊥x 轴,且焦点F (p2,0), ∵当x =p2时,|y |=p ,∴|AB |=2p =12,∴p =6, 又点P 到直线AB 的距离为p 2+p2=p =6, 故S △ABP =12|AB |·p =12×12×6=36.]6.D 由题意得F (12,0),准线方程为x =-12. 设点M 在准线x =-12上的射影为P , 则M 到准线的距离为d =|PM |,则由抛物线的定义得|MA |+|MF |=|MA |+|PM |,故当P 、A 、M 三点共线时,|MF |+|MA |取得最小值为|AP |=3-(-12)=72. 把y =2代入抛物线y 2=2x ,得x =2,故点M 的坐标是(2,2).] 7.A ∵抛物线C 的顶点在坐标原点,准线方程为x =-1, ∴-p2=-1,∴p =2, ∴抛物线的方程为y 2=4x . 设A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧y 21=4x 1,y 22=4x 2,两式相减得 (y 1+y 2)(y 1-y 2)=4(x 1-x 2),∴直线AB 的斜率k =y 1-y 2x 1-x 2=4y 1+y 2=42=2,从而直线AB 的方程为y -1=2(x -2),即y =2x -3.]8.C 设直线l :x =my +b (b ≠0),代入抛物线y 2=16x ,可得y 2-16my -16b =0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=16m ,y 1y 2=-16b , ∴x 1x 2=(my 1+b )(my 2+b )=b 2, ∵OA ⊥OB ,∴x 1x 2+y 1y 2=0, 可得b 2-16b =0,∵b ≠0,∴b =16,∴直线l :x =my +16, ∴直线l 过定点(16,0).] 9.y 2=16x解析 点P 到点F 的距离与到x =-4的距离相等,由抛物线定义,知点P 轨迹为抛物线,设y 2=2px ,由p2=4,知p =8.10.1或0解析 由⎩⎨⎧y =kx +2,y 2=8x ,得ky 2-8y +16=0,若k =0,则y =2;若k ≠0,则Δ=0,即64-64k =0,解得k =1.因此若直线y =kx +2与抛物线y 2=8x 有且只有一个公共点,则k =0或k =1. 11.(18,±24)解析 设抛物线上点的坐标为(x ,±x ),此点到准线的距离为x +14,到顶点的距离为x 2+(x )2,由题意有x +14=x 2+(x )2,∴x =18, ∴此点坐标为(18,±24). 12.8 解析如图所示,直线AF 的方程为y =-3(x -2),与准线方程x =-2联立得A (-2,43).设P (x 0,43),代入抛物线y 2=8x ,得8x 0=48,∴x 0=6, ∴|PF |=x 0+2=8.13.证明 (1)由已知得抛物线焦点坐标为(p2,0). 由题意可设直线方程为x =my +p2,代入y 2=2px , 得y 2=2p (my +p2),即y 2-2pmy -p 2=0.(*)因为y 1,y 2是方程(*)的两个实数根,所以y 1y 2=-p 2.因为y 21=2px 1,y 22=2px 2,所以y 21y 22=4p 2x 1x 2,所以x 1x 2=y 21y 224p 2=p 44p 2=p 24.(2)1|AF |+1|BF |=1x 1+p 2+1x 2+p 2=x 1+x 2+p x 1x 2+p 2(x 1+x 2)+p 24.因为x 1x 2=p 24,x 1+x 2=|AB |-p ,代入上式,得1|AF |+1|BF |=|AB |p 24+p 2(|AB |-p )+p 24=2p (定值).(3)设AB 的中点为M (x 0,y 0),分别过A ,B 作准线的垂线,垂足为C ,D ,过M 作准线的垂线,垂足为N ,则|MN |=12(|AC |+|BD |)=12(|AF |+|BF |)=12|AB |. 所以以AB 为直径的圆与抛物线的准线相切.。
人教版高中数学选修2-1《求取离心率问题》

e 的取值范围
例4:已知椭圆 (a>b>0)的左顶点
为A,上顶点为B,右焦点为F.设线段AB的中 点 2 2MF MA BF 0 为M,若 ,求该椭圆离心率的 取值范围.
y
B
M
A
o
F
x
《3》根据曲线方程列出含参数的关系式,求
e 的取值范围
例4:已知椭圆 (a>b>0)的左顶点
为A,上顶点为B,右焦点为F.设线段AB的中 点 2 2MF MA BF 0 为M,若 ,求该椭圆离心率的 1 , 1) 取值范围.[ 2-
(a>0,b>0)的左焦点,点E是该双曲线的右顶点, 过点F且垂直于x轴的直线与双曲线交于A,B两 点,△ABE是锐角三角形,则该双曲线离心率 e 的取值范围是( B ) A.(1,+∞) C.(1,1+ ) B.(1 , 2 )
D.(2,1+
)
三.归纳小结
1.注意椭圆与双曲线的离心率取值范围. 2.求离心率解题步骤。 3.求离心率的关键。 4.求离心率的题型有两类(1)求值 (2)求取值范围
3 或 D 2
5
例2: 设双曲线的—个焦点为F;虚轴的— 个端点为B,如果直线FB与该双曲线的一条 渐近线垂直,那么此双曲线的离心率为( ) (A)
《2》构建关于a,c的方程求解
2 (B)
3 (C)
3 1 (D) 2
5 1 2
B
F
例2: 设双曲线的—个焦点为F;虚轴的— 个端点为B,如果直线FB与该双曲线的一条 渐近线垂直,那么此双曲线的离心率为( D ) (A)
《2》构建关于a,c的方程求解
2 (B)
3 (C)
3 1 (D) 2
高二数学选修2-1知识点总结

A.q1,q3 B.q2,q3
A.②③ B.②④
C.q1,q4 D.q2,q4
C.③④ D.①②③
[审题视点] 依据复合函数的单调性推断 p1,p2 的'真假.
解析 命题 p 是假命题,命题 q 是真命题,故③④正确.
解析 可推断 p1 为真,p2 为假;则 q1 为真,q2 为假,q3 为假,
答案 C
第4页共7页
本文格式为 Word 版,下载可任意编辑
出 m 的取值范围. 解 由 p 得:-m<0,Δ1=m2-4>0,则 m>2. 由 q 得:Δ2=16(m-2)2-16=16(m2-4m+3)<0, 则 1<m<3. 又∵“p 或 q”为真,“p 且 q”为假,∴p 与 q 一真一假. ①当 p 真 q 假时,m≤1 或 m≥3,m>2,解得 m≥3; ②当 p 假 q 真时,1<m<3,m≤2,解得 1<m≤2. ∴m 的取值范围为 m≥3 或 1<m≤2. 含有规律联结词的命题要先确定构成命题的(一个或两个)命题的
(2)特称命题的否认是全称命题
(1)含有全称量词的命题叫全称命题.
魏
第1页共7页
本文格式为 Word 版,下载可任意编辑
特称命题 p:x0∈M,p(x0),它的否认 p:x∈M,p(x).
