最新整理初三数学教案一元二次方程应用复习教案.docx

合集下载

最新整理初三数学教案中考数学一元二次方程复习.docx

最新整理初三数学教案中考数学一元二次方程复习.docx

最新整理初三数学教案中考数学一元二次方程复习章节第二章课题课型复习课教法讲练结合教学目标(知识、能力、教育)1.能够利用一元二次方程解决有关实际问题并能根据问题的实际意义检验结果的合理性,进一步培养学生分析问题、解决问题的意识和能力.2.了解一元二次方程及其相关概念,会用配方法、公式法、分解因式法解简单的一元二次方程,并在解一元二次方程的过程中体会转化等数学思想.3.经历在具体情境中估计一元二次方程解的过程,发展估算意识和能力.教学重点会用配方法、公式法、分解因式法解简单的一元二次方程。

教学难点根据方程的特点灵活选择解法。

并在解一元二次方程的过程中体会转化等数学思想.教学媒体学案教学过程一:课前预习(一):知识梳理1.一元二次方程:只含有一个,且未知数的指数为的整式方程叫一元二次方程。

它的一般形式是(其中、)它的根的判别式是△=;当△>0时,方程有实数;当△=0时,方程有实数根;当△<0时,方程有实数根;一元二次方程根的求根公式是、(其中)2.一元二次方程的解法:⑴配方法:配方法是一种以配方为手段,以开平方为基础的一种解一元二次方程的方法.用配方法解一元二次方程:ax2+bx+c=0(k≠0)的一般步骤是:①化二次项系数为1,即方程两边同除以二次项系数;②移项,即使方程的左边为二次项和一次项,右边为常数项;③配方,即方程两边都加上的绝对值一半的平方;④化原方程为的形式;⑤如果就可以用两边开平方来求出方程的解;如果n=<0,则原方程无解.⑵公式法:公式法是用求根公式求出一元二次方程的解的方法。

它是通过配方推导出来的.一元二次方程的求根公式是注意:用求根公式解一元二次方程时,一定要将方程化为。

⑶因式分解法:用因式分解的方法求一元二次方程的根的方法叫做.它的理论根据是两个因式中至少要有一个等于0,因式分解法的步骤是:①将方程右边化为0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.3.一元二次方程的注意事项:⑴在一元二次方程的一般形式中要注意,强调a≠0.因当a=0时,不含有二次项,即不是一元二次方程.如关于x的方程(k2-1)x2+2kx+1=0中,当k=±1时就是一元一次方程了.⑵应用求根公式解一元二次方程时应注意:①化方程为一元二次方程的一般形式;②确定a、b、c的值;③求出b2-4ac的值;④若b2-4ac≥0,则代人求根公式,求出x1,x2.若b2-4a<0,则方程无解.⑶方程两边绝不能随便约去含有未知数的代数式.如-2(x+4)2=3(x+4)中,不能随便约去(x+4)⑷注意:解一元二次方程时一般不使用配方法(除特别要求外)但又必须熟练掌握,解一元二次方程的一般顺序是:直接开平方法→因式分解法→公式法.(二):课前练习1.用直接开平方法解方程,得方程的根为()A.B.C.D.2.方程的根是()A.0B.1C.0,-1D.0,13.设的两根为,且>,则=。

初中数学教案设计:一元二次方程的应用最新6篇

初中数学教案设计:一元二次方程的应用最新6篇

初中数学教案设计:一元二次方程的应用最新6篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如合同协议、条据文书、策划方案、总结报告、党团资料、读书笔记、读后感、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as contract agreements, documentary evidence, planning plans, summary reports, party and youth organization materials, reading notes, post reading reflections, essay encyclopedias, lesson plan materials, other sample essays, etc. If you want to learn about different formats and writing methods of sample essays, please stay tuned!初中数学教案设计:一元二次方程的应用最新6篇作为一名无私奉献的老师,时常会需要准备好教案,教案有利于教学水平的提高,有助于教研活动的开展。

《一元二次方程》数学教案(优秀5篇)

《一元二次方程》数学教案(优秀5篇)

