绝对值知识讲解
七年级绝对值的知识点

七年级绝对值的知识点在初中数学中,绝对值是一个非常基础且重要的概念。
在七年级阶段,学生就需要掌握绝对值的概念及其相关应用了。
一、绝对值的概念绝对值是一个实数在不考虑它的正负号的情况下的非负值。
通俗地说,就是数轴上一个点到原点的距离。
我们用两个竖线“| | ”表示绝对值。
例如,|3| = 3,|-5| = 5,|0| = 0。
二、绝对值的性质①非负性:对于任意实数a,|a| ≥ 0。
②正负性:若a > 0,则|a| = a;若a < 0,则|a| = -a。
③三角不等式:对于任意实数a和b,有|a+b| ≤ |a| + |b|。
④同号相消:对于任意实数a和b,若ab > 0,则|a| < |b| 等价于 |a| - |b| < 0。
三、绝对值的应用1、求解不等式① |a| > b 等价于 a > b 或 a < -b。
② |a| < b 等价于 -b < a < b。
2、求绝对误差和相对误差在实际问题中,测量值与真实值之间会有误差。
绝对误差指测量值与真实值之间的差值的绝对值,相对误差指绝对误差与真实值之比。
例如,某人测量其自行车轮径为63.8公分,而实际值为64公分,则它的绝对误差为|63.8-64|=0.2,相对误差为0.2/64≈0.003。
四、绝对值的计算①加减法:|a ± b| ≤ |a| + |b|。
②乘法:|ab| = |a|×|b|。
五、实例分析例一:求-2|-3|-4|的值。
解:先求出|-3|和|-4|的值,分别为3和4,然后将-2与3和4分别相乘,得到-6和-8,最后将-6和-8相乘,得到48,即-2|-3|-4| = 48。
例二:求解|2x + 3| = 9。
解:将式子转化为两个方程:2x + 3 = 9 或 2x + 3 = -9。
解得x = 3 或 x = -6。
总之,在数学学习中,绝对值是十分重要的。
绝对值知识讲解

绝对值知识讲解-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII绝对值知识讲解一、知识框架图二、基础知识1、绝对值的概念(1)定义:一个数的绝对值就是数轴上表示数a 的点与原点的距离。
数a 的绝对值记作a ,读作a 的绝对值。
(2)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零。
(3)绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的距离。
离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小。
(4)绝对值的非负性:由于距离总是正数或0,故有理数的绝对值不可能是负数,即对于任意有理数a ,总有a ≥0.2、绝对值的求法 绝对值是一种运算,这个运算符号是“”。
求一个数的绝对值,就是想办法去掉这个绝对值符号,对于任意有理数a ,有:a (a >0)(1) 0(a=0)a (a <0)a (a ≥0)(2)a -(a <0) a (a >0)(3)a -(a ≤0)这就说,去掉绝对值符号不是随便就能完成的,要看绝对值里面的数是什么性质的数。
若绝对值里面的数是非负数,那么这个数的绝对值就是它本身,此时绝对值“”符号就相当于“( )”的作用,如125--=)(125--=415=-。
由于这里2-1是正数,故去掉绝对值符号后12-=(2-1);若绝对值里面的数是负数,那么这个负数的绝对值就是这个负数的相反数这时去掉绝对值时,就要把绝对值里面的数添上括号,再在括号前面加上负号“-”。
3、利用绝对值比较两个数的大小两个负数,绝对值大的反而小。
比较两个负数的大小,可按照下列步骤进行:(1)先求出两个负数的绝对值;(2)比较这两个绝对值的大小;(3)写出正确的判断结果。
三、例题讲解例1求下列各数的绝对值(1)21;(2)31-;(3)434-;(4)331 分析:运用绝对值的意义来求解。
解:(1)21=21;(2)31-=3131=--)(;(3)434434434=--=-)(;(4)3313=31 点评:解答本题首先要弄清楚绝对值的意义,准确列出代数式,再运用绝对值的意义求出结果,切不可写作31-=31-=31. 例2计算:(1)2.1--;(2))(3---;(3)023+---. 分析:本题关键是确定绝对值里面的数的性质,再按照绝对值的意义去掉绝对值负号。