2.(2021·北京)若 p 是真命题,q 是假命题,则( ).
2.复合命题的否认
A.p∧q 是真命题 B.p∨q 是假命题
“p∧q”、“q”形式命题的真假.
答案 存在 x0∈R,使|x0-2|+|x0-4|≤3
【训练 1】 已知命题 p:x0∈R,使 sin x0=25;命题 q:x∈R,
考向一 含有规律联结词命题真假的推断
都有 x2+x+1>0.给出以下结论
人教版高中数学【选修2-1】[知识点整理及重点题型梳理]_命题及其关系_基础
![人教版高中数学【选修2-1】[知识点整理及重点题型梳理]_命题及其关系_基础](https://img.taocdn.com/s3/m/626e229b4b35eefdc9d33378.png)
人教版高中数学选修2-1知识点梳理)巩固练习重点题型(常考知识点命题及其关系【学习目标】1.了解命题、真命题、假命题的概念,能够指出一个命题的条件和结论;2.了解原命题、逆命题、否命题、逆否命题,会分析四种命题的相互关系,能判断四种命题的真假;3.能熟练判断命题的真假性.【要点梳理】要点一、命题的概念用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.要点诠释:1.不是任何语句都是命题,不能确定真假的语句不是命题,如“x>2”,“2不一定大于3”.2.只有能够判断真假的陈述句才是命题.祈使句,疑问句,感叹句都不是命题,例如:“起立”、“π是有理数吗?”、“今天天气真好!”等.3.语句能否确定真假是判断其是否是命题的关键.一个命题要么是真,要么是假,不能既真又假,模棱两可.命题陈述了我们所思考的对象具有某种属性,或者不具有某种属性,这类似于集合中元素的确定性.要点二、命题的结构命题可以改写成“若p,则q”的形式,或“如果p,那么q”的形式.其中p是命题的条件,q是命题的结论.要点诠释:1.一般地,命题“若p则q”中的p为命题的条件q为命题的结论.2.有些问题中需要明确指出条件p和q各是什么,因此需要将命题改写为“若p则q”的形式.要点三、四种命题原命题:“若p,则q”;逆命题:“若q,则p”;实质是将原命题的条件和结论互相交换位置;. 否命题:“若非 p ,则非 q ”,或“若 ⌝p ,则 ⌝q ”;实质是将原命题的条件和结论两者分别否定;逆否命题:“若非 q ,则非 p ”,或“若 ⌝q ,则 ⌝p ”;实质是将原命题的条件和结论两者分别否定后再换位或将原命题的条件和结论换位后再分别否定.要点诠释:对于一般的数学命题,要先将其改写为“若 p ,则 q ”的形式,然后才方便写出其他形式的命题.要点四、四种命题之间的关系四种命题之间的构成关系原 命题若p 则q互互 互 逆为 逆否逆命题 若q 则p互 否否 命 题互为逆否否逆 否命 题若⌝p 则⌝q四种命题之间的真值关系互 逆若⌝q 则⌝p原命题真真 假假逆命题真假 真假否命题真假 真假逆否命题真真 假假要点诠释:(1)互为逆否命题的两个命题同真同假;(2)互为逆命题或互为否命题的两个命题的真假无必然联系.【典型例题】类型一:命题的概念例 1.判断下列语句中哪些是命题,是命题的判断其是真命题还是假命题(1)末位是 0 的整数能被 5 整除;(2)平行四边形的对角线相等且互相平分;(3)两直线平行,则斜率相等;(△4)ABC中,若∠A=∠B,则sinA=sinB;(5)余弦函数是周期函数吗?【思路点拨】依据命题的定义判断。
高中数学选修2-1 公式

实轴长2a
虚轴长2
焦距
关系
离心率
渐近点的轨迹
.
下表是其标准方程及图形
方程
焦点
准线
图形
(1) 的焦点弦(过焦点的弦)为 , ,
则有如下结论:①焦半径公式: ;焦点弦长
② ;
③若直线AB的倾斜角为 ,则
9、①直线与圆锥曲线(椭圆、双曲线、抛物线)相交的弦长公式
5、线线角 : 线面角 :
面面角 : 点P到平面ABC的距离:
6、椭圆定义: ;
下表是椭圆的标准方程及几何性质。
标准方程
图形
对称性
关于x轴、y轴成轴对称;关于原点成中心对称
顶点坐标
焦点坐标
长轴2a
短轴2
焦距
关系
离心率
焦点看分母
7、①双曲线定义:
下表是其标准方程及几何意义。
焦点看正项
标准方程
图形
顶点坐标
数学常用公式
选修2—1
1.真值表(表1)常见结论的否定形式(见表2)
p
q
非p
p或q
p且q
真
真
假
真
真
真
假
假
真
假
假
真
真
真
假
假
假
真
假
假
原结论
反设词
原结论
反设词
是
不是
至少有一个
一个也没有
都是
不都是
至多有一个
至少有两个
大于
不大于
至少有 个
至多有( )个
对所有x,成立
存在 ,不成立
p或q
且
2、五种命题的相互转化3、条件
高中数学新湘教版选修2-1 空间向量与立体几何 章末小结复习

1.空间向量基本定理设e1,e2,e3是空间中的三个不共面的单位向量,则(1)空间中任意一个向量v可以写成这三个向量的线性组合:v=xe1+ye2+ze3.(2)上述表达式中的系数x,y,z由v唯一决定,即:如果v=xe1+ye2+ze3=x′e1+y′e2+z′e3,则x=x′,y=y′,z=z′.2.空间向量的坐标运算公式(1)加减法:(x1,y1,z1)±(x2,y2,z2)=(x1±x2,y1±y2,z1±z2).(2)与实数的乘法:a(x,y,z)=(ax,ay,az).(3)数量积:设v=(x,y,z),则|v|=x2+y2+z2.(4)向量的夹角:cos θ=v1·v2 |v1|·|v2|=x1x2+y1y2+z1z2x21+y21+z21·x22+y22+z22.3.空间向量在立体几何中的应用设直线l,m的方向向量分别为a,b,平面α,β的法向量分别为u,ν,则[例1]M ,N 分别为AB ,PC 的中点.求证:(1)MN ∥平面PAD ; (2)平面PMC ⊥平面PDC .[证明] 如图所示,以A 为坐标原点,AB ,AD ,AP 所在的直线分别为x ,y ,z 轴建立空间直角坐标系A -xyz .设PA =AD =a ,AB =b .则有,(1)P (0,0,a ),A (0,0,0),D (0,a,0),C (b ,a,0),B (b,0,0). ∵M ,N 分别为AB ,PC 的中点, ∴M ⎝⎛⎭⎫b 2,0,0,N ⎝⎛⎭⎫b 2,a 2,a 2. ∴MN ―→=⎝⎛⎭⎫0,a 2,a 2,AP ―→=(0,0,a ),AD ―→=(0,a,0), ∴MN ―→=12AD ―→+12AP ―→.又∵MN ⊄平面PAD ,∴MN ∥平面PAD . (2)由(1)可知:PC ―→=(b ,a ,-a ),PM ―→=⎝⎛⎭⎫b2,0,-a , PD ―→=(0,a ,-a ).