《一元二次方程》数学教案(优秀5篇)元二次方程教案篇一一、素质教育目标(一)知识教学点:1.使学生了解一元二次方程及整式方程的意义;2.掌握一元二次方程的一般形式,正确识别二次项系数、一次项系数及常数项.(二)能力训练点:1.通过一元二次方程的引入,培养学生分析问题和解决问题的能力;2.通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性.(三)德育渗透点:由知识来源于实际,树立转化的思想,由设未知数列方程向学生渗透方程的思想方法,由此培养学生用数学的意识.二、教学重点、难点1.教学重点:一元二次方程的意义及一般形式.2.教学难点:正确识别一般式中的“项”及“系数”.三、教学步骤(一)明确目标1.用电脑演示下面的操作:一块长方形的薄钢片,在薄钢片的四个角上截去四个相同的小正方形,然后把四边折起来,就成为一个无盖的长方体盒子,演示完毕,让学生拿出事先准备好的长方形纸片和剪刀,实际操作一下刚才演示的过程.学生的实际操作,为解决下面的问题奠定基础,同时培养学生手、脑、眼并用的能力.2.现有一块长80cm,宽60cm的薄钢片,在每个角上截去四个相同的小正方形,然后做成底面积为1500cm2的无盖的长方体盒子,那么应该怎样求出截去的小正方形的边长?教师启发学生设未知数、列方程,经整理得到方程x2-70x+825=0,此方程不会解,说明所学知识不够用,需要学习新的知识,学了本章的知识,就可以解这个方程,从而解决上述问题.板书:“第十二章一元二次方程”.教师恰当的语言,激发学生的求知欲和学习兴趣.(二)整体感知通过章前引例和节前引例,使学生真正认识到知识来源于实际,并且又为实际服务,学习了一元二次方程的知识,可以解决许多实际问题,真正体会学习数学的意义;产生用数学的意识,调动学生积极主动参与数学活动中.同时让学生感到一元二次方程的解法在本章中处于非常重要的地位.(三)重点、难点的学习及目标完成过程1.复习提问(1)什么叫做方程?曾学过哪些方程?(2)什么叫做一元一次方程?九年级数学《一元二次方程》教案篇二教学目标:知识与技能目标:经历探索一元二次方程概念的过程,理解一元二次方程中的二次项、一次项、常数项;了解一元二次方程的一般形式,并会将一元二次方程转化成一般形式。

九年级数学上册《一元二次方程的应用》教案、教学设计

九年级数学上册《一元二次方程的应用》教案、教学设计
4.掌握一元二次方程在几何、物理、经济等领域的实际应用,提高学生将数学知识应用于解决实际问题的能力。
(二)过程与方法
在本章节的教学过程中,教师应注重以下方面:
1.创设生活情境,引导学生从实际问题中发现一元二次方程,培养学生观察、思考、分析问题的能力;
2.采用启发式教学方法,引导学生通过自主探究、合作交流等方式,掌握一元二次方程的求解方法,提高学生的自主学习能力和团队协作能力;
7.课后作业,巩固成果
课后布置适量、具有针对性的作业,让学生在课后巩固所学知识,提高解题能力。
四、教学内容与过程
(一)导入新课
1.教学开始时,通过一个与学生生活密切相关的实际问题引入新课:“一块正方形菜地的面积比一块长方形菜地少24平方米,已知正方形菜地的边长比长方形菜地的长少4米,求两块菜地的面积。”
针对以上学情,教师在教学过程中应关注以下几点:
1.注重培养学生的抽象思维能力,通过具体实例引导学生逐步认识一元二次方程;
2.精心设计教学活动,让学生在实践中掌握解题方法,提高解题策略;
3.结合实际情境,培养学生的数学建模能力,使学生能够将所学知识应用于解决实际问题;
4.针对不同学生的认知水平,因材施教,激发学生的学习兴趣,提高学生的学习积极性。
d.应用题:结合实际情境,求解一元二次方程。
2.教师巡回指导,解答学生的疑问,针对学生存在的问题进行讲解。
(五)总结归纳
1.让学生回顾本节课所学的一元二次方程的概念、求解方法及其在实际问题中的应用。
2.教师引导学生总结解题规律,强调一元二次方程求解过程中需要注意的细节问题。
3.布置课后作业,要求学生课后巩固所学知识,提高解题能力。
2.让学生尝试用已学过的知识解决问题,引导学生发现需要用到一个新的数学工具——一元二次方程。