七年级数学上册《绝对值》知识点整理

七年级数学上册《绝对值》知识点整理绝对值绝对值是数学中的一个重要概念,用来表示一个数与零的距离。
在七年级数学上册中,我们学习了关于绝对值的基本性质和应用。
本文将对这些知识点进行整理和总结。
一、绝对值的定义与表示方法绝对值的定义:对于任意实数a,假设a≥0,那么a的绝对值就是a;假设a<0,那么a的绝对值就是-a。
绝对值的表示方法:用两个竖线将数值括起来,例如|3|,表示数3的绝对值。
二、绝对值的基本性质1. 非负性:对于任意实数a,|a|≥0,即绝对值大于等于零。
2. 自身性:对于任意实数a,如果a≥0,则|a|=a;如果a<0,则|a|=-a。
3. 三角不等式:对于任意实数a和b,有|a+b|≤|a|+|b|。
4. 相反数性:对于任意实数a,有|a|=|-a|。
5. 乘法性:对于任意实数a和b,有|a·b|=|a|·|b|。
三、绝对值的应用1. 求绝对值问题:通过绝对值的定义和基本性质,可以求解带有绝对值的方程和不等式,例如:(1) |2x-1|=5,可以拆分为2x-1=5或2x-1=-5,进而解得x=3或x=-2。
(2) |3x+4|<7,可以拆分为-7<3x+4<7,再解出不等式,得到-11/3<x<1。
2. 表示范围问题:绝对值也常用来表示数的范围。
(1) 对于所有实数x,当|x-5|<3时,x的取值范围是(2, 8)。
(2) 对于所有实数x和y,当|y|≤2时,表示平面上所有与原点距离不超过2的点的集合。
3. 复数的模问题:在复数的表示中,绝对值被称为复数的模。
复数的模定义为复数与原点之间的距离,例如,对于复数z=a+bi,其模表示为|z|=√(a²+b²)。
通过绝对值的性质,可以进行复数的模运算,例如:(1) |(2+3i)·(4-5i)| = |2+3i|·|4-5i| = √(2²+3²)·√(4²+(-5)²) = √4(2²+3²+4²+(-5)²) = 9。
绝对值(基础)知识讲解

,-0.3,0,在数轴上位置距原点有多少个单位长度,这个数字就是各数的绝对值.还可以用绝对值法那么来求解.【答案与解析】解法一:因为到原点距离是个单位长度,所以.因为-0.3到原点距离是0.3个单位长度,所以|-0.3|=0.3.因为0到原点距离为0个单位长度,所以|0|=0.因为到原点的距离是个单位长度,所以.解法二:因为,所以.因为-0.3<0,所以|-0.3|=-(-0.3)=0.3.因为0的绝对值是它本身,所以|0|=0.因为,所以.【总结升华】(),一种是利用绝对值的代数意义求解()2.一个数的绝对值等于2021,那么这个数是________.【答案】2021或-2021【解析】根据绝对值的定义,到原点的距离是2021的点有两个,从原点向左侧移动2021个单位长度,得到表示数-2021的点;从原点向右侧移动2021个单位长度,得到表示数2021的点.【总结升华】(1)利用概念;(2)假设一个数的绝对值是正数,那么此数有两个,且互为相反数.举一反三:【变式1】求绝对值不大于3的所有整数.【答案】绝对值不大于3的所有整数有-3、-2、-1、0、1、2、3.【高清课堂:绝对值比大小356845 典型例题3】【变式2】如果|x|=2,那么x=_____ _ ;如果|-x|=2,那么x=______.如果|x-2|=1,那么x=;如果|x|>3,那么x的范围是.【答案】;;1或3;或【变式3】数轴上的点A到原点的距离是6,那么点A表示的数为.【答案】6或-6类型二、比拟大小3.比拟以下有理数大小:(1)-1和0;(2)-2和|-3|;(3)和;〔4〕______【答案】(1)0大于负数,即-1<0;(2)先化简|-3|=3,负数小于正数,所以-2<3,即-2<|-3|;(3)先化简,,,即.(4)先化简,,这是两个负数比拟大小:因为,,而,所以,即<【解析】(2)、(3)、〔4〕先化简,再运用有理数大小比拟法那么.