设平面PMC 的一个法向量为n 1=(x 1,y 1,z 1),则 ⎩⎪⎨⎪⎧n 1·PC ―→=0⇒bx 1+ay 1-az 1=0,n 1·PM ―→=0⇒b 2x 1-az 1=0,∴⎩⎪⎨⎪⎧x 1=2a b z 1,y 1=-z 1,令z 1=b ,则n 1=(2a ,-b ,b ).设平面PDC 的一个法向量为n 2=(x 2,y 2,z 2),则 ⎩⎪⎨⎪⎧n 2·PC ―→=0⇒bx 2+ay 2-az 2=0,n 2·PD ―→=0⇒ay 2-az 2=0,∴⎩⎪⎨⎪⎧x 2=0,y 2=z 2.令z 2=1,则n 2=(0,1,1), ∵n 1·n 2=0-b +b =0,∴n 1⊥n 2. ∴平面PMC ⊥平面PDC .(1)用向量法证明立体几何中的平行或垂直问题,主要应用直线的方向向量和平面的法向量,同时也要借助空间中已有的一些关于平行或垂直的定理.(2)用向量法证明平行或垂直的步骤:①建立空间图形与空间向量的关系(通过取基或建立空间直角坐标系的方法),用空间向量或以坐标形式表示问题中涉及的点、直线和平面;②通过向量或坐标,研究向量之间的关系;③根据②的结论得出立体几何问题的结论.(3)在用向量法研究线面平行或垂直时,上述判断方法不唯一,如果要证直线l ∥平面α,只需证l =λa ,l ⊄α,其中l 是直线l 的方向向量,a ⊂α;如果要证l ⊥α,只需在平面α内选取两个不共线向量m ,n ,证明⎩⎪⎨⎪⎧l ·m =0,l ·n =0,即可.1.如图所示,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,O 为AC 与BD 的交点,G 为CC 1的中点,求证:A 1O ⊥平面GBD .证明:法一:设A 1B 1―→=a ,A 1D 1―→=b ,A 1A ―→=c , 则a ·b =0,b ·c =0,a ·c =0, A 1O ―→=A 1A ―→+AO ―→=A 1A ―→+12(AB ―→+AD ―→)=c +12(a +b ),BD ―→=AD ―→-AB ―→=b -a ,OG ―→ =OC ―→ +CG ―→ =12(AB ―→+AD ―→ )+12CC 1―→=12(a +b )-12c ,∴A 1O ―→·BD ―→=⎝⎛⎭⎫c +12a +12b ·(b -a ) =c ·(b -a )+12(a +b )·(b -a )=c ·b -c ·a +12(b 2-a 2)=12(|b |2-|a |2)=0,∴A 1O ―→⊥BD ―→.∴A 1O ⊥BD . 同理可证A 1O ―→⊥OG ―→.∴A 1O ⊥OG . 又OG ∩BD =O , ∴A 1O ⊥平面GBD .法二:如图所示,以D 为坐标原点,DA ,DC ,DD 1分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,则D (0,0,0),B (2,2,0),A 1(2,0,2),G (0,2,1),O (1,1,0),所以A 1O ―→=(-1,1,-2),DB ―→=(2,2,0), DG ―→=(0,2,1),则A 1O ―→·DB ―→=(-1,1,-2)·(2,2,0)=0, A 1O ―→·DG ―→=(-1,1,-2)·(0,2,1)=0,所以A 1O ―→⊥DB ―→,A 1O ―→⊥DG ―→.即A 1O ⊥DB ,A 1O ⊥DG . 又DB ∩DG =D ,故A 1O ⊥平面GBD .法三:以D 为坐标原点,DA ,DC ,DD 1分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,则D (0,0,0),B (2,2,0),A 1(2,0,2),G (0,2,1),O (1,1,0),所以A 1O ―→=(-1,1,-2),DB ―→=(2,2,0),DG ―→=(0,2,1). 设向量n =(x ,y ,z )为平面GBD 的一个法向量, 则n ⊥DB ―→,n ⊥DG ―→. 即n ·DB ―→=0,n ·DG ―→=0.所以⎩⎪⎨⎪⎧2x +2y =0,2y +z =0.令x =1,则y =-1,z =2, 所以n =(1,-1,2). 所以A 1O ―→=-n .即A 1O ―→∥n . 所以A 1O ⊥平面GBD .2.如图,正方体ABCD -A 1B 1C 1D 1中,M ,N 分别为AB ,B 1C 的中点. (1)用向量法证明平面A 1BD ∥平面B 1CD 1;(2)用向量法证明MN ⊥平面A 1BD . 证明:(1)在正方体ABCD -A 1B 1C 1D 1中, BD ―→=AD ―→-AB ―→,B 1D 1―→=A 1D 1―→-A 1B 1―→, 又∵AD ―→=A 1D 1―→,AB ―→=A 1B 1―→,∴BD ―→=B 1D 1―→, ∴BD ∥B 1D 1. 同理可证A 1B ∥D 1C ,又BD ∩A 1B =B ,B 1D 1∩D 1C =D 1, 所以平面A 1BD ∥平面B 1CD 1.(2)MN ―→=MB ―→+BC ―→+CN ―→=12AB ―→+AD ―→+12(CB ―→+BB 1―→)=12AB ―→+AD ―→+12(-AD ―→+AA 1―→) =12AB ―→+12AD ―→+12AA 1―→.设AB ―→=a ,AD ―→=b ,AA 1―→=c ,则MN ―→=12(a +b +c ).又BD ―→=AD ―→-AB ―→=b -a , ∴MN ―→·BD ―→=12(a +b +c )·(b -a )=12(b 2-a 2+c ·b -c ·a ). 又∵A 1A ⊥AD ,A 1A ⊥AB ,∴c ·b =0,c ·a =0. 又|b |=|a |,∴b 2=a 2.∴b 2-a 2=0. ∴MN ―→·BD ―→=0.∴MN ⊥BD . 同理可证MN ⊥A 1B . 又A 1B ∩BD =B , ∴MN ⊥平面A 1BD .[例2] 四棱锥=AD =2,点M ,N 分别在棱PD ,PC 上,且PC ⊥平面AMN .(1)求AM 与PD 所成的角; (2)求二面角P -AM -N 的余弦值;(3)求直线CD 与平面AMN 所成角的余弦值.[解] 建立如图所示的空间直角坐标系. ∵A (0,0,0),C (2,2,0),P (0,0,2),D (0,2,0), ∴PC ―→=(2,2,-2),PD ―→=(0,2,-2). 设M (x 1,y 1,z 1),PM ―→=λPD ―→, 则(x 1,y 1,z 1-2)=λ(0,2,-2). ∴x 1=0,y 1=2λ,z 1=-2λ+2. ∴M (0,2λ,2-2λ).∵PC ⊥平面AMN ,∴PC ―→⊥AM ―→, ∴PC ―→·AM ―→=0.∴(2,2,-2)·(0,2λ,2-2λ)=0⇒4λ-2(2-2λ)=0. ∴λ=12.∴M (0,1,1).