最新整理初三数学教案一元二次方程学案_3.docx

最新整理初三数学教案一元二次方程学案_3.docx

最新整理初三数学教案一元二次方程学案学习目标1.认识一元二次,会辨认一元二次方程。

2.学会把一元二次方程化成一般形式,并能找出二次方程系数、一次项系数和常数项。

3.感悟一元二次方程与实际生活的密切关系。

学习过程一.知识回顾:一元一次方程:分式方程:二.自主探究:(一)一元二次方程的概念1.自学课本72页内容,得到的三个方程分别是:①②③2.整理这三个方程,使方程的右边为0,并左边按x的将幂排列。

①②③这三个方程的共同特点:3.像这样的方程叫做一元二次方程。

注意:1、一元二次方程的特征:整式方程;只含一个未知数;未知数的最高次数是2且其系数不为0。

对应练习:1.下面的方程是一元二次方程吗?为什么?(1)x2-9=0(2)y2-4y=0(3)1/3x-x2=0(4)4s(s-1)=4s2+2(5)3x+x2-1=0(6)3x3-4x2+1=02.关于x的方程(a-1)x2-3ax+5=0是一元二次方程,这时的取值范围是___________(二)一元二次方程的一般形式一元二次方程的一般形式为___________________,二次项是________,一次项是________,常数项是_______,其中a称为__________b称为__________.注意:1、几种不同的表示形式:①ax2+bx+c=0(a≠0,b≠0,c≠0)②ax2+bx=0(a≠0,b≠0,c=0)③ax2+c=0(a≠0,b=0,c≠0)④ax2=0(a≠0,b=0,c=0)对应练习:1.一元二次方程3x2=5x的一般形式为____________,二次项系数为__________一次项系数为__________常数项为__________.2.将下列一元二次方程化为一般形式,并分别指出它的二次项系数,一次项系数,常数项。

①3x(x+1)=4(x-2)②(x+3)2=(x+2)(4x-1)③2(y+5)(y-1)=y2-8④2t=(t+1)2三.课堂小结四.、展示反馈(亮出你的风采!)1、判一判,下列方程哪些是一元二次方程?(1)7x2-6x=0(2)2x2-5xy+6y=0(3)2x2-x-1=0(4)4y2=0(5)x2+2x-3=1+x2(6)ax2+bx+c=02.下列方程是关于x的一元二次方程的是()A:ax2+bx+c=0B:k2x+bk+6+0C:3x2+2x+1=0D(m2+3)x2+3x-2=03.方程(3x-1)(2x+4)=1化为一般形式是其中二次项系数为_________,一次项系数为______,常数项为_______.4、将方程(3x+2)2=4(x-3)2化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项.5.小明家有一块长150㎝,宽100㎝的矩形地毯,为了使地毯美观,小明请来了工匠在地毯的四周镶上宽度相同的花色地毯,镶完后的面积是原地毯面积的2倍,若设花色地毯的宽为x㎝,则根据题意,可列方程为____________________,并化成一般形式。

人教版九年级数学上册《一元二次方程的复习》教学设计

人教版九年级数学上册《一元二次方程的复习》教学设计

《一元二次方程的复习》教学设计复习目标:掌握一元二次方程的概念,会用配方法、公式法、因式分解法解一元二次方程,根的判别式、根与系数的关系的应用、以及用一元二次方程的知识解决实际问题。