【点评】在比拟两个负数的大小时,可按以下步骤进行:先求两个负数的绝对值,再比拟两个绝对值的大小,最后根据“两个负数,绝对值大的反而小〞做出正确的判断.举一反三:【高清课堂:绝对值比大小356845典型例题2】【变式1】比大小:______ ;-|-3.2|______-(+3.2); 0.0001______-1000;______-1.384;-π______-3.14.【答案】>;=;>;>;<【变式2】〔山东临沂〕以下各数中,比-1小的数是〔〕A.0 B.1 C.-2 D.2【答案】C【变式3】数a在数轴上对应点的位置如下图,那么a,-a,-1的大小关系是().A.-a<a<-1 B.-1<-a<aC.a<-1<-a D.a<-a<-1【答案】C类型三、绝对值非负性的应用4. |2-m|+|n-3|=0,试求m-2n的值.【思路点拨】由|a|≥0即绝对值的非负性可知,|2-m|≥0,|n-3|≥0,而它们的和为0.所以|2-m|=0,|n-3|=0.因此,2-m=0,n-3=0,所以m=2,n=3.【答案与解析】因为|2-m|+|n-3|=0且|2-m|≥0,|n-3|≥0所以|2-m|=0,|n-3|=0即2-m=0,n-3=0所以m=2,n=3故m-2n=2-2×3=-4.【总结升华】假设几个数的绝对值的和为0,那么每个数都等于0,即|a|+|b|+…+|m|=0时,那么a=b=…=m=0.类型四、绝对值的实际应用5.正式足球比赛对所用足球的质量有严格的规定,下面是6个足球的质量检测结果,用正数记超过规定质量的克数,用负数记缺乏规定质量的克数.检测结果(单位:克):-25,+10,-20,+30,+15,-40.裁判员应该选择哪个足球用于这场比赛呢?请说明理由.【答案】因为|+10|<|+15|<|-20|<|-25|<|+30|<|-40|,所以检测结果为+10的足球的质量好一些.所以裁判员应该选第二个足球用于这场比赛.【解析】根据实际问题可知,哪个足球的质量偏离规定质量越小,那么足球的质量越好.这个偏差可以用绝对值表示,即绝对值越小偏差也就越小,反之绝对值越大偏差也就越大.【点评】绝对值越小,越接近标准.举一反三:【变式1】某企业生产瓶装食用调和油,根据质量要求,净含量(不含包装)可以有0.002L 的误差.现抽查6瓶食用调和油,超过规定净含量的升数记作正数,缺乏规定净含量的升数记作负数.检查结果如下表:请用绝对值知识说明:(1)哪几瓶是符合要求的(即在误差范围内的)?(2)哪一瓶净含量最接近规定的净含量?【答案】(1)绝对值不超过0.002的有4瓶,分别是检查结果为+0.0018,-0.0015,+0.0012,+0.0010的这四瓶.(2)第6瓶净含量与规定的净含量相差最少,最接近规定的净含量.【变式2】一只可爱的小虫从点O出发在一条直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,小虫爬行的各段路程(单位:cm)依次记为:+5,-3,+10,-8,-6,+12,-10,在爬行过程中,如果小虫每爬行1cm就奖励2粒芝麻,那么小虫一共可以得到多少粒芝麻?【答案】小虫爬行的总路程为:|+5|+|-3|+|+10|+|-8|+|-6|+|+12|+|-10|=5+3+10+8+6+12+10=54(cm).小虫得到的芝麻数为54×2=108(粒).。
绝对值(基础)知识讲解

绝对值(基础)【学习目标】1.掌握一个数的绝对值的求法和性质;2.进一步学习使用数轴,借助数轴理解绝对值的几何意义;3.会求一个数的绝对值,并会用绝对值比较两个负有理数的大小;4. 理解并会熟练运用绝对值的非负性进行解题.【要点梳理】要点一、绝对值1.定义:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作|a|. 要点诠释:(1)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即对于任何有理数a 都有:(2)绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小. (3)一个有理数是由符号和绝对值两个方面来确定的.2.性质:绝对值具有非负性,即任何一个数的绝对值总是正数或0.要点二、有理数的大小比较1.