设N (x 2,y 2,z 2),PN ―→=t PC ―→, 则(x 2,y 2,z 2-2)=t (2,2,-2).∴x 2=2t ,y 2=2t ,z 2=-2t +2. ∴N (2t,2t,2-2t ).∵PC ―→⊥AN ―→,∴AN ―→·PC ―→=0. ∴(2t,2t,2-2t )·(2,2,-2)=0. ∴4t +4t -2(2-2t )=0, ∴t =13.∴N ⎝⎛⎭⎫23,23,43. (1)∵cos 〈AM ―→,PD ―→〉=(0,1,1)·(0,2,-2)0+1+1×0+4+4=0,∴AM 与PD 所成角为90°.(2)∵AB ⊥平面PAD ,PC ⊥平面AMN ,∴AB ―→,PC ―→分别是平面PAD ,平面AMN 的法向量. ∵AB ―→·PC ―→=(2,0,0)·(2,2,-2)=4, |AB ―→|=2,|PC ―→|=23, ∴cos 〈AB ―→,PC ―→〉=443=33.∴二面角P -AM -N 的余弦值为33. (3)∵PC ―→是平面AMN 的法向量,∴CD 与平面AMN 所成角即为CD 与PC 所成角的余角. ∵CD ―→·PC ―→=(-2,0,0)·(2,2,-2)=-4, ∴cos 〈CD ―→,PC ―→〉=-42×23=-33.∴直线CD 与PC 所成角的正弦值为63, 即直线CD 与平面AMN 所成角的余弦值为63.(1)求异面直线所成的角:设两异面直线的方向向量分别为n 1,n 2,那么这两条异面直线所成的角为θ=〈n 1,n 2〉或θ=π-〈n 1,n 2〉,∴cos θ=|cos 〈n 1,n 2〉|. (2)求二面角的大小:如图,设平面α,β的法向量分别为n 1,n 2.因为两平面的法向量所成的角就等于平面α,β所成的锐二面角θ,所以cos θ=|cos 〈n 1,n 2〉|.(3)求斜线与平面所成的角:如图,设平面α的法向量为n 1,斜线OA 的方向向量为n 2,斜线OA 与平面所成的角为θ,则sin θ=|cos 〈n 1,n 2〉|.3.如图所示,在矩形ABCD 中,AB =4,AD =3,沿对角线AC折起,使D 在平面ABC 上的射影E 恰好落在AB 上,求这时二面角B -AC -D 的余弦值.解:如图所示,作DG ⊥AC 于G ,BH ⊥AC 于H .在Rt △ADC 中, AC =AD 2+DC 2=5, cos ∠DAC =AD AC =35.在Rt △AGD 中,AG =AD ·cos ∠DAC =3×35=95,DG =AD 2-AG 2=9-8125=125. 同理,cos ∠BCA =35,CH =95,BH =125.AD ―→·BC ―→=(AE ―→+ED ―→)·BC ―→=AE ―→·BC ―→+ED ―→·BC ―→=0, GD ―→·HB ―→=(GA ―→+AD ―→)·(HC ―→+CB ―→) =GA ―→·HC ―→+GA ―→·CB ―→+AD ―→·HC ―→+AD ―→·CB ―→ =-95×95+95×3×35+3×95×35+0=8125.又|GD ―→|·|HB ―→|=14425,∴cos 〈GD ―→,HB ―→〉=916.因此所求二面角的余弦值为916.4.如图,ABCD -A 1B 1C 1D 1是正四棱柱. (1)求证:BD ⊥平面ACC 1A 1;(2)二面角C 1-BD -C 的大小为60°,求异面直线BC 1与AC 所成角的余弦值.解:(1)证明:建立空间直角坐标系D -xyz ,如图.设AD =a ,DD 1=b ,则有D (0,0,0),A (a ,0,0),B (a ,a,0),C (0,a,0),C 1(0,a ,b ),∴BD ―→=(-a ,-a,0),AC ―→=(-a ,a,0),CC 1―→=(0,0,b ), ∴BD ―→·AC ―→=0,BD ―→·CC 1―→=0. ∴BD ⊥AC ,BD ⊥CC 1.又∵AC ,CC 1⊂平面ACC 1A 1,且AC ∩CC 1=C , ∴BD ⊥平面ACC 1A 1.(2)设BD 与AC 相交于点O ,连接C 1O , 则点O 的坐标为⎝⎛⎭⎫a 2,a 2,0,OC 1―→=⎝⎛⎭⎫-a 2,a 2,b . ∵BD ―→·OC 1―→=0,∴BD ⊥C 1O . 又BD ⊥CO ,∴∠C 1OC 是二面角C 1-BD -C 的平面角, ∴∠C 1OC =60°, ∵tan ∠C 1OC =CC 1OC =b22a =3, ∴b =62a . ∵AC ―→=(-a ,a,0),BC 1―→=(-a,0,b ), ∴cos 〈AC ―→,BC 1―→〉=AC ―→·BC 1―→|AC ―→|·|BC 1―→|=55. ∴异面直线BC 1与AC 所成角的余弦值为55.(时间120分钟,满分150分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知l ∥π,且l 的方向向量为(2,m,1),平面π的法向量为⎝⎛⎭⎫1,12,2,则m =( ) A .-8 B .-5 C .5D .8解析:∵l ∥π,∴直线l 的方向向量与平面π的法向量垂直. ∴2+m2+2=0,m =-8.答案:A2.在空间四边形ABCD 中,连接AC ,BD ,若△BCD 是正三角形,且E 为其中心,则AB ―→+12BC ―→-32DE ―→-AD ―→的化简结果为( )A .AB ―→B .2BD ―→C .0D .2DE ―→解析:如图,F 是BC 的中点,E 是DF 的三等分点,∴32DE ―→=DF ―→. ∵12BC ―→=BF ―→,则AB ―→+12BC ―→-32DE ―→-AD ―→=AB ―→+BF ―→-DF ―→-AD ―→=AF ―→+FD ―→-AD ―→=AD ―→-AD ―→=0.答案:C3.在以下命题中,不正确的个数为( ) ①|a |-|b |=|a +b |是a ,b 共线的充要条件; ②若a ∥b ,则存在唯一的实数λ,使a =λb ;③对空间任意一点O 和不共线的三点A ,B ,C ,若OP ―→=2OA ―→-2OB ―→-OC ―→,则P ,A ,B ,C 四点共面;④若{a ,b ,c }为空间的一组基,则{a +b ,b +c ,c +a }构成空间的另一组基; ⑤ |(a ·b )·c |=|a |·|b |·|c |. A .2 B .3 C .4D .5解析:①|a |-|b |=|a +b |⇒a 与b 的夹角为π,故是充分不必要条件,故不正确;②b 需为非零向量,故不正确;③因为2-2-1≠1,由共面向量定理知,不正确;④由基的定义知正确;⑤由向量的数量积的性质知,不正确.答案:C4.直三棱柱ABC -A 1B 1C 1中,若CA ―→=a ,CB ―→=b ,CC 1―→=c ,则A 1B ―→=( ) A .a +b -c B .a -b +c C .-a +b +cD .