教学重点、难点:1. 一元二次方程的概念、解一元二次方程、根的判别式、根与系数的关系的应用、解应用题。

2.一元二次方程的综合应用。

教学过程:复习回顾一(概念)1.-元二次方程的定义:只含有_______个未知数,并且未知数的最高次数是_______的_______式方程叫做一元二次方程.2.一元二次方程的一般形式是________(a__0),其中a x2叫做_______项,a是_______,bx叫做_______,b是_______,c叫做_______项.自我尝试1、判断下列方程是不是一元二次方程1、(x-1)2=42、x2-2x=83、x2+1=1x4、x2=y+15、x3-2x2=16、ax2 + bx + c=12、将3x(x-1)=5(x+2)化为一般形式为_______复习回顾二(解法)一元二次方程的解法包括_______ _______ ______________1.直接开平方法:(1)x2=81 (2)(x−1)2-49=02.配方法:(1)x2+6 x+4=0 (2)2x2−6 x−3=03.公式法:一元二次方程ax²+bx+c=0(a≠0)的根的判别式△=________.(1)当△>0时,方程有两个_______的实数根.(2)当△=0时,方程有两个_______的实数根.(3)当△<0时,方程没有实数根.(4)已知关于x的一元二次方程(k-5)x2-4 x -1=0有两个实数根,那么k满足的条件为_____(5)求根公式:方程ax²+bx+c=0(a≠0),当b2-4ac_______0时,x=________.(6)用公式法解方程: 5x+2=3x24.因式分解法因式分解法包括_______ ________ _________用适当的方法解下列方程:(1)x(2x+5)=4x+10(2) (2x-1)2=4(x+3)2(3) x²-4x+3=0复习回顾三(根与系数的关系)若方程ax²+bx+c=0(a 0)的根为x1x2,则x1+x2= x1.x2=练习1、已知a. b是一元二次方程x2-2x-1=0的两个实数根,则代数式(a+b).(a+b+2)+ab= ________2、已知方程:5x2+kx-6=0的一个根是2,则k=_____,它的另一个根是______.3、方程2x²-mx-m²=0有一个根为–1,则m= ,另一个根为 .补偿提高训练选择适当的方法解下列方程(1)(2x+1)2=64(2)(5x-4)2 -(4-5x)=0(3)x2-4x-10=0(4)3x2-4x-5=0达标检测,归纳总结1.关于x的方程k x2+4x-1=0有实数根则k的取值为_____A k≥ -4B k≥-4且k≠0C K>-4D K≤-42.关于x的方程x2+mx-n=0的两根为-2和-1,则m=_____,n=_____3.用合适的方法解方程(1) (x−1)2=16 (3) x2+10x+25=0(2) (3x−4)2=9x-12 (4) x2+10x+16=0。

九年级数学《一元二次方程》教案(5篇)

九年级数学《一元二次方程》教案(5篇)

九年级数学《一元二次方程》教案(5篇)元二次方程教案篇一教学目标掌握二次函数y=ax2+bx+c的图象与x轴的交点个数与一元二次方程ax2+bx+c=0的解的情况之间的关系。

重点、难点:二次函数y=ax2+bx+c的图象与一元二次方程ax2+bx+c=0的根之间关系的探索。

教学过程:一、情境创设一次函数y=x+2的图象与x轴的交点坐标问题1.任意一次函数的图象与x轴有几个交点?问题2.猜想二次函数图象与x轴可能会有几个交点?可以借助什么来研究?二、探索活动活动一观察在直角坐标系中任意取三点A、B、C,测出它们的纵坐标,分别记作a、b、c,以a、b、c为系数绘制二次函数y=ax2+bx+c的图象,观察它与x轴交点数量的情况;任意改变a、b、c值后,观察交点数量变化情况。

活动二观察与探索如图1,观察二次函数y=x2-x-6的图象,回答问题:(1)图象与x轴的交点的坐标为A(,),B(,)(2)当x=时,函数值y=0。

(3)求方程x2-x-6=0的解。

(4)方程x2-x-6=0的解和交点坐标有何关系?活动三猜想和归纳(1)你能说出函数y=ax2+bx+c的图象与x轴交点个数的其它情况吗?猜想交点个数和方程ax2+bx+c=0的根的个数有何关系。

(2)一元二次方程ax2+bx+c=0的根的个数由什么来判断?这样我们可以把二次函数y=ax2+bx+c的图象与x轴交点、一元二次方程ax2+bx+c=0的实数根和根的判别式三者联系起来。

三、例题分析例1.不画图象,判断下列函数与x轴交点情况。

(1)y=x2-10x+25(2)y=3x2-4x+2(3)y=-2x2+3x-1例2.已知二次函数y=mx2+x-1(1)当m为何值时,图象与x轴有两个交点(2)当m为何值时,图象与x轴有一个交点?(3)当m为何值时,图象与x轴无交点?四、拓展练习1、如图2,二次函数y=ax2+bx+c的图象与x轴交于A、B。

(1)请写出方程ax2+bx+c=0的根(2)列举一个二次函数,使其图象与x轴交于(1,0)和(4,0),且适合这个图象。

初三数学一元二次方程教案优秀5篇

初三数学一元二次方程教案优秀5篇

初三数学一元二次方程教案优秀5篇数学《一元二次方程》教案设计篇一教学目标1、了解整式方程和一元二次方程的概念;2、知道一元二次方程的一般形式,会把一元二次方程化成一般形式。