数轴法:在数轴上表示出这两个有理数,左边的数总比右边的数小. 如:a 与b 在数轴上的位置如图所示,则a <b .2.法则比较法:两个数比较大小,按数的性质符号分类,情况如下:利用绝对值比较两个负数的大小的步骤:(1)分别计算两数的绝对值;(2)比较绝对值的大小;(3)判定两数的大小.3. 作差法:设a 、b 为任意数,若a -b >0,则a >b ;若a -b =0,则a =b ;若a -b <0,a <b ;反之成立.4. 求商法:设a 、b 为任意正数,若1a b >,则a b >;若1a b =,则a b =;若1a b<,则a b <;反之也成立.若a 、b 为任意负数,则与上述结论相反.5. 倒数比较法:如果两个数都大于0,那么倒数大的反而小.【典型例题】类型一、绝对值的概念1.求下列各数的绝对值.112-,-0.3,0,132⎛⎫-- ⎪⎝⎭(0)||0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩【思路点拨】112,-0.3,0,132⎛⎫-- ⎪⎝⎭在数轴上位置距原点有多少个单位长度,这个数字就是各数的绝对值.还可以用绝对值法则来求解.【答案与解析】 解法一:因为112-到原点距离是112个单位长度,所以111122-=. 因为-0.3到原点距离是0.3个单位长度,所以|-0.3|=0.3.因为0到原点距离为0个单位长度,所以|0|=0. 因为132⎛⎫-- ⎪⎝⎭到原点的距离是132个单位长度,所以113322⎛⎫--= ⎪⎝⎭. 解法二:因为1102-<,所以111111222⎛⎫-=--= ⎪⎝⎭. 因为-0.3<0,所以|-0.3|=-(-0.3)=0.3.因为0的绝对值是它本身,所以|0|=0. 因为1302⎛⎫--> ⎪⎝⎭,所以113322⎛⎫--= ⎪⎝⎭. 【总结升华】求一个数的绝对值有两种方法:一种是利用绝对值的几何意义求解(如方法1),一种是利用绝对值的代数意义求解(如方法2),后种方法的具体做法为:首先判断这个数是正数、负数还是0.再根据绝对值的意义,确定去掉绝对值符号的结果是它本身,是它的相反数,还是0.从而求出该数的绝对值.2.已知一个数的绝对值等于2009,则这个数是________.【答案】2009或-2009【解析】根据绝对值的定义,到原点的距离是2009的点有两个,从原点向左侧移动2009个单位长度,得到表示数-2009的点;从原点向右侧移动2009个单位长度,得到表示数2009的点.【总结升华】已知绝对值求原数的方法:(1)利用概念;(2)利用数形结合法在数轴上表示出来.无论哪种方法都要注意若一个数的绝对值是正数,则此数有两个,且互为相反数. 举一反三:【变式1】求绝对值不大于3的所有整数.【答案】绝对值不大于3的所有整数有-3、-2、-1、0、1、2、3.【高清课堂:绝对值比大小 356845 典型例题3】【变式2】如果|x |=2,那么x =_____ _ ; 如果|-x |=2,那么x =______. 如果|x -2|=1,那么x = ; 如果|x |>3,那么x 的范围是 .【答案】2-2+或;2-2+或;1或3;x>3或x<-3【变式3】数轴上的点A 到原点的距离是6,则点A 表示的数为 .【答案】6或-6类型二、比较大小3.比较下列有理数大小:(1)-1和0; (2)-2和|-3| ;(3)13⎛⎫-- ⎪⎝⎭和12- ;(4)1--______0.1--【答案】(1)0大于负数,即-1<0;(2)先化简|-3|=3,负数小于正数,所以-2<3,即-2<|-3|;(3)先化简1133⎛⎫--= ⎪⎝⎭,1122-=,1123>,即1132⎛⎫--<- ⎪⎝⎭. (4)先化简11--=-,0.10.1--=-,这是两个负数比较大小:因为11-=,0.10.1-=,而10.1>,所以10.1-<-,即1--<0.1--【解析】(2)、(3)、(4)先化简,再运用有理数大小比较法则.【点评】在比较两个负数的大小时,可按下列步骤进行:先求两个负数的绝对值,再比较两个绝对值的大小,最后根据“两个负数,绝对值大的反而小”做出正确的判断. 