-a +b -c解析:A 1B ―→=CB ―→-CA 1―→=CB ―→-(CA ―→+CC 1―→)=b -a -c . 答案:D5.已知四面体ABCD 的各边长都是a ,点E ,F 分别为BC ,AD 的中点,则AE ―→·AF ―→的值是( )A .a 2 B.12a 2 C.14a 2 D.34a 2 解析:由已知得ABCD 为正四面体,因为AE ―→=12(AB ―→+AC ―→),AF ―→=12AD ―→,所以AE ―→·AF―→=12(AB ―→+AC ―→)·12AD ―→=14(AB ―→·AD ―→+AC ―→·AD ―→) =14(a 2cos 60°+a 2cos 60°)=14a 2. 答案:C6.已知正四棱锥S -ABCD 的侧棱长与底面边长都相等,E 是SB 的中点,则AE 与SD 所成角的余弦值为( )A.13B.23C.33D.23解析:建立如图所示的空间直角坐标系,设A (1,0,0),则B (0,1,0),D (0,-1,0),AB =2,SD =2,∴SO =1,∴S (0,0,1),∴E ⎝⎛⎭⎫0,12,12,AE ―→=-1,12,12,SD ―→=(0,-1,-1).∴cos 〈AE ―→, SD ―→〉=AE ―→·SD ―→|AE ―→||SD ―→|=-12-1262×2=-33, ∴AE 与SD 所成角的余弦值为33. 答案:C7.在平行六面体ABCD -A ′B ′C ′D ′中,若AC ′―→=x AB ―→+2y BC ―→+3zC ′C ―→,则x +y +z 等于( )A .1 B.76 C.56D.23解析:如图,AC ′―→=AB ―→+BC ―→+CC ′―→=AB ―→+BC ―→-C ′C ―→,所以x =1,2y =1,3z =-1,所以x =1,y =12,z =-13,因此x +y +z =1+12-13=76.答案:B8.如图所示,直三棱柱ABC -A 1B 1C 1中,AA 1=AB =AC ,AB ⊥AC ,M 是CC 1的中点,Q 是BC 的中点,P 是A 1B 1的中点,则直线P Q 与AM 所成的角为( )A.π6 B.π4 C.π3D.π2解析:以A 为坐标原点,AB ,AC ,AA 1所在直线为x 、y 、z 轴建立如图所示的空间直角坐标系,设AA 1=AB =AC =2,则AM ―→=(0,2,1),Q (1,1,0),P (1,0,2),Q P ―→=(0,-1,2),所以Q P ―→·AM ―→=0,所以Q P 与AM 所成角为π2.答案:D9.如图,在长方体ABCD -A1B 1C 1D 1中,AB =BC =2,AA 1=1,则BC 1与平面BB 1D 1D 所成角的正弦值为( )A.63B.255C.155D.105解析:以D 点为坐标原点,以DA ,DC ,DD 1所在的直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,则A (2,0,0),B (2,2,0),C (0,2,0),C 1(0,2,1),∴BC 1―→=(-2,0,1),AC ―→=(-2,2,0),且AC ―→为平面BB 1D 1D 的一个法向量. ∴cos 〈BC 1―→,AC ―→〉=BC 1―→·AC ―→|BC 1―→|·|AC ―→|=45·8=105.∴BC 1与平面BB 1D 1D 所成角的正弦值为105. 答案:D10.已知OA ―→=(1,2,3),OB ―→=(2,1,2),OP ―→=(1,1,2),点Q 在直线OP 上运动,则当Q A ―→·Q B ―→取得最小值时,点Q 的坐标为( )A.⎝⎛⎭⎫12,34,13B.⎝⎛⎭⎫12,32,34 C.⎝⎛⎭⎫43,43,83D.⎝⎛⎭⎫43,43,73解析:∵Q 在OP 上,∴可设Q (x ,x,2x ),则Q A ―→=(1-x ,2-x,3-2x ), Q B ―→=(2-x,1-x,2-2x ).∴Q A ―→·Q B ―→=6x 2-16x +10,∴x =43时,Q A ―→·Q B ―→取得最小值,这时Q ⎝⎛⎭⎫43,43,83. 答案:C11.如图,在四面体P -ABC 中,PC ⊥平面ABC ,AB =BC =CA =PC ,那么二面角B -AP -C 的余弦值为( )A.22 B.33C.77D.57解析:如图,作BD ⊥AP 于点D ,作CE ⊥AP 于点E .设AB =1,则易得CE =22,EP =22,PA =PB =2,可以求得BD =144,ED =24. ∵BC ―→=BD ―→+DE ―→+EC ―→,∴BC ―→2=BD ―→2+DE ―→2+EC ―→2+2BD ―→·DE ―→+2DE ―→·EC ―→+2EC ―→·BD ―→, ∴EC ―→·BD ―→=-14,∴cos 〈BD ―→,EC ―→〉=-77.故二面角B -AP -C 的余弦值为77. 答案:C12.如图,在三棱柱ABC -A1B 1C 1中,底面ABC 为正三角形,且侧棱AA 1⊥底面ABC ,且底面边长与侧棱长都等于2,O ,O 1分别为AC ,A 1C 1的中点,则平面AB 1O 1与平面BC 1O 间的距离为( )A.355B.255C.55D.510解析:如图,连接OO 1,根据题意,OO 1⊥底面ABC ,则以O 为原点,分别以OB ,OC ,OO 1所在的直线为x ,y ,z 轴建立空间直角坐标系.∵AO 1∥OC 1,OB ∥O 1B 1,AO 1∩O 1B 1=O 1,OC 1∩OB =O ,∴平面AB 1O 1∥平面BC 1O .∴平面AB 1O 1与平面BC 1O 间的距离即为O 1到平面BC 1O 的距离.∵O (0,0,0),B (3,0,0),C 1(0,1,2),O 1(0,0,2),∴OB ―→=(3,0,0),OC 1―→=(0,1,2),OO 1―→=(0,0,2),设n =(x ,y ,z )为平面BC 1O 的法向量,则n ·OB ―→=0,∴x =0.又n ·OC 1―→=0,∴y +2z =0,∴可取n =(0,2,-1).点O 1到平面BC 1O 的距离记为d ,则d =|n ·OO 1―→||n |=25=255.∴平面AB 1O 1与平面BC 1O间的距离为255.答案:B二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 13.若空间三点A (1,5,-2),B (2,4,1),C (p,3,q )共线,则p +q =________. 解析:由已知得AB ―→=(1,-1,3),AC ―→=(p -1,-2,q +2),因为AB ―→∥AC ―→,所以p -11=-2-1=q +23,所以p =3,q =4,故p +q =7.答案:714.