3、通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。

教学重点和难点:重点:一元二次方程的概念和它的一般形式。

难点:对一元二次方程的一般形式的正确理解及其各项系数的确定。

教学建议:1、教材分析:1)知识结构:本小节首先通过实例引出一元二次方程的概念,介绍了一元二次方程的一般形式以及一元二次方程中各项的名称。

2)重点、难点分析理解一元二次方程的定义:是一元二次方程的重要组成部分。

方程,只有当时,才叫做一元二次方程。

如果且,它就是一元二次方程了。

解题时遇到字母系数的方程可能出现以下情况:(1)一元二次方程的条件是确定的,如方程( ),把它化成一般形式为,由于,所以,符合一元二次方程的定义。

(2)条件是用“关于的一元二次方程”这样的语句表述的,那么它就隐含了二次项系数不为零的条件。

如“关于的一元二次方程”,这时题中隐含了的条件,这在解题中是不能忽略的。

(3)方程中含有字母系数的项,且出现“关于的方程”这样的语句,就要对方程中的字母系数进行讨论。

如:“关于的方程”,这就有两种可能,当时,它是一元一次方程;当时,它是一元二次方程,解题时就会有不同的结果。

元二次方程的应用篇二12.6 一元二次方程的应用(三)一、素质教育目标(一)知识教学点:使学生会用列一元二次方程的方法解决有关增长率问题。

(二)能力训练点:进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力,培养学生用数学的意识。

二、教学重点、难点1.教学重点:学会用列方程的方法解决有关增长率问题。

2.教学难点:有关增长率之间的数量关系。

下列词语的异同;增长,增长了,增长到;扩大,扩大到,扩大了。

三、教学步骤(一)明确目标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新整理初三数学教案一元二次方程应用复习教案一元二次方程应用复习教案
教学
目标
知识与能力:1.理解一元二次方程根的判别式。

2.掌握一元二次方程的根与系数的关系
3.同学们掌握一元二次方程的实际应用.了解一元二次方程的分式方程。

过程与方法:培养学生的逻辑思维能力以及推理论证能力。

情感与价值观:渗透分类的数学思想和数学的简洁美;培养学生的协作精神。

重、难点
重点:根的判别式和根与系数的关系及一元二次方程的应用。

难点:一元二次方程的实际应用。

一、导入新课、揭示目标
1.理解一元二次方程根的判别式。

2.掌握一元二次方程的根与系数的关系
3.掌握一元二次方程的实际应用.
二、自学提纲:
一.主要让学生能理解一元二次方程根的判别式:
1.判别式在什么情况下有两个不同的实数根?
2.判别式在什么情况下有两个相同的实数根?
3.判别式在什么情况下无实数根?
二.ax2+bx+c=o(a≠0)的两个根为x1.x2那么
X1+x2=-x1x2=
三.一元二次方程的实际应用。

根据不同的类型的问题.列出不同类型的方程.
三.合作探究.解决疑难
例1已知关于x的方程x2+2x=k-1没有实数根.试判别关于x的方程x2+kx=1-k的根的情况。

巩固提高:
已知在等腰中,BC=8.AB.AC的长是关于x的方程x2-10x+m=0的两个实数根.求的周长
例题2:
.已知:x1.x2是关于x的方程x2+(2a-1)x+a2=0的两个实数根.且(x1+2)(x2+2)=11.求a的值。

.巩固提高:
已知关于x的一元二次方程x2+(4m+1)x+2m-1=0.
(1)求证:不论m为任何实数.方程总有两个不相等的实数根;
(2)若方程两根为x1.x2.且满足
求m的值。

例3某电脑销售商试销一品牌电脑(出厂为3000元/台),以4000元/台销售时,平均每月销售100台.现为了扩大销售,销售商决定降价销售,在原来1月份平均销售量的基础上,经2月份的市场调查,3月份调整价格后,月销售额达到576000元.已知电脑价格每台下降100元,月销售量将上升10台,
(1)求1月份到3月份销售额的平均增长率:
(2)求3月份时该电脑的销售价格.
练习:某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元。

为了扩大销售,增加利润,商场决定采取适当降价措施。

经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。

1)若商场平均每天要赢利1200元,则每件衬衫应降价多少元?
则降价多少元?
四、小结这节课同学有什么收获?同学互相交流?
五、布置作业:课前课后P10-12。

相关文档
最新文档