举一反三:【高清课堂:绝对值比大小 356845 典型例题2】【变式1】比大小: 653-______763- ; -|-3.2|______-(+3.2); 0.0001______-1000; 1.38-______-1.384; -π______-3.14.【答案】>;=;>;>;<【变式2】(山东临沂)下列各数中,比-1小的数是( )A .0B .1C .-2D .2【答案】C【变式3】数a 在数轴上对应点的位置如图所示,则a ,-a ,-1的大小关系是( ).A .-a <a <-1B .-1<-a <aC .a <-1<-aD .a <-a <-1【答案】C 类型三、绝对值非负性的应用4. 已知|2-m |+|n -3|=0,试求m -2n 的值.【思路点拨】由|a |≥0即绝对值的非负性可知,|2-m |≥0,|n-3|≥0,而它们的和。
六年级数学绝对值知识点与经典例题含解析

绝对值的性质及化简【绝对值的几何意义】一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.数a 的绝对值记作a . (距离具有非负性)【绝对值的代数意义】一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.注意:① 取绝对值也是一种运算,运算符号是“| |”,求一个数的绝对值,就是根据性质去掉绝对值符号.② 绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相 反数;0的绝对值是0.③ 绝对值具有非负性,取绝对值的结果总是正数或0.④ 任何一个有理数都是由两部分组成:符号和它的绝对值,如:5−符号是负 号,绝对值是5.【求字母a 的绝对值】 ①(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪−<⎩②(0)(0)a a a a a ≥⎧=⎨−<⎩ ③(0)(0)a a a a a >⎧=⎨−≤⎩ 利用绝对值比较两个负有理数的大小:两个负数,绝对值大的反而小.绝对值非负性:|a|≥0如果若干个非负数的和为0,那么这若干个非负数都必为0. 例如:若0a b c ++=,则0a =,0b =,0c =【绝对值的其它重要性质】(1)任何一个数的绝对值都不小于这个数,也不小于这个数的相反数, 即a a ≥,且a a ≥−;(2)若a b =,则a b =或a b =−;(3)ab a b =⋅;a ab b =(0)b ≠; (4)222||||a a a ==;(5)||a|-|b|| ≤ |a ±b| ≤ |a|+|b|a 的几何意义:在数轴上,表示这个数的点离开原点的距离.a b −的几何意义:在数轴上,表示数a .b 对应数轴上两点间的距离.【去绝对值符号】基本步骤,找零点,分区间,定正负,去符号。
【绝对值不等式】(1)解绝对值不等式必须设法化去式中的绝对值符号,转化为一般代数式类型来解;(2)证明绝对值不等式主要有两种方法:A)去掉绝对值符号转化为一般的不等式证明:换元法、讨论法、平方法;B)利用不等式:|a|-|b|≦|a+b|≦|a|+|b|,用这个方法要对绝对值内的式子进行分拆组合、添项减项、使要证的式子与已知的式子联系起来。
初中数学-绝对值知识要点总结

答案不唯一。
绝对值知识总结
以上的知识总结务必深刻理解和熟记!
只有在这个前提下才可能灵活运用对付
各种题型。
绝对值知识总结
二、绝对值概念的十个易错点
1. 一个数的绝对值等于本身,则这个数一定是正数。
正确的说法是:一个数的绝对值等于本身,这个数是非负数。
分析:正数的绝对值等于其本身,但0的绝对值也等于其本身,
(1)0点分段法
1、若含有奇数个绝对值,处于中间的零点值/界点可以使代数式取最小值;
(2)固定法则法
2、若含有偶数个绝对值,处于中间2个零点值/界点之间的任意一个数
(包含零点值)都可以使代数式取最小值
绝对值知识总结
一、绝对值运用技术
4、大数、小数、相反数
无论大数和小数是正数还是负数,(大数-小数)永远为正,(小数-大数)永远为负
绝对值知识总结
一、绝对值运用技术
4、大数、小数、相反数
-a
相
反
数
问题:
1、-a 和a 哪个数大?
2、-a 读作“负a”,哪么它就是
一个小于等于0的非正数吗?