已知空间四边形OABC ,如图所示,其对角线为OB ,AC ,M ,N 分别为OA ,BC 的中点,点G 在线段MN 上,且MG ―→=3GN ―→,现用基向量OA ―→,OB ―→,OC ―→表示向量OG ―→,并设OG ―→=x OA ―→+y OB ―→+z OC ―→,则x ,y ,z 的和为________.解析:OG ―→=OM ―→+MG ―→=12OA ―→+34MN ―→=12OA ―→+34⎝⎛⎭⎫-12 OA ―→+OC ―→+12 CB ―→=12OA ―→-38OA ―→+34OC ―→+38OB ―→-38OC ―→=18OA ―→+38OB ―→+38OC ―→, ∴x =18,y =38,z =38.∴x +y +z =78.答案:7815.已知空间三点O (0,0,0),A (-1,1,0),B (0,1,1),在直线OA 上有一点H 满足BH ⊥OA ,则点H 的坐标为______________.解析:由OA ―→=(-1,1,0),且点H 在直线OA 上, 可设H (-λ,λ,0),则BH ―→=(-λ,λ-1,-1).又BH ⊥OA ,∴BH ―→·OA ―→=0,即(-λ,λ-1,-1)·(-1,1,0)=0,即λ+λ-1=0,解得λ=12, ∴H ⎝⎛⎭⎫-12,12,0. 答案:⎝⎛⎭⎫-12,12,0 16.如图,在三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,底面ABC 是等腰直角三角形,∠ACB =90°,侧棱AA 1=2,D ,E 分别是CC 1与A 1B 的中点,点E 在平面ABD 上的射影是△ABD 的重心G .则A 1B 与平面ABD 所成角的正弦值为________.解析:以C 为坐标原点,CA 所在的直线为x 轴,CB 所在的直线为y 轴,CC 1所在的直线为z 轴建立空间直角坐标系,如图所示.设CA =CB =a ,则A (a,0,0),B (0,a,0),A 1(a,0,2),D (0,0,1),∴E ⎝⎛⎭⎫a 2,a 2,1,G ⎝⎛⎭⎫a 3,a 3,13, GE ―→=⎝⎛⎭⎫a 6,a 6,23,BD ―→=(0,-a,1). ∵点E 在平面ABD 上的射影是△ABD 的重心G , ∴GE ―→⊥平面ABD ,∴GE ―→·BD ―→=0,解得a =2. ∴GE ―→=⎝⎛⎭⎫13,13,23,BA 1―→=(2,-2,2), ∵GE ―→⊥平面ABD ,∴GE ―→为平面ABD 的一个法向量. 又cos 〈GE ―→,BA 1―→〉=GE ―→·BA 1―→|GE ―→||BA 1―→|=4363×23=23, ∴A 1B 与平面ABD 所成角的正弦值为23. 答案:23三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知向量a =(1,-3,2),b =(-2,1,1),点A (-3,-1,4),B (-2,-2,2).(1)求|2a +b |;(2)在直线AB 上,是否存在一点E ,使得OE ―→⊥b ?(O 为原点)解:(1)2a +b =(2,-6,4)+(-2,1,1)=(0,-5,5),故|2a +b |=02+(-5)2+52=5 2. (2)OE ―→=OA ―→+AE ―→=OA ―→+t AB ―→ =(-3,-1,4)+t (1,-1,-2) =(-3+t ,-1-t,4-2t ). 若OE ―→⊥b ,则OE ―→·b =0,所以-2(-3+t )+(-1-t )+(4-2t )=0, 解得t =95,因此存在点E ,使得OE ―→⊥b , 此时E 点坐标为⎝⎛⎭⎫-65,-145,25.18.(本小题满分12分)如图,在平行六面体ABCD -A 1B 1C 1D 1中,AB =AD =AA 1=1,∠BAD =60°,∠BAA 1=∠DAA 1=45°.(1)求|BD 1―→|;(2)求证:BD ⊥平面ACC 1A 1. 解:(1)∵BD 1―→=BA ―→+BC ―→+BB 1―→∴|BD 1―→|2=(BA ―→+BC ―→+BB 1―→)2=BA ―→2+BC ―→2+BB 1―→2+2(BA ―→·BC ―→+BA ―→·BB 1―→+BC ―→·BB 1―→)=1+1+1+2⎝⎛⎭⎫-12-22+22=2,∴|BD 1―→|= 2.(2)证明:∵BD ―→=AD ―→-AB ―→, ∴AA 1―→·BD ―→=AA 1―→·(AD ―→-AB ―→)=0, ∴BD ⊥AA 1,又BD ⊥AC ,AA 1∩AC =A , 所以BD ⊥平面ACC 1A 1.19.(本小题满分12分)如图,已知点P 在正方体ABCD -A1B 1C 1D 1的对角线BD 1上,∠PDA =60°.(1)求DP 与CC 1所成角的大小; (2)求DP 与平面AA 1D 1D 所成角的大小.解:如图,以D 为原点,DA 为单位长建立空间直角坐标系Dxyz .则DA ―→=(1,0,0),CC 1―→=(0,0,1).连接BD ,B 1D 1.在平面BB 1D 1D 中,延长DP 交B 1D 1于H . 设DH ―→=(m ,m,1)(m >0), 由已知〈DH ―→,DA ―→〉=60°,由DH ―→·DA ―→=|DA ―→||DH ―→|cos 〈DA ―→,DH ―→〉, 可得2m =2m 2+1. 解得m =22,所以DH ―→=⎝⎛⎭⎫22,22,1.(1)因为cos 〈DH ―→,CC 1―→〉=22×0+22×0+1×11×2=22,所以〈DH ―→,CC 1―→〉=45°. 即DP 与CC 1所成的角为45°.(2)平面AA 1D 1D 的一个法向量是DC ―→=(0,1,0). 因为cos 〈DH ―→,DC ―→〉=22×0+22×1+1×01×2=12,所以〈DH ―→,DC ―→〉=60°,可得DP 与平面AA 1D 1D 所成的角为30°.20.(本小题满分12分)如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 是棱DD 1的中点.(1)求直线BE 和平面ABB 1A 1所成的角的正弦值;(2)在棱C 1D 1上是否存在一点F ,使B 1F ∥平面A 1BE ?证明你的结论. 解:设正方体ABCD -A 1B 1C 1D 1的棱长为1.如图所示,以AB ―→,AD ―→,AA 1―→为单位正交基底建立空间直角坐标系.(1)依题意,得B (1,0,0),E ⎝⎛⎭⎫0,1,12,A (0,0,0),D (0,1,0),所以BE ―→=⎝⎛⎭⎫-1,1,12,AD ―→=(0,1,0).在正方体ABCD -A 1B 1C 1D 1中, 因为AD ⊥平面ABB 1A 1,所以AD ―→是平面ABB 1A 1的一个法向量, 设直线BE 和平面ABB 1A 1所成的角为θ,则 sin θ=|BE ―→·AD ―→||BE ―→|·|AD ―→|=132×1=23. 