-1、-2是负数,而-a 却是正负数都有可能。
从这个分析我们看出来,负号“-”不仅仅可以表达一个数是负数;它还可以表达一
个数的相反数,而从这个意义上讲,它只表明是相反方向,而表明不了正负
|2a-b|去号后为:-(2a-b)
b为正c为负,b-c必然大于0
|b-c|去号后为:(b-c)
c到a的距离与a到0的距离差不多,c-3a明显是大数-小数, |c-3a|去号后为:(c-3a)
原式= -(2a-b)+(b-c)-(c-3a)
=-2a+b+b-c-c+3a
绝对值知识讲解及经典例题

第三讲绝对值【例2】若|a+1|=3,则a-3的值为().A.-1 B.-7 C.-7或-1 D.2或-4【解析】(方法1)因为|a+1|=3,由绝对值的几何意义可得,数轴上表示数(a+1)的点与原点的距离是3.故a+1=±3.所以a=3-1=2或a=-3-1=-4.所以a-3=2-3=-1或-4-3=-7.故选C.(方法2)由|a+1|=3,得|a-3+4|=3.所以a-3+4=±3.将a-3看作一个整体,得a-3=-3+4=-1或a-3=-3-4=-7.故选C.【答案】C.【例3】若|a|=2,|b|=6,a>0>b,则a+b=________.【解析】由|a|=2,a>0可得a=2.由|b|=6,b<0可得b=-6.所以a+b=2+(-6)=-4.【答案】-4.知识点2 有理数比较大小(1)利用有理数的性质比较大小①法则:正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小.②比较两个负数大小的步骤:a.分别求出这两个负数的绝对值;b.比较这两个绝对值的大小;c.根据“两个负数,绝对值大的反而小”作出正确判断.(2)利用数轴比较大小数轴上不同的两个点表示的数,左边的点表示的数总比右边的点表示的数小.【注意】比较两个数大小时,在比较两个数的绝对值的大小后,不要忘记比较问题中原数的大小.【例5】在,0,-2,,2这五个数中,最小的数为().A.0 B.C.-2 D.【解析】(方法一)正数大于负数;两个负数比较大小,绝对值大的反而小.由此可得-2最小.(方法二)把这几个数在数轴上表示出来,然后根据最左边的点所对应的数最小得出结论.【答案】C.【例6】把表示下列各数的点画在数轴上,再按从小到大的顺序,用“<”号把这些数连接起来:2,-0.5,0,1.5,-2.5.【解析】先把数2,-0.5,0,1.5,-2.5分别在数轴上表示出来,然后根据数轴上左边的点表示的数小于右边的点表示的数得出结论.【答案】由数轴可得,-2.5<-0.5<0<1.5<2 .【例7】已知a>0,b>0,且|a|>|b|,则a,-a,b,-b的大小关系是_______(用“<”号连接).【解析】由a>0,b>0,且|a|>|b|,可以得到a>b>0.由此再得到-a<-b<0,所以a,-a,b,-b的大小关系是-a<-b<b<a.【答案】-a<-b<b<a.2.一个数的绝对值越小,则该数在数轴上所对应的点,离原点越_____.3.-32的绝对值是_____. 4.绝对值最小的数是_____.5.绝对值等于5的数是_____,它们互为_____.6.若b <0且a =|b |,则a 与b 的关系是______.7.一个数大于另一个数的绝对值,则这两个数的和一定_____0(填“>”或“<”).8.如果|a |>a ,那么a 是_____.9.绝对值大于2.5小于7.2的所有负整数为_____.10.将下列各数由小到大排列顺序是_____.-32,51 ,|-21|,0,|-5.1| 11.如果-|a |=|a |,那么a =_____.12.已知|a |+|b |+|c |=0,则a =_____,b =_____,c =_____.13.比较大小(填写“>”或“<”号)(1)-53_____|-21|(2)|-51|_____0(3)|-56|_____|-34| 14.计算 (1)|-2|×(-2)=_____ (2)|-21|×5.2=_____ (3)|-21|-21=_____ (4)-3-|-5.3|=_____ 15.任何一个有理数的绝对值一定( )A.大于0B.小于0C.不大于0D.不小于016.若a >0,b <0,且|a |<|b |,则a +b 一定是( )A.正数B.负数C.非负数D.非正数17.下列说法正确的是( )A.一个有理数的绝对值一定大于它本身B.只有正数的绝对值等于它本身C.负数的绝对值是它的相反数D.一个数的绝对值是它的相反数,则这个数一定是负数18.下列结论正确的是( )A.若|x |=|y |,则x =-yB.若x =-y ,则|x |=|y |C.若|a |<|b |,则a <bD.若a <b ,则|a |<|b |19.某班举办“迎七一”知识竞赛,规定答对一题得10分,不答得0分,答错一题扣10分,今有甲、乙、丙、丁四名同学所得分数,分别为+50,+20,0,-30,请问哪个同学分数最高,哪个最低,为什么?最高分高出最低分多少?1.在数轴上看,零一切负数,零一切正数;两个数,右边的数左边的数,原点左侧的点所代表的数越向左越,即离原点越远,表示的数越,所以两个负数比较大小,绝对值大的反而。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝对值知识讲解
一、知识框架图
二、基础知识
1、绝对值的概念
(1)定义:一个数的绝对值就是数轴上表示数a 的点与原点的距离。
数a 的绝对值记作a ,读作a 的绝对值。
(2)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零。
(3)绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的距离。
离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小。
(4)绝对值的非负性:由于距离总是正数或0,故有理数的绝对值不可能是负数,即对于任意有理数a ,总有a ≥0.