即直线BE 和平面ABB 1A 1所成的角的正弦值为23.(2)依题意,得A 1(0,0,1),BA 1―→=(-1,0,1),BE ―→=⎝⎛⎭⎫-1,1,12. 设n =(x ,y ,z )是平面A 1BE 的一个法向量, 则由n ·BA 1―→=0,n ·BE ―→=0, 得⎩⎪⎨⎪⎧-x +z =0,-x +y +12z =0. 所以x =z ,y =12z .取z =2,得n =(2,1,2).设F 是棱C 1D 1上的点,连接B 1F ,则F (t,1,1)(0≤t ≤1), 又B 1(1,0,1),所以B 1F ―→=(t -1,1,0). 而B 1F ⊄平面A 1BE ,于是B 1F ∥平面A 1BE ⇔B 1F ―→·n =0⇔(t -1,1,0)·(2,1,2)=0⇔2(t -1)+1=0⇔t =12⇔F 为C 1D 1的中点.这说明在棱C 1D 1上存在点F (C 1D 1的中点),使B 1F ∥平面A 1BE .21.(本小题满分12分)(2017·全国卷Ⅲ)如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD =∠CBD ,AB =BD .(1)证明:平面ACD ⊥平面ABC ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角D -AE -C 的余弦值.解:(1)证明:由题设可得,△ABD ≌△CBD ,从而AD =DC . 又△ACD 是直角三角形,所以∠ADC =90°.取AC 的中点O ,连接DO ,BO ,则DO ⊥AC ,DO =AO .又因为△ABC 是正三角形,所以BO ⊥AC .所以∠DOB 为二面角D -AC -B 的平面角. 在Rt △AOB 中,BO 2+AO 2=AB 2. 又AB =BD ,所以BO 2+DO 2=BO 2+AO 2=AB 2=BD 2, 故∠DOB =90°.所以平面ACD ⊥平面ABC .(2)由题设及(1)知,OA ,OB ,OD 两两垂直.以O 为坐标原点,OA ―→的方向为x 轴正方向,|OA ―→|为单位长度,建立如图所示的空间直角坐标系O -xyz ,则A (1,0,0),B (0,3,0),C (-1,0,0),D (0,0,1).由题设知,四面体ABCE 的体积为四面体ABCD 的体积的12,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,即E 为DB 的中点,得E ⎝⎛⎭⎫0,32,12.故AD ―→=(-1,0,1),AC ―→=(-2,0,0),AE ―→=⎝⎛⎭⎫-1,32,12.设n =(x 1,y 1,z 1)是平面DAE 的法向量, 则⎩⎪⎨⎪⎧ n ·AD ―→=0,n ·AE ―→=0,即⎩⎪⎨⎪⎧-x 1+z 1=0,-x 1+32y 1+12z 1=0. 可取n =⎝⎛⎭⎫1,33,1. 设m =(x 2,y 2,z 2)是平面AEC 的法向量, 则⎩⎪⎨⎪⎧ m ·AC ―→=0,m ·AE ―→=0,即⎩⎪⎨⎪⎧-2x 2=0,-x 2+32y 2+12z 2=0, 可取m =(0,-1,3).则cos 〈n ,m 〉=n ·m |n ||m |=-33+3213×2=77.由图知二面角D -AE -C 为锐角, 所以二面角D -AE -C 的余弦值为77.22.(本小题满分12分)如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF的位置,OD ′=10.(1)证明:D ′H ⊥平面ABCD ; (2)求二面角B -D ′A -C 的正弦值.解:(1)证明:由已知得AC ⊥BD ,AD =CD . 又由AE =CF ,得AE AD =CFCD , 故AC ∥EF .因此EF ⊥HD ,从而EF ⊥D ′H .由AB =5,AC =6,得DO =BO =AB 2-AO 2=4. 由EF ∥AC ,得OH DO =AE AD =14. 所以OH =1,D ′H =DH =3.于是D ′H 2+OH 2=32+12=10=D ′O 2,故D ′H ⊥OH . 又D ′H ⊥EF ,而OH ∩EF =H ,所以D ′H ⊥平面ABCD . (2)如图,以H 为坐标原点, HF ―→的方向为x 轴正方向,建立空间直角坐标系H -xyz ,则H (0,0,0),A (-3,-1,0),B (0,-5,0),C (3,-1,0),D ′(0,0,3),故AB ―→=(3,-4,0),AC ―→=(6,0,0),AD ′―→=(3,1,3). 设m =(x 1,y 1,z 1)是平面ABD ′的法向量, 则⎩⎪⎨⎪⎧m ·AB ―→=0,m ·AD ′―→=0即⎩⎪⎨⎪⎧3x 1-4y 1=0,3x 1+y 1+3z 1=0,所以可取m =(4,3,-5).设n =(x 2,y 2,z 2)是平面ACD ′的法向量, 则⎩⎪⎨⎪⎧n ·AC ―→=0,n ·AD ′―→=0,即⎩⎪⎨⎪⎧6x 2=0,3x 2+y 2+3z 2=0,所以可取n =(0,-3,1). 于是cos 〈m ,n 〉=m ·n |m||n|=-1450×10=-7525.故sin 〈m ,n 〉=29525. 因此二面角B -D ′A -C 的正弦值是29525.。
高中数学必修二 选修2-1 知识点归纳

必修二 知识点归纳: 第一章 空间几何体1. 棱柱 直棱柱:侧棱垂直于底面的棱柱。
(正棱柱: 底面为正多边形的直棱柱。
)斜棱柱:侧棱不垂直于底面的棱柱。
(平行六面体:底面为平行四边形的斜棱柱。
) 棱锥 正棱锥:底面为正多边形,顶点在底面的投影为底面的中心的棱锥。
斜棱锥:以上条件之一不满足的棱锥。
棱台 正棱台:由平行于底面的平面截正棱锥得到的棱台。
斜棱台:由平行于底面的平面截斜棱锥得到的棱台。
四面体:三棱锥正四面体:六条棱均相等的三棱锥。
空间四边形ABCD :三棱锥,其中有四条边:AB 、BC 、CD 、DA ;两条对角线:AC 、BD 。
2. 三视图(会识别,会画图)3. 斜二测画法画直观图:见《名师面对面》P10:3题;P12:6、7题4. S 圆柱侧=2πrl S 圆柱表=2πrl+2πr 2S 圆锥侧=πrl S 圆锥表=πrl+πr 2S 圆台侧=π(r +r ′)l S 圆台表=π(r +r ′)l +πr 2+πr′2 其中r 为底面半径,l 为母线长 5. V 柱体=Sh V 锥体=13Sh V 台体=13(S+√SS′+S’)h 其中S ,S’为底面积,h 为高 6. S 球表=4πR 2 V 球=43πR 37. 球内接正方体棱长a 与球半径R 关系:2R=√3a 注意:将《名师面对面》P12-21重做一遍。
第二章:点、直线、平面之间的位置关系1.平面的概念,画法,与点的属于关系,与直线的包含关系。
2.三个公理:(1)如果一条直线上的两点在同一个平面内,那么这条直线在此平面内。
(2)不共线三点确定一个平面。
推论:①一条直线与直线外一点确定一个平面。
②两条平行直线确定一个平面。
③两条相交直线确定一个平面。
(3)如果两个不重合平面有一个公共点,那么它们有且仅有一条过该点的公共直线。
注意:将《名师面对面》P22-24重做一遍。
3.空间两直线的位置关系:_____、_____、_____。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
若p ⇒q,q p,则p 是q 的充分不必要条件; 若p q,q ⇒p,则p 是q 的必要不充分条件;
若p ⇒q,q ⇒p,则p 是q 的充要条件;
若p q,q p,则p 是q 的既不充分也不必要条件. 第一章 常用逻辑用语
p q p q ⎧⎪⎨
⎪⎩定义:用语言、符号或式子表达的,可以判断真假的陈述句
1、命题形式:“若,则”.其中叫做命题的条件,叫做命题的结论
2、四种命题的关系:
结论:原命题和逆否命题、逆命题和否命题真假性相同
3、充分条件和必要条件
“若p,则q ”为真命题,则p ⇒q ,就说p 是q 的充分条件,q 是p 的必要条件。
4、充分必要条件的集合判断法
{|()}{|()}A x p x B x q x ==成立,成立
,A
B 若则p 是q 的充分不必要条件;,A 若B 则p 是q 的必要不充分条件;,A B =若则p 是q 的充要条件。
5、简单的逻辑联结词
(1)“且”,∧p q ,有假则假;(2)“或”,∨p q ,有真则真;(3)“非”,⌝p ,真假相反。
6、命题的否定和否命题
命题的否定:条件不变,只否定结论; 否命题:条件和结论都否定。
7、全称量词和全称命题
全称量词:所有的、任意一个、一切、每一个、任给… 符号:∀ 全称命题:∀x ∈M,p(x)(读作:对任意x 属于M ,有p(x)成立) 全称命题的否定:∃x 0∈M,⌝p(x 0) 8、存在量词和特称命题
存在量词:存在一个、至少有一个、有些、有的、对某个… 符号:∃ 特称命题:∃x 0∈M,p(x 0)(读作:存在M 中的元素x 0,使p(x 0)成立) 特称命题的否定:∀x ∈M,⌝p(x)
第二章 圆锥曲线与方程
1、曲线与方程: 直角坐标系中,若曲线C 上的点的坐标都是方程f(x,y)=0的解,且以方程f(x,y)=0的解为坐标的点都在曲线C 上,则方程是曲线的方程,曲线是方程的曲线。
2、椭圆的定义:
我们把平面与两个定点12,F F 的距离的和等于常数(大于|12F F |)的点的轨迹叫做椭圆。
两个定点12,F F 叫做椭圆的焦点.|12F F |叫做焦距。
122||||MF MF a += (2a>2c ) 12||2F F c =
若2a=2c,则点M的轨迹是线段12
F F;若2a<2c,则点M的轨迹不存在。
4、若已知两点求椭圆方程,若椭圆的焦点位置不确定,可设为一般方程221(0,0,)
mx ny m n m n
+=>>≠
5、椭圆上的点到焦点的距离最大和最小的点都是长轴的端点,最大值=a+c,最小值=a-c。
6、直线与椭圆位置关系
联立直线与椭圆方程,代入法消y,得关于x的一元二次方程20
Ax Bx C
++=,求24
B AC
∆=-
若∆>0,则直线与椭圆相交,有两个交点;若∆=0,则直线与椭圆相切,有一个交点;
若∆<0,则直线与椭圆相离,没有交点;
7、弦长公式(适用于椭圆、双曲线、抛物线和圆)
若斜率为k的直线与椭圆相交于A,B两点,设
1122
(,),(,)
A x y
B x y,则
弦长||
AB==
8、中点弦问题(点差法)
若直线交椭圆
22
22
1
x y
a b
+=于A,B两点,且AB的中点为00
(,)
M x y,则设
1122
(,),(,)
A x y
B x y;
12
12
2
2
x x
x
y y
y
+
⎧
=
⎪
⎨+
⎪=
⎩
12
12
AB
y y
k
x x
-
=
-
把点A,B 代入椭圆方程,得:22
1122121212122222
22221()()()()01
x y x x x x y y y y a b x y a b a
b ⎧+=⎪+-+-⇒+=⎨⎪+=⎩
9、双曲线的定义
把平面与两个定点F 1,F 2的距离的差的绝对值等于非零常数(小于|F 1F 2|)的点的轨迹叫做双曲线. |MF 1|-|MF 2||=2a (0<2a<|F 1F 2|) |F 1F 2|=2c
若2a=2c ,则点M 的轨迹是以F 1,F 2为端点的两条射线; 若2a>2c ,则点M 的轨迹不存在。
11、抛物线的定义
把平面与一定点F 和一条定直线l (l 不经过点F )距离相等的点的轨迹叫做抛物线。
点F 叫做抛物线的焦点,直线l 叫做准线。
焦点 (,0)2p
F (,0)
2p
F - (0,)
2p F (0,)
2p F -
准线 2
p x =-
2
p x =
2p y =-
2p y =
顶点 原点(0,0)
对称轴 x 轴
y 轴
围 0,x y R ≥∈ 0,x y R ≤∈
0,y x R ≥∈
0,y x R ≤∈
离心率
e=1
抛物线22(0)y px p =>的焦半径、焦点弦、通径: 焦半径:1||2
p
AF x =+
焦点弦:12||AB x x p =++
通径:垂直对称轴的焦点弦,长度为2p
第三章 空间向量与立体几何
1、共线向量:(0)a b b a b λ≠⇔=
2、向量的数量积:||||cos ,a b a b a b =<>
3、空间向量的坐标运算:
111222121212
121212222
111(,,)(,,)
,,00
||a x y z b x y z a b a b x x y y z z a b a b x x y y z z a x y z λλλλ==⇔=⇔===⊥⇔=⇔++==++ 4、向量法证明平行和垂直
线面平行:直线与法向量垂直;线面垂直:直线与法向量平行; 面面平行:法向量互相平行;面面垂直:法向量互相垂直。
5、异面直线所成角
,a b θ两异面直线所成角为,它们的方向向量为
||cos |cos ,|||||a b a b a b θ=<>=
6、直线与平面所成角
||
sin |cos ,|||||a n a n a n θ=<>=
7、二面角的平面角
||
|cos ||cos ,|||||m n m n m n θ=<>=
8、点到平面的距离
AB 是平面α的一条斜线,A 在平面α外,B 在平面α,n 为α的法向量,则点A 到平面α的距离为:
||||AB n d n =。