2、绝对值的求法 绝对值是一种运算,这个运算符号是“”。
求一个数的绝对值,就是想办法去掉这个绝对值符号,对于任意有理数a ,有:
a (a >0)
(1) 0(a=0)
a -(a <0)
a (a ≥0)
(2)
a -(a <0)
a (a >0)
(3)
a (a ≤0)
这就说,去掉绝对值符号不是随便就能完成的,要看绝对值里面的数是什么性质的数。
若绝对值里面的数是非负数,那么这个数的绝对值就是它本身,此时绝对值“”符号就相当于“( )”的作用,如125--=)
(125--=415=-。
由于这里2-1是正数,故去掉绝对值符号后12-=(2-1);若绝对值里面的数是负数,那么这个负数的绝对值就是这个负数的相反数这时去掉绝对值时,就要把绝对值里面的数添上括号,再在括号前面加上负号“-”。
3、利用绝对值比较两个数的大小
两个负数,绝对值大的反而小。
比较两个负数的大小,可按照下列步骤进行:
(1)先求出两个负数的绝对值;
(2)比较这两个绝对值的大小;
(3)写出正确的判断结果。
三、例题讲解
例1求下列各数的绝对值
(1)21;(2)31-;(3)4
34-;(4)331 分析:运用绝对值的意义来求解。
解:(1)
21=21;(2)31-=3131=--)(; (3)434434434=--=-)(;(4)3313=3
1 点评:解答本题首先要弄清楚绝对值的意义,准确列出代数式,再运用绝对值的意义求出结果,切不可写作3
1-=31-=31. 例2计算:(1)2.1--;(2))
(3---;(3)023+---. 分析:本题关键是确定绝对值里面的数的性质,再按照绝对值的意义去掉绝对值负号。
解:(1)2.1--=-1.2;(2))
(3---=3-=3-;(3)023+---=1023=+-. 点评:去掉绝对值负号时,只管绝对值的数的性质,与绝对值外的负号无关,这一点一定要注意。
例3比较下列各组数的大小
(1)2413-和85-;(2)65-和7
5-;(3))(939+-和323-;(4)27和8- 分析:比较两个数的大小要结合前面的知识:0大于一切负数,正数大于0.
解:(1)∵24132413=-,24
158585==-, 又∵
2413<24
15 ∴2413->85- (2)∵=-6565,75-=7
5, 又∵65>75,∴65-<7
5-.
(3)∵)(93
9+-=939-,323-=33
2 ∴)(93
9+-<3
23- (4)2
7>8- 点评:(1)符号“∵”和“∴”分别读作“因为”和“所以”;(2)比较两个负数的大小,是通过比较它们的绝对值的大小来进行的。
把两个负数大小的比较问题划归为比较两个正数的大小问题,这是数学中经常用到的化未知为已知的转化思想。
四、考题再现
例1、(08年、乐山)|3.14-π|的值为( )C
A 、0
B 、3.14-π
C 、π-3.14
D 、0.14
分析:运用绝对值的意义解答本题。
解:∵3.14-π<0,
∴|3.14-π|=π-3.14
点评:一个负数的绝对值是它的相反数。
例2(08年,内江市)2008-的绝对值是( )
A .2008-
B .2008
C .12008-
D .12008
分析:首先把2008-用绝对值符号表示出来,然后在应用绝对值意义求解。
解:2008)2008(2008=--=-
点评:熟练掌握绝对值的表示方法是解答问题的关键。
四、牛刀小试:
1、下列各组数中,互为相反数的是( )
A 32-与32-
B 32-与2
3- C 32-与32 D 32-与23 2、计算:
(1))(3---;(2))(32+--;(3)a
a 3、比较65-,7
6-,2117-的大小 4、求满足x ≤3的所有负整数
5、(08年,安徽)-3的绝对值是( )
A.3 B .-3 C.13 D. 13
- 6、(08年,湖北荆门)下列各式中,不成立的是( ) (A) 3-=3. (B) -3=-3. (C) 3-=3. (D) -3-=3
参考答案:
1、A ;
2、(1)3;(2)5-;(3)当a >0时,a a =1;当a <0时,a
a =1-;当a=0时,a
a 没有意义。
4、123---,,;5、A ;6、D
(注:文档可能无法思考全面,请浏览后下载,供参考。
可复制、编制,期